
Plan Recognition in Virtual Laboratories

Ofra Amir and Ya’akov (Kobi) Gal

Department of Information Systems Engineering
Faculty of Engineering Sciences

Ben-Gurion University of the Negev, Israel
{ofraam,kobig@bgu.ac.il}

Abstract

This paper presents a plan recognition algorithm
for inferring student behavior using virtual science
laboratories. The algorithm extends existing plan
recognition technology and was integrated with an
existing educational application for chemistry. Au-
tomatic recognition of students’ activities in virtual
laboratories can provide important information to
teachers as well as serve as the basis for intelli-
gent tutoring. Student use of virtual laboratories
presents several challenges: Students may repeat
activities indefinitely, interleave between activities,
and engage in exploratory behavior using trial-and-
error. The plan recognition algorithm uses a recur-
sive grammar that heuristically generates plans on
the fly, taking into account chemical reactions and
effects to determine students’ intended high-level
actions. The algorithm was evaluated empirically
on data obtained from college students using virtual
laboratory software for teaching chemistry. Results
show that the algorithm was able to (1) infer the
plans used by students to construct their models;
(2) recognize such key processes as titration and
dilution when they occurred in students’ work; (3)
identify partial solutions; (4) isolate sequences of
actions that were part of a single error.

1 Introduction

This paper reports on the development and evaluation of algo-
rithms for recognizing the plans of students interacting with
pedagogical systems for science education. To support the
types of exploratory activity that facilitate scientific learning,
these systems typically are flexible and open-ended. Exam-
ples of such learning environments include the Geometer’s
Sketchpad for teaching geometry [Finzer and Bennett, 1995],
the TinkerPlots system for teaching statistics [Konold and
Miller, 2004] and the ChemCollective Virtual Labs system for
introductory chemistry [Yaron et al., 2010], hence referred to
as “VirtualLabs”.

Educational software is generally used in classes too large
for teachers to monitor all students and provide assistance ex-
actly when a student needs it [Gal et al., 2008]. Such software

is also becoming increasingly prevalent in developing coun-
tries where access to teachers and other educational resources
is limited [Pawar et al., 2007]. Integrating into these systems
capabilities for recognizing students’ plans from their actions
would enable them to provide richer experiences for students
and more useful information to teachers.

The focus of this paper is on plan recognition algorithms
for pedagogical software that allow students to design and
carry out their own experiments, simulating the types of sci-
entific inquiry that is experienced in a physical laboratory.
There are several aspects to students’ interactions that make
plan recognition in these “virtual laboratories” particularly
challenging. First, students can engage in exploratory activ-
ities involving trial-and-error, such as searching for the right
pair of chemicals to combine in order to achieve a desired
reaction. Second, students can repeat similar actions indef-
initely in pursuit of a single goal, such as adding varying
amounts of a reagent to a solution until a desired outcome
is achieved. Third, students can interleave between activi-
ties, such as preparing a solution for a new experiment while
waiting for the results of a current experiment. Explicitly rep-
resenting all possible combinations of these activities is com-
putationally infeasible.

The paper presents an efficient algorithm for intelligently
recognizing students’ problem-solving strategies that ad-
dresses these challenges. The algorithm infers students’ plans
based on their complete interaction histories with pedagogi-
cal software, outputting a hierarchical plan that explains the
student’s problem-solving strategy. It uses a recursive gram-
mar to generate, on the fly, plan fragments for key chemical
processes in the lab, such as dilution and titration. The gram-
mar constrains which processes may occur, and the order in
which they occur, as well as accounting for the chemical re-
actions and effects that are the result of the processes. The
recognition algorithm expands tasks from the grammar us-
ing a heuristic that chooses (possibly non contiguous) actions
from students’ interaction sequences.

