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Abstract

In this paper, we describe how we integrated an ar-
tificial intelligence (AI) system into the PubMed
search website using augmented browsing tech-
nology. Our system dynamically enriches the
PubMed search results displayed in a user’s browser
with semantic annotation provided by several nat-
ural language processing (NLP) subsystems, in-
cluding a sentence splitter, a part-of-speech tagger,
a named entity recognizer, a section categorizer and
a gene normalizer (GN). After our system is in-
stalled, the PubMed search results page is modified
on the fly to categorize sections and provide addi-
tional information on gene and gene products iden-
tified by our NLP subsystems. In addition, GN in-
volves three main steps: candidate ID matching,
false positive filtering and disambiguation, which
are highly dependent on each other. We propose a
joint model using a Markov logic network (MLN) to
model the dependencies found in GN. The experi-
mental results show that our joint model outper-
forms a baseline system that executes the three steps
separately. The developed system is available at
https://sites.google.com/site/pubmedannotationtool
4ijcai/home.

1

The amount of biological literature is vast and growing rap-
idly. Large, well-curated biomedical resources, such as
NCBI PubMed and EMBL-EBI, make available a massive
volume of online articles for today's biologists to search
through. In order to enhance readability of NCBI PubMed or
EMBL-EBI search results, researchers have developed a
range of web-based artificial intelligence (Al) systems which
employ natural language processing (NLP) technology to
identify and mark-up biomedical named entities, verbs and
key relations among these components. For example, iHOP
[Hoffmann and Valencia, 2005] and BIOSMILE [Dai et al.,
2008] provide enhancements to PubMed's retrieval of ab-
stracts by organizing the results or highlighting specific en-
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tities in text. Unfortunately, compared to the popularity of
PubMed or EMBL-EBI's online search interfaces, none the
above services has been widely adopted by the biomedical
research community. Part of the problem may be that all
these advanced services have their own interfaces, some of
which are very different from PubMed. Furthermore, the
interfaces vary in terms of ease of use, and at the very least
require users to navigate to an independent website, which
may respond more slowly than PubMed search due to
bandwidth and data access lag times.

An emerging approach, called augmented browsing’, is
being increasingly adopted on the Web and has been intro-
duced into the life sciences. Built upon popular browser
extension frameworks, this technology provides an effective
means for dynamically adding supplementary information to
a webpage without having users navigate away from the page.
For example, ChemGM [Willighagen et al., 2007] automat-
ically recognizes chemical structure names found on a
webpage and provides inline hypertext links to PubChem.
Both ConceptWeb Linker [Mons et al., 2008] and Reflect
[Pafilis er al., 2009] highlight several types of named entities
and link them to ontologies on popular websites via popup
windows. This type of service has a strong focus on ease of
use and could possibly win over more converts in the bio-
medical research community.

In this paper, we describe our experience of constructing
an Al system that augments PubMed's search page via a
browser extension to provide users with enhanced customi-
zable views. The system seamlessly integrates several bio-
medical text-mining subsystems’ annotations with the Pub-
Med search results. It can categorize sentences in an abstract
into four sections (OBJECTIVE, METHOD, RESULT, and
CONCLUSION), which provides an important feature for
users to quickly recognize key biomedical information. For
example, the key disease-related genes investigated in a
paper tend to be mentioned in the results and conclusions
sections. However, other parts of the abstract may contain
mentions of disease-related genes that nonetheless are not
actually experimented upon in the paper.

T Augmented browsing refers to the experience of using a sys-
tem that can automatically augment the information in webpages.
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Furthermore, our system enriches the original PubMed
search results by highlighting disease and gene mentions and
providing hyperlinks to MeSH/EntreGene database entries
via entity normalization technology. By the normalization
technology, we can then hyperlink entities in the abstract text
to URLs on EntrezGene’s website. When a user clicks on a
hyperlinked entity, a pop-up window is displayed with cor-
responding detail information for the identified entity. A key
advantage of using popups is that users can see information
about an entity without having to navigate away from the
current webpage. If needed, hyperlinks to more detailed
information can be provided on the popup.