We evaluated this algorithm using real data obtained from
students using the VirtualLabs system mentioned above to
solve three representative problems used in introductory
chemistry courses. Despite its incompleteness, the algorithm
was able to correctly infer students’ plans in all of the in-
stances. In particular, it was able to distinguish activities that
were salient to the solution from those representing trial-and-

2392

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

error approaches. It was also able to identify partial solutions
in cases where students failed to solve the complete problem,
as well as capture interleaving plans. These results demon-
strate the efficacy of integrating AI techniques with existing
pedagogical software. Our techniques can inform the way in-
telligent tutors infer students’ activities in pedagogical soft-
ware as well as to provide support for teachers.

This work augments recent approaches to plan recognition
that relax the traditional assumptions of a goal directed agent
that is pursuing a single encompassing plan: Geib and Gold-
man [2009] proposed a probabilistic model of plan recog-
nition that is able to identify interleaving plans. Conati et
al. [2002] used Bayesian networks to model students’ in-
teractions with intelligent tutors that recognizes interleav-
ing actions among sub-plans. Other works [Sidner, 1985;
Geib and Steedman, 2007] proposed representations and al-
gorithms for capturing temporal relationships among actions
that are derived from the analogy between plan recognition
and grammar recognition. None of these approaches con-
sider exploratory actions and mistakes which are endemic to
people’s interactions with pedagogical software. Albrecht et
al. [1998] suggested a probabilistic approach to infer play-
ers’ goals as well as their future actions from observation
sequences. They are able to capture agents’ mistakes, but
infer the likelihood of a single goal or action, rather than rec-
ognizing a complete plan representing the entire action se-
quence. Reddy et al. [2009] and Quilici et al. [1998] proposed
complete algorithms for implementing plan recognition as a
constraint satisfaction problem. Gal et al. [2008] proposed
an algorithm for recognizing students’ activities in pedagog-
ical software for statistics education. We extend this work
in both representation (to allow recursive grammars and pre-
and post-action effects) and method (to allow for indefinite
repetition of activities in students’ problem solving).

1.1 The VirtualLabs Domain

We will use the “dilution problem”, posed to students that use
VirtualLabs in an introductory chemistry course, as a running
example to demonstrate our approach: Your objective is to
prepare a solution containing 800 milliliters (ml) or more of
HNO3 with a desired concentration of 7 M. You are allowed
a maximal deviation of 0.005 M in either direction.

We present a possible solution for this problem that is
adapted from one of the student interactions with VirtualLabs
that is used in our empirical evaluation. To solve this problem
the student repeatedly mixed varying quantities of HNO3

with H2O until achieving the required concentration. Specifi-
cally, the student began by pouring 100 ml of an HNO3 solu-
tion with a concentration of 15.4 M to a 100 ml intermediate
flask, and transferred the content of the intermediate flask to
a destination flask.1 This activity was repeated four times,
resulting in 400 ml of HNO3 in the destination flask. The
student proceeded to dilute this solution by mixing it with
510 ml of H2O. This activity was carried out in two steps,
one adding 10 ml of H2O (using an intermediate flask of 10
ml) and another adding 500 ml of H2O (using an intermedi-

1Intermediate flasks are commonly used in VirtualLabs to help
measure solutions accurately, as in a physical laboratory.

Figure 1: Snapshot of Interaction in Virtual Labs

ate flask of 500 ml). At this point the molarity of HNO3 in
the destination flask was too low (6.77 M), indicating that too
much H2O had been poured. To raise the concentration to
the desired level, the student began to pour small amounts of
HNO3 to the destination flask using an intermediate 10 ml
flask, while checking the concentration level of the resulting
compound. The student first poured 10 ml of HNO3, then
poured another 10 ml of HNO3, and finally added 5 ml of
HNO3 to the destination flask, which achieved the desired
concentration of 7 M.

Figure 1 shows a snapshot taken right after the student
added 510 ml of H2O to the destination flask. The panel
on the left shows a “stockroom” of chemicals which can be
customized for different activities. One of the flasks, labeled
“15.4M HNO3” (outlined in the figure) contains an HNO3

solution with a concentration of 15.4 M. The middle panel
shows the “workbench” of the student, used to carry out ac-
tivities in the laboratory. This panel shows the flask contain-
ing HNO3 with a concentration of 15.4 M, the H2O flask,
and the destination flask (a 1,000 ml volumetric flask). It also
shows one of the intermediate flasks used by the student (a
500 ml volumetric flask). The “Solution Information” panel
on the right shows the volume and concentration of selected
compounds. It shows that the concentration level of HNO3

in the destination flask is 6.77 M (outlined in the figure).
This interaction highlights several aspects endemic to sci-

entific inquiry in physical laboratories which are supported by
the VirtualLabs software. First, the concept of titration, that
of repeatedly adding a measured compound to a solution until
a desired result is achieved. This is apparent in the student re-
peatedly adding small quantities of HNO3 to the destination
flask. Second, the interleaving of actions that relate to dif-
ferent activities. This is apparent in the student beginning to
pour HNO3 to the destination flask, then switching to pour
H2O, and then returning to pour more HNO3. Lastly, per-
forming exploratory actions and mistakes. This is apparent in
the student adding too much H2O to the destination flask, and
proceeding to increase the concentration of the compound by

2393

adding more HNO3.

2 Actions, Recipes and Plans

In this section we present the building blocks for our plan
recognition algorithm, which is based on a generative gram-
mar that captures the experimental nature of students’ ac-
tivities in virtual laboratories. We use the term basic ac-
tions [Pollack, 1990] to define rudimentary operations that
cannot be decomposed. These serve as the input to our
plan recognition algorithm. Complex actions describe higher-
level, more abstract activities that can be decomposed into
sub-actions, which can be basic actions or complex actions
themselves. In our example, basic actions may consist of tak-
ing out a solution from the stockroom or pouring 10 ml of
H2O to an intermediate flask, while complex actions may
consist of solving the dilution problem, or mixing together
H2O and HNO3 several times. A recipe for a complex
action specifies the sequence of operations required for ful-
filling the complex action. Formally, a recipe is a set of
sub-actions and constraints such that performing those sub-
actions under those constraints constitutes completing the ac-
tion. The set of constraints is used to (1) specify required
values for action parameters; (2) enforce relationships among
parameters of (sub-)actions, such as chronological order; and
(3) bind the parameter values of a complex action to the value
of the parameters in its constituent sub-actions. Our choice of
nomenclature was based on philosophical declaratives of the
foundational planning literature [Bratman et al., 1988] and
their use in plan recognition [Lochbaum, 1998].

Figure 2(a) presents a recipe for the complex action of
Solving the Dilution Problem (SDP) composed of two com-
plex sub-actions for Mixing Solution Components (MSC),
namely H2O and HNO3. In our notation, complex ac-
tions are underlined, while basic actions are not. Actions
in VirtualLabs are associated with identifiers that bind to
recipe parameters. For example, the parameters of the action
MSC[s id1, d id1, sc1 = H2O, vol1] of pouring H2O in Fig-
ure 2(a) identify the source flask (s id) from which a source
chemical (sc) is poured, the destination flask (d id), and the
volume of the solution that was poured (vol). The constraints
for this recipe require that the destination flask identifier for
both MSC actions is the same (d id1 = d id2) in addition to
specifying the type of chemicals in the mix (sc1 = H2O and
sc2 = HNO3).

Recipes may be recursive, capturing activities that can re-
peat indefinitely, as in titration. This is exemplified in the
recipe shown in Figure 2(b) for the complex action (MSC)
of adding a solution component of volume vol from flask
s id1 to flask d id1. The constituent actions of this recipe de-
compose the MSC action into two separate MSC actions for
adding vol1 and vol2 of the solution using the same source
and destination flask. This recipe effectively clusters together
repetitive activities. Also shown is the “base-case” recipe for
MSC that includes a Mix Solution (MS) basic action.