Gene normalization (GN) is the task of normalizing a
textual gene mention to a unique gene database ID. GN is a
complicated NLP process and usually includes four main
steps: (1) gene mention recognition, (2) candidate ID
matching, (3) false positive filtering and (4) disambiguation.
Each step requires a different NLP subsystem. The entire GN
procedure can be treated as a decision making system that
considers each subsystem’s output to determine the final
decision. In addition to augmenting the PubMed search site
with our embedded Al system, we present a novel approach
that integrates the latter three separate subsystems above into
a joint inference model using a Markov Logic Network
(MLN) [Richardson and Domingos, 2006]. Joint models
have become popular in NLP recently, because they allow
different NLP tasks to be carried out simultaneously and
makes it possible for features and constraints to be shared
among tasks [Che and Liu, 2010]. Our MLN model can
simultaneously exploit contextual information and normali-
zation constraints (e.g. one gene mention can only be nor-
malized to one ID when the mention has not been filtered) to
finds the global optimal solution.
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2 Methods and Techniques

We embed our Al system into a user’s web browser by using
the user-script technology based on the GreaseMonkey ex-
tension, which enriches the original PubMed search results
with semantic annotation generated by our NLP server. Fig-
ure 1 shows the system flowchart.

The user must first install our browser extension down-
loaded from our website, which allows the user to run our
user-scripts that make on-the-fly changes to the HTML of the
PubMed search results page. When a user visits the PubMed
website and invokes a query (Step 1 in Figure 1), the us-
er-script intercepts the returned results (Step 2) and generates
an NLP processing request to our NLP server (Step 3). Upon
receiving the request, the server forwards it to our
text-mining subsystems, which process the intercepted
search results and return annotated results back to the user’s
browser. The user-script then integrates these into the dis-
played page (Step 4).

2.1 User-scripts

A user-script is a small program written in JavaScript that is
automatically run within a web browser when the user ac-
cesses pages that match a particular URL. The user-scripts
developed in this paper work in-browser only on the PubMed
domain.

In order to modify the PubMed HTML pages, the script
uses the browser document object model (DOM), which
defines the content, structure and style of an HTML docu-
ment. For example, using the DOM interface, one of our
user-scripts can determine which DOM element contains the
abstract text returned by PubMed. It can then extract the raw
text from the element, and send it to the NLP web server.
Upon receiving the processed results, the user-script modi-
fies the appropriate DOM element attribute and the content
displayed on the user’s browser is updated immediately.

2.2 NLP Web Server

The NLP web server integrates several text-mining systems,
such as a sentence splitter, a part-of-speech tagger and a
disease and gene mention recognizer. As shown in Figure 1,
an abstract sent by the user-script is preprocessed by (1) the
sentence splitter to determine the sentence boundaries, (2) the
part-of-speech tagger to generate part-of-speech annotations
and (3) the gene mention recognizer to generate a list of all
gene mention candidates in the abstract (Gene Mention List).
After the abstract text is processed and tagged in the above
three steps, it is sent to the section categorizer and the GN
subsystem.

The function of the section categorizer is to divide a given
abstract into section paragraphs. For the section categoriza-
tion problem, we regard each sentence in an abstract as a
token. Each token is associated with a boundary tag, that is
the beginning (B), inside (/) or outside (O) of a section, as
well as a category tag, C, that indicates the category of the
section. Therefore, the problem can be formulated as the
problem of assigning tags to each token. For example, in B-C,
I-C, where C is a section category, B- and, /- denote, respec-



Table 1. Part-of-speech patterns for tenses

Tense/Section Part-of-speech Pattern

Present/Background VBI[ZP]?
Present Perfect/Purpose, VBZ(->VBN){1,2}

Conclusion VBP(->VBN){1,2}
Past/Method, Results VBD
Past Perfect/Purpose VBD(->VBN){1,2}
Tentative Verbs/Conclusion MD->VB
Modal Auxiliaries/Conclusion MD->VB

tively, the first token and the subsequent token of a section in
category C. The underlying machine learning model is the
conditional random field (CRF). We describe three main
features of our model here. Other useful features for the
section categorization problem can be found in [Hirohata et
al., 2008; Lin et al., 2009].