Figure 2(c) presents another recipe for an MSC complex
action which decomposes into a constituent sub-action for
Mixing the Solution using an Intermediate flask (MSI).2

2For brevity, we omit the recipes for the MSI action.

SDP[s id1, vol1, s id2, vol2, d id1] →
MSC[s id1, d id1, sc1 = H2O, vol1],

MSC[s id2, d id2, sc2 = HNO3, vol2]

d id1 = d id2
(a)

MSC[s id1, d id1, sc1, vol = vol1 + vol2] →
MSC[s id1, d id1, sc1, vol1],

MSC[s id2, d id2, sc2, vol2]

s id1 = s id2, d id1 = d id2, sc1 = sc2

MSC[s id, d id, sc, vol] → MS[s id, d id, sc, vol]

(b)

MSC[s id, d id, sc, vol] → MSI[s id, d id, i id, sc, vol]

(c)
Figure 2: Recipes for (a) solving the dilution problem; (b)
repetition of activities; (c) using intermediate flasks.

We say that a recipe for a complex action is fulfilled by a set
of sub-actions if there is a one-to-one correspondence from
each of the sub-actions to one of the recipe’s constituents that
meets the recipe constraints. For example, in the student’s in-
teraction described in Section 2, the complex sub-actions for
mixing H2O with HNO3 fulfill the recipe for the complex
action SDP of solving the dilution problem. These actions
are labeled “1, 2” and “14” in Figure 3(a).

A plan is a set of complex and basic actions such that each
complex action is decomposed into sub-actions that fulfill a
recipe for the complex action. A hierarchical presentation of a
(partial) plan used by the student to solve the dilution problem
is shown in Figure 3(a). The hierarchy emanating from the
root node SDP (the action labeled “1”) shows that the student
was able to solve the dilution problem by mixing together
425 ml of HNO3 from flask ID 1 (the action labeled “2”)
with 510 ml of H2O from flask ID 4 (the action labeled “14”)
in destination flask ID 2. These actions further decompose to
their respective constituent actions. For example, the path in
bold, from left to right, shows part of the plan for the complex
action of pouring 425 ml of HNO3 from flask ID 1 to flask
ID 2 (the action labeled “2”). Here, the student poured 25 ml
of HNO3 from flask ID 1 to flask ID 2 (the action labeled
“3”) using intermediate flask ID 3 (the action labeled “4”).
The action labeled “4” is decomposed to the two sub-actions
for pouring the solution from flask ID 1 to intermediate flask
ID 3, and pouring from flask ID 3 to the destination flask ID 2
(actions labeled “5” and “6”). For brevity, we do not expand
the complex actions in Figure 3(a) down to the leaves.

Figure 3(b) describes the student’s use of titration. This
plan expands the action of pouring 25 ml from flask ID 1 to
flask ID 3 (action labeled “5”) down to the basic-level actions
corresponding to the student’s interaction with the software
(the three MS actions at the leaves). The constituents of this
action consisted of two separate pours from flask ID 1 to flask
ID 3, one pouring 20 ml (action labeled “7”) and the other

2394

MSC(sid=1, did=6,
sc=HNO3 , vol=400ml)

MSC(sid=4, did=3,
sc=H2O, vol=10ml)

MSC(sid=3, did=2,
sc=H2O, vol=10ml)

MSI(sid=4, did=2, iid=3,
sc=H2O, vol=10ml)

MSI(sid=1, did=2, iid=6,
sc=HNO3 ,vol=400ml)

MSC(sid=4, did=2,
sc=H2O, vol=510ml)

SDP(sid1=1,vol1=425m,
sid2=4,vol2=510,did=2)

ID Type
Contained
solution

1 2500ml Bottle 15.4 HNO3
2 1000ml volumetric flask Empty
3 10ml Graduated Cylinder Empty
4 3L Bottle H2O
5 500ml volumetric flask Empty
6 100ml volumetric flask Empty