The first is the “position” feature. The relative position of a
sentence in an abstract provides useful information to de-
termine which section it belongs to. We use the following
equation to calculate the relative position of a sentence:

relative,osition (s, S) = 10[5/5]

where s is the sentence’s position in the abstract, and S is the
total number of sentences in the abstract. The second is the
“tense feature”. Weissberg and Buker [1990] suggested that
an abstract has five important sections, “Background infor-
mation”, “Purpose/Principal activity”, “Methodology”,
“Results” and “Conclusion”, which are often written in spe-
cific tenses. For example, the results section is usually in past
tense. Based on the part-of-speech information generated by
the part-of-speech tagger subsystem, we use seven patterns
shown in Table 1 to determine the tense of a given sentence
and the corresponding section. These patterns are developed
based on [Weissberg and Buker, 1990]. The final feature is
the “NE feature”, which refers to the named entity infor-
mation. Since an abstract’s title can be treated as a summary
of the abstract, and entities in the title often appear in the
Results section, we can use co-occurrence ratio of entities in
the title and in a given sentence to identify the Results sec-
tion.

The second dependent system, the GN system, normalizes
the gene names in the “Gene Mention List” to their corre-
sponding EntrezGene database IDs. As shown in Figure 1,
the GN subsystem includes three components: a candidate ID
matcher, a false positive filter and a disambiguation com-
ponent. Generally speaking, the current top-performing GN
systems [Hakenberg ef al., 2008; Dai et al., 2010] used the
following step-by-step approach. The candidate ID matcher
looks up each gene candidate in the “Gene Mention List” ina
lexicon of gene names and IDs compiled from EntrezGene.
Ideally, after one or several IDs matches have been found for
a gene mention, we should be able to treat all these IDs as
candidates, and proceed directly to the disambiguation task.
However, it is not always the case, because the employed
recognizer may generate false positive gene mentions.
Therefore, the false-positive filter is employed to decide
whether to keep the mention, or to discard it. If the mention is
kept, the disambiguation component is then used to select the
most appropriate ID for it.
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In the following section, we describe an approach that
employs an MLN to model the constraints used in the above
GN process and show how various decisions can be formu-
lated and combined in an MLN to improve system perfor-
mance.

2.3 MLN-based Gene Normalization

Markov Logic Network

Markov logic network (MLN) is a joint model which com-
bines first order logic and Markov networks. In first-order
logic, formulae consist of four types of symbols: constants,
variables, functions, and predicates. Constants represent
objects in a specific domain (e.g. people: Joe, Sally, etc.).
Variables (e.g., x, y) range over the objects. Predicates rep-
resent relationships among objects (e.g., married to), or
attributes of objects (e.g. husband/wife). Constants and var-
iables may belong to specific types. An atom is a predicate
symbol applied to a list of arguments, which may be con-
stants or variables (e.g., married to(x, Joe)). A ground atom
is an atom whose arguments are all constants. A world is an
assignment of truth values to all possible ground atoms. A
knowledge base (KB) is a partial specification of a world;
each atom in it is true, false or unknown.

A Markov network represents the joint distribution of a set
of variables X = (Xy,...,X,) € X as a product of factors:
PX=x)= %Hk fi(xx) , where each factor f, is a
non-negative function of a subset of the variables x;, and Z is
a normalization constant. The distribution is usually equiv-
alently represented as a log-lincar form: P(X =x) =
%exp(Ziwi gi(x)), where the features g;(x) are arbitrary
functions of (a subset of) the variables’ states.

An MLN is a set of weighted first-order formulae. To-
gether with a set of constants representing objects in the
domain, it defines a Markov network with one variable per
ground atom and one feature per ground formula. The
probability distribution over possible worlds x is given by
P(X =x) = %exp(ziep Y jec, wig;(x)) where Z is the partition
function, F is the set of all first-order formulae in the MLN,
g; is the set of groundings of the ith first-order formula, and
gj(x) = 1 if the jth ground formula is true and g;(x) =0
otherwise. Markov logic enables us to compactly represent
complex models in non-i.i.d. domains. General algorithms
for inference and learning in Markov logic are discussed in
Richardson and Domingos [2006]. We employ thebeast
toolkit* to implement our MLN model. It uses 1-best MIRA
online learning method [Crammer and Singer, 2003] for
learning weights and employs cutting plane inference [Riedel,
2008] with integer linear programming as its base solver for
inference at test time as well as during the MIRA online
learning process.