MSC(sid=1, did=2,
sc=HNO3 , vol=425ml) MSC(sid=6, did=2,

sc=HNO3 , vol=400ml)

MSC(sid=1, did=3,
sc = HNO3 , vol=25ml)MSI(sid=1, did=2, iid=3,

sc=HNO3 , vol=25ml)
MSC (sid=3, did=2,
sc=HNO3 , vol=25ml)

MSC(sid=4, did=5,
sc=H2O, vol=500ml)

MSC(sid=5, did=2,
sc=H2O, vol=500ml)

MSI(sid=4, did=2, iid=5,
sc=H2O, vol=500ml)

MSC(sid=4, did=2,
sc=H2O, vol=10ml)

MSC(sid=4, did=2,
sc=H2O, vol=500ml)

MSC(sid=1, did=2,
sc=HNO3 , vol=25ml)

MSC(sid=1, did=2,
sc=HNO3 , vol=400ml)

1

2

3 4
5

6

14

Index for flask identifiers

(a)
MSC(sid=1, did=3,
sc=HNO3 , vol=10ml)

MSC(sid=1, did=3,
sc=HNO3 , vol=20ml)

MSC(sid=1, did=3,
sc=HNO3 , vol=5ml)

MS (sid=1, did=3,
sc=HNO3 , vol=10ml)

MS (sid=1, did=3 ,
sc=HNO3 , vol=10ml)

MS (sid=1, did=3,
sc=HNO3 , vol=5ml)

MSC(sid=1, did=3,
sc=HNO3 , vol=10ml)

MSC(sid=1, did=3,
sc=HNO3 , vol=25ml)

5

7

8

9

10

11

12

13

P0 P1P2
(b)

Figure 3: (a) a partial plan for the dilution problem; (b) a plan for the MSC complex action (labeled “5”, dashed outline).

pouring 5 ml (action labeled “10”). The action labeled “10”
was further decomposed to the basic action of adding 5 ml of
HNO3 to flask ID 3 (action labeled “13”).

3 Plan Recognition

Students take diverse approaches to solving the dilution prob-
lem. They can perform an indefinite number of mixing ac-
tions, choose whether to use intermediate flasks and inter-
leave activities. For example, Figure 3 shows that the con-
stituent sub-actions of the action labeled “14” occurred in be-
tween the constituent sub-actions of the action labeled “2”.
This reflects that the student interleaved the actions for adding
HNO3 and H2O. A brute-force approach involves non-
deterministically finding all ways in which a complex action
may be implemented in students’ interaction sequences. Due
to the exploratory and repetitive nature of students’ activities
in VirtualLabs , naively considering each of these possibilities
is impossible.

The proposed algorithm shown in Figure 4 incrementally
builds a plan which describes students’ activities with Virtu-
alLabs . BUILDPLAN(R,X) receives as input a finite action
sequence representing a student’s interaction, denoted X , and
the set of recipes for the given problem, denoted R. At each
step t, the algorithm maintains an ordered sequence of ac-
tions, denoted Pt and an open list OL. The algorithm iter-
ates over the recipes in R (step 3) according to the following
(partial) ordering criteria: if the complex action C2 is a con-
stituent sub-action for a recipe for a complex action C1, then

recipes for action C2 are considered before the recipes for
action C1.3 The algorithm repeatedly searches for a match
for each recipe Rc for action C in the open list by calling
the function FINDMATCH(RC , OL) (step 5). This function
returns a set of actions MC ∈ OL such that MC fulfills RC .
Actions are chosen from OL in any order such that they agree
with the restrictions in RC (allowing us to capture interleav-
ing plans). If there exists no action set Mc that fulfills Rc,
then the function returns ∅.

For each match MC that fulfills RC , BUILDPLAN per-
forms the following: First, the values of the parameters in
C are set based on the values of the parameters of the actions
in MC and the restrictions specified in the recipe RC (step
7). This incorporates into C the reactions and effects arising
from carrying out the constituent actions in RC . Second, the
action C is added to the action sequences in Pt+1 and OL, in
the position held by the latest action in MC (step 8).4 Adding
the action to OL supports recursive recipes, in that it allows
the action C itself to be part of the action set that fulfills RC

in the next iteration. Third, the action C in Pt+1 is made a

3The recipe language allows for cycles, but in practice recipes
cannot be applied indefinitely in VirtualLabs. An ordering over
recipes can always be created (possibly by duplicating or renaming
actions) that meets the constraint.

4This is done to preserve the temporal ordering of the actions in
the open list, which facilitates checking temporal constraints when
matching recipes to actions in the open list.

2395

1: procedure BUILDPLAN(R,X)
2: P0 ← X
3: for RC ∈ SORTRECIPES(R) do
4: Pt+1, OL ← Pt

5: MC = FINDMATCH(RC , OL)
6: while MC �= ∅ do
7: BINDPARAMS(C, MC , RC)
8: Add C to OL and Pt+1 positioned after last

a ∈ MC

9: for all a ∈ MC do
10: Create a branch from C in Pt+1 to a in Pt

11: Remove MC from OL and Pt+1

12: MC = FINDMATCH(RC , OL)

Figure 4: Bottom-up plan recognition method

parent of all of the actions in MC in Pt (step 10). This creates
the hierarchy between a complex action in Pt+1 and its con-
stituent actions in Pt. Finally, the actions in MC are removed
from both the open list OL and Pt+1 (step 11). Removing the
actions in MC from the open list prevents the same actions
from fulfilling more than one recipe. Once no more matches
for RC can be found, (i.e, FINDMATCH(RC , OL) returns ∅),
the BUILDPLAN algorithm proceeds to consider a new recipe,
and terminates once all recipes have been considered.

We demonstrate this process using the plan in Figure 3(b)
describing the student’s use of titration. At step P1, the MS
basic action (labeled “11”) was chosen to match the recipe
for the complex MSC action (labeled “8”) using the second
recipe in Figure 2b. At step P2, the MSC actions labeled
“8, 9” were chosen to match the recipe for the MSC action
labeled “7”. We note that BUILDPLAN is capable of inferring
multiple hierarchies, representing students’ failed attempts to
solve a problem, or exploratory activities that are exogenous
to the actual solution path. Such behavior occurred in our
empirical evaluation that is described in the next section.

The function FINDMATCH can be implemented in many
ways. For this study, we used a standard depth-first search
on the open list OL to find a match for RC . This function
is complete, in that for a given recipe RC and OL, if there
exists a match for RC in OL, then FINDMATCH will find
it. However, BUILDPLAN is a greedy algorithm. Once an
action set MC matches a recipe RC , it does not backtrack
and consider any of the actions in MC for alternative recipes.
Therefore it may fail to recognize a student’s plan.

The complexity of BUILDPLAN is dominated by the com-
plexity of the FINDMATCH algorithm, denoted CFM . Let
|R| and |X| be the number of recipes in R and the number of
actions in the action sequence X , respectively. Then, BUILD-
PLAN calls FINDMATCH at most |X| times per recipe, yield-
ing an overall complexity of O(|R| · |X| ·CFM). Since FIND-
MATCH was implemented as a depth first search, its complex-
ity is exponential in the size of the action sequence X .