Modeling the GN Disambiguation Process
We use the predicate isNormalizedTo(i, id) to represent the
disambiguation component: gene mention i should be nor-

¥ http://code.google.com/p/thebeast/



Table 2. MLN formulae for disambiguation
3lid.isCandidateOf (id,i) = isNormalizedTo(i, id)
hasChromosomelnfo(i,id, +sd) = isNormalizedTo(i, id)
3!id. hasPPIPartnerRank(i,id, 1) A hasWord(w) A
PPIKeyword(w) = isNormalizedTo(i, id)

3!id. hasGOTermRank(i,id, 1) = isNormalizedTo(i, id)
3!id. hasTissueTermRank(i,id, 1) = isNormalizedTo(i,id)

i < jAisNormalizedTo(i,id) A isCandidateOf (id,j) =
isNormalizedTo(j, id)
isNormalizedTo(i,id,) Aid, # id, = —isNormalizedTo(i, id,)

malized to id. The most general assumption is that if a gene
mention is mapped to only one ID, it should be normalized to
that ID. This is defined as:
Formula 1

Alid.isCandidateOf (id,i) = isNormalizedTo(i, id)
where isCandidateOf (id, i) represents that the decision of the
candidate ID matcher: identifier candidate id is a candidate
of the gene mention.

Note that, in our formulae, we refer to a gene mention by
its order in the article (e.g., the ith gene mention) for several
reasons. One, not all names can be found in the training data.
Secondly, even if two gene mentions have the same name
string, they may normalize to different IDs.

If a gene mention has two or more candidate IDs, we must
determine which is more appropriate through disambiguation
processing. We implement most of the rules employed by
[Lai et al., 2009; Dai et al., 2010]. For example, we define the
predicate hasChromosomelnfo(i,id, sd) to indicate that the
chromosome location information of the ith gene mention,
which has the identifier id as its candidate ID, can be found
in the surrounding text in the range sd. Applying this predi-
cate to the sentence:

“The human UBQLN3 gene was mapped to the //p15 region
of chromosome 11.”,
The mention UBQLN3 must be normalized to the En-
trezGene ID 50613 because 50613’s chromosome location,
11pl5, is found in the context. The formula describing the
relation of hasChromosomelnfo and isNormalizedTo is
defined as follows:

hasChromosomelnfo(i,id, +sd) = isNormalizedTo(i, id)
Here, we can see that there is an additional parameter, +sd, in
the predicate hasChromosomelnfo. sd, indicating where the
chromosome information corresponding to id locates, has
two possible values: 0 indicates the id’s chromosome in-
formation is located in the same sentence as i. Otherwise, sd
is 1. The “+” notation in the above formula indicates that the
MLN must learn a separate weight for each grounded varia-
ble (sd). For example, hasChromosomelnfo(i,id,0) and
hasChromosomelnfo(i,id, 1) are given two different weights
in our MLN model after training. Table 2 briefly summarizes
the main formulae defined for isNormalizedTo.

Modeling the False Positive Filtering

For GN, false positives can be classified into two types: those
that do not belong to any entity class, and those that belong to
classes that are not the curation target, e.g. DNA polymerases,
or protein families. To capture the filtering concept in our
model, we define the predicate ShouldBeNormalized(i),
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Table 3. MLN formulae for false positive filtering

hasGeneName(i, +n) = ShouldBeNormalized (i)
hasFirstWord(i, +w) A SpeciesTerm(+w)

= ShouldBeNormalized (i)
hasPrecedingWord(i, +w, 1) A SpeciesTerm(+w)

= ShouldBeNormalized (i)

hasFollowingWord (i, +w,1) = ShouldBeNormalized (i)
containsMoreSpecificMentions(i) = —ShouldbeNormalized (i)

isNormalizedTo(i, id) = ShouldBeNormalized (i)

which indicates that the gene mention i of the article should
be normalized to an ID. In our model, for the ith entity, if the
possible world ShouldBeNormalized(i) is false, the entity is
considered as a false positive.