4 Empirical Methodology

We evaluated the algorithm on real data consisting of stu-
dents’ interactions with the software. Our hypothesis was
that the BUILDPLAN algorithm will in practice be able to

Coffee Oracle Dilution

Run-Time (sec) 0.15 1.31 0.54
Log size 24.33 110.33 63
Plan size 34 66 39.75

Table 1: Performance measures for the recognition algorithm

recognize students’ plans with VirtualLabs despite its incom-
pleteness. We used three problems intended to teach differ-
ent types of experimental and analytical techniques in chem-
istry, taken from the curriculum of introductory chemistry
courses using VirtualLabs in the U.S. One of these was the
dilution problem that was described in Section 2; the sec-
ond, called the “oracle problem”, required students to deter-
mine unknown reactions between four substances; the third,
called the “coffee problem”, required students to add the right
amount of milk to cool a cup of coffee down to a desired tem-
perature. We constructed a set of recipes for each of the prob-
lems. VirtualLabs automatically logs the interactions of its
users. These logs constituted the basic actions that served as
the input for the algorithm, together with the set of recipes for
each problem.

The algorithm was evaluated by a domain expert who is
a chemistry researcher and one of the developers of Virtu-
alLabs. For each problem instance, the domain expert was
given the plan(s) outputted by BUILDPLAN, as well as the
student’s log. We consider the inferred plan(s) to be “cor-
rect” if the domain expert agrees with the complex and basic
actions at each level of the plan hierarchy that is outputted
by the algorithm. If the student was able to complete the
problem, the outputted plan(s) represent the student’s solu-
tion process. Otherwise, the outputted plan(s) represent the
students’ failed attempts to solve the problem.

We ran the algorithm on ten problem instances (four in-
stances of the dilution problem, and three instances of each
coffee and oracle problem). Students’ logs varied greatly in
size, ranging from 20 actions to 187 actions, while the out-
putted plans ranged in depth from 3 to 14 levels.

The results revealed that all plans outputted by BUILD-
PLAN were deemed correct by the domain expert. Because
of the burden required to manually verify the performance of
the algorithm on each instance, only ten instances were evalu-
ated by the domain expert. However, the perfect record of the
algorithm on these instances speaks well for its overall perfor-
mance. In particular, the algorithm was able to capture trial-
and-error approaches as well as explorations and mistakes.
For instance, one of the students performed three separate at-
tempts to solve the dilution problem. The first two attempts
resulted in a wrong molarity of the solution, and after each
of these unsuccessful attempts the student started over us-
ing different flasks. The algorithm represented each of these
three attempts in a separate plan hierarchy. This is an impor-
tant capability, as it allows teachers to gain important insights
regarding students’ problem solving processes by reviewing
their plans.

Table 1 summarizes the performance of the algorithm ac-
cording to several measures: run time of the algorithm (in
seconds) on a commodity dual-core computer; log size, rep-

2396

resenting the size of the interaction history that serves as in-
put to the algorithm; plan size, representing the number of
nodes in the plan(s) outputted by the algorithm. All of the
reported results were averaged over the different instances in
each problem. As shown in the table, the longest time to in-
fer students’ plans occurred for interactions relating to the
oracle problem (1.31 sec.), which also resulted in the largest
plans (66 nodes). This problem is more exploratory in nature
than the dilution and coffee problems, and students’ solutions
were characterized by longer interaction histories and a high
degree of experimentation. Another factor contributing to the
complexity of the oracle problem is the number of recursive
recipes. There were 6 recursive recipes for this problem, more
than the number of recursive recipes for the dilution problem
(4) and the coffee problem (2).

5 Conclusion and Future Work

This paper proposed a computationally efficient plan recog-
nition algorithm for integrating with pedagogical software in
which students use virtual laboratories to design and conduct
experiments. Students’ problem-solving in virtual laborato-
ries is characterized by exploration and trial-and-error, inter-
leaving between activities and mistakes. We showed that the
algorithm was successfully able to recognize students’ plans
when solving three separate problems using existing software
for teaching chemistry concepts. It was able to recognize such
key processes as titration and dilution when they occurred
in students’ work. This work is a necessary step towards a
pedagogical agent that is truly collaborative, in the sense that
it provides the right machine-generated support for its users.
For teachers, this support consists of notification of students’
performance both after and during class. Although our empir-
ical evaluation uses one type of software, the techniques are
general and can be used to support the analysis of students
interactions for other types of virtual laboratories.