The first formula containing ShouldBeNormalized is as-
sociated with different weights by considering the grounded
gene name n:

hasGeneName(i, +n) = ShouldBeNormalized (i)
The other formulae determine whether i is a true gene men-
tion or not by checking i’s context. For example:
hasFirstWord(i,+w) A SpeciesTerm(+w) =
ShouldBeNormalized (i)

implies that a certain gene mention i’s suitability for nor-
malizing depends on whether or not i’s first word is a certain
species keyword. Table 3 summarizes the main formulae
defined for ShouldBeNormalized.

3 Results

3.1 User Scenarios

Figure 2 shows an example of the uncategorized biomedical
abstract returned by PubMed search. As one can see, it is
difficult to quickly differentiate the background, methods,
results and conclusion sections because the monochromatic
text is squeezed together into one long paragraph.

Figure 3 shows the same search results marked up by our
embedded Al system. As you can see, the uncategorized
abstract is automatically sectioned by our system into OB-
JECTIVE, METHOD, RESULT, and CONCLUSION. In
Figure 3, the gene mentions in the displayed results are also
marked in different colors. When users move their mouse

PPARY ligands induce growth inhibition and apoptosis through p63
and p73 in human ovarian cancer cells.

Abstract

Peroxisome proliferator-activated receptor gamma (PPARY) agonists, including thiazolidinediones
(TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This
study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer. Six
human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774)
were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally,
these cell lines exhibited various expression levels of PPARYy protein as revealed by Western
blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated
by the appearance of a sub-G1 peak. This observation was corroborated by the finding of
increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly,
when we determined the effect of p53-induced growth inhibition in these three human ovarian
cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore,
TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or
p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in
these cells. Thus, our results suggest that PPARYy ligands can induce growth suppression of ovarian
cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and
apoptosis. The tumor suppressive effects of PPARy ligands may have applications for the
treatment of ovarian cancer.

Figure 2. Query result for the abstract (PMID:21329655)
from PubMed search.



PPARYy ligands induce growth inhibition and apoptosis through p63
and p73 in human ovarian cancer cells.

Kim S, Lee JJ, Heo DS

Cancer Research Institute, Seoul National University College of Medicine and Hospital, Seoul, Republic of
Korea; Innovative Research Institute for Cell Therapy, Seoul National University College of Medicine and
Hospital, Seoul, Republic of Korea.

Abstract

©Othe following sections were categorized by PubMedAnnotationToold4lJCAI

OBJECTIVE

Peroxisome proliferator-activated receptor gamma (PPARY) agonists, including thiazolidinediones
(TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This
study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer.

METHOD

Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774)
were treated with the TZD, which induced dose-dependent inhibition of cell growth.

RESULT

Additionally, these cell lines exhibited various expression levels of PPARy protein as revealed by
Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as
demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the
finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated

cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three
human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of
p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins
and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of
p21 inthese cells.

CONCLUSION
Thus, our results suggest that PPARY ligands can induce growth suppression of ovarian cancer
cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and

is. The tumor effects of PPARy ligands may have applications for the treatment

of ovarian cancer.

Figure 3. Query results after section categorization
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Figure 4. Pop;up summary of a recognized gene

suppressor P53 and has been shown to be involved in P33-mediated
apoptosis. Multiple alternatively spliced transcript variants, which encode

different isoforms, have been reported for this gene. [provided by RefSeq]

cursors over a recognized gene, a brief pop-up summary will
be displayed as shown in Figure 4. Furthermore, the recog-
nized genes hyperlink to EntrezGene pages; users can click
on recognized genes to open a new browser window con-
taining more detailed information.

3.2 Performance of Text-Mining Subsystems

Section Categorization Performance

Since there are no publicly available section categorization
corpora, we constructed a corpus using the following pro-
cedure. Firstly, we compiled dozens of likely section head-
ings from [Hirohata et al., 2008] into a list, SH. Secondly, we
searched PubMed using the keyword queries “hypertension”
and “hypertension and (gene or DNA or RNA)” and com-
piled the approximately thirteen thousand results into a cor-
pus after filtering out un-sectioned abstracts. Thirdly, we
designed and implemented a program to remove section tags
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Table 4. The performance of section categorization.