We are currently applying these results in several direc-
tions. First, we are developing methods for presenting plan
recognition output to teachers in order to provide them with a
broad and organized view of students’ activities. Second, we
are constructing recipes for recognizing the common types
of mistakes students make when using pedagogical software,
as well as using the recipe-based approach in different ped-
agogical software systems. In future work, we will use our
algorithms as a basis for building intelligent tutors that will
augment existing software tools for mathematics education.

Acknowledgments

Thanks to Michael Karabinos and David Yaron for help-
ful discussions about Virtual Labs, and a special thanks to
Michael for evaluating the plans. Thanks to Barabara Grosz,
Stuart Shieber and Swapna Reddy for helpful discussions and
suggestions throughout the project.

References

[Albrecht et al., 1998] D.W. Albrecht, I. Zukerman, and
A.E. Nicholson. Bayesian models for keyhole plan recog-
nition in an adventure game. User modeling and user-
adapted interaction, 8(1):5–47, 1998.

[Bratman et al., 1988] M. E. Bratman, D. J. Israel, and M. E.
Pollack. Plans and resource-bounded practical reasoning.
Computational intelligence, 4(3):349–355, 1988.

[Conati et al., 2002] C. Conati, A. Gertner, and K. VanLehn.
Using Bayesian networks to manage uncertainty in student
modeling. Journal of User Modeling and User-Adapted
Interaction, 12(4):371–417, 2002.

[Finzer and Bennett, 1995] B. Finzer and D. Bennett. From
drawing to construction with the Geometer’s Sketchpad.
Mathematics Teacher, 88(5):428–431, 1995.

[Gal et al., 2008] Y. Gal, E. Yamangil, A. Rubin, S. M.
Shieber, and B. J. Grosz. Towards collaborative intelligent
tutors: Automated recognition of users’ strategies. In Pro-
ceedings of Ninth International Conference on Intelligent
Tutoring Systems (ITS), Montreal, Quebec, 2008.

[Geib and Goldman, 2009] C.W. Geib and R.P. Goldman. A
probabilistic plan recognition algorithm based on plan tree
grammars. Artificial Intelligence, 173(11):1101–1132,
2009.

[Geib and Steedman, 2007] C.W. Geib and M. Steedman.
On natural language processing and plan recognition. In
Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI), pages 1612–1617, 2007.

[Konold and Miller, 2004] C. Konold and C. Miller. Tinker-
Plots Dynamic Data Exploration 1.0. Key Curriculum
Press, 2004.

[Lochbaum, 1998] K. E. Lochbaum. A collaborative plan-
ning model of intentional structure. Computational Lin-
guistics, 4(525–572), 1998.

[Pawar et al., 2007] U.S. Pawar, J. Pal, and K. Toyama. Mul-
tiple Mice for Computers in Education in Developing
Countries. In Conference on Information and Communi-
cation Technologies and Development, pages 64–71, 2007.

[Pollack, 1990] M.E. Pollack. Plans as complex mental atti-
tudes. Intentions in communication, 1990.

[Quilici et al., 1998] A. Quilici, Q. Yang, and S. Woods.
Applying plan recognition algorithms to program under-
standing. Automated Software Engineering, 5(3):347–372,
1998.

[Reddy et al., 2009] S. Reddy, Y. Gal, and S. M. Shieber.
Recognition of users’ activities using constraint satisfac-
tion. In Proceedings of the First and Seventeenth Inter-
national Conference on User Modeling, Adaptation and
Personalization, 2009.

[Sidner, 1985] C.L. Sidner. Plan parsing for intended re-
sponse recognition in discourse. Computational intelli-
gence, 1(1):1–10, 1985.

[Yaron et al., 2010] D. Yaron, M. Karabinos, D. Lange,
J.G. Greeno, and G. Leinhardt. The ChemCollective–
Virtual Labs for Introductory Chemistry Courses. Science,
328(5978):584, 2010.

2397