Feature Set P (%) R (%) F (%)
(1) Baseline (Position) 87.08 93.06 89.97
(2) (1) +Tense+NE features 92.87 92.29 92.58

from the corpus abstracts based on headings in SH. Finally,
our in-lab biologists manually checked section boundaries in
the collected abstracts. The compiled corpus can be down-
loaded from our website.

To evaluate the performance of our section categorizer, we
applied 3-fold cross-validation using this corpus. Table 4
shows the evaluation results. As you can see, the combination
of the Position feature with Tense and NE features can im-
prove the precision by 5.79% without reducing the recall too
much and leads to an improved F-score of 92.58%. The re-
sults show that an Al system’s performance could be im-
proved by integrating other text-mining systems’ prediction
results.

GN Performance

We used the dataset provided by the BioCreAtIVE II GN task
[Morgan ef al., 2008] to evaluate the GN performance. The
test corpus contains 785 gene IDs among 262 abstracts. De-
tail s on these two independent training and test datasets can
be found at http://biocreative.sourceforge.net.

We compare our MLN-based GN system that performs
joint learnin% and inference with the system released by Lai
et al. [20097°. Lai’s system is based on the step-by-step GN
approach. In addition, we use the features equivalent to the
formulae shown in Table 2 to implement the false positive
filtering component for Lai’s system, which is based on the
maximum entropy model. Table 5 compares the performance
of our MLN-based system and Lai’s system.

The first row (No disambiguation/F.1) show the perfor-
mance of Lai’ system without applying their disambiguation
approach. In this configuration, all mentions with only one
candidate ID were directly treated as answers, and entities
with more than one candidate ID were discarded. Our
MLN-based model can simulate the result when only For-
mula 1 (F.1) is applied. Rows of (a, b) compare our
MLN-based disambiguation approach, which uses the F.1
and all formulae defined in Table 2, with Lai’s system. The
(d) employs the false positive maximum entropy model to
further filter out false positives. Our MLN-based GN system
(c) achieves the same goal by adding on (a) with formulae
defined in Table 3.

In summary, we observe that the MLN-based disambigu-
ation method outperforms the compared method by 1.5%. By
adding the false positive filtering formula, our MLN-based

Table 5. The performance of GN.

Config. P | R | F | Diff
No disambiguation/F.1 77.3] 71.4 74.2 0
(a) MLN-based/Table 2 86.1| 83.00 84.5 +10.3
(b) Lai’s System 82.6 83.4 83. +8.8
(¢) MLN-based/(a)+Table 3 89.7 81.9 85.6 +11.33
(d) (b) + false positive filtering model 84.7) 83.4 84.00 +9.7

$ https://sites.google.com/site/potinglai/downloads



Table 6. The performance of false positive filter.

Config. P R F
(a) MLN model (Joint) 66.4 989 795
(b) Maximum entropy model 62.4 999 76.8

GN system performance is boosted by 1.03%. Table 6 further
compares the performance of false positive filter in the two
different models. As you can see that the joint model
achieves better F-score. The results show that by using the
joint model, different subsystems can help each other to
improve their performance.

4 Conclusions

In this paper, we have presented an Al system embedded in a
web browser, which adds functionality to PubMed, the most
popular biomedical search service. The Al system seamlessly
integrates the NLP features of our web server into PubMed’s
online search interface via the user-script technology. With
our system, researchers using a supported browser can now
enjoy advanced text mining features on PubMed’s website
without having to regularly visit a third-party site. The sys-
tem’s page mark-up can help researchers sort through ab-
stracts efficiently, quickly focus on key genes, and can pro-
vide additional background information. Furthermore, our
distributed web server takes on the text processing costs,
freeing up users’ computational resources.

In addition, we show that an Al system’s performance
could be improved by integrating other text-mining systems’
prediction results. We also describe a novel approach that
employs MLN to model the constraints and decisions in the
GN task and show that integrating different subsystems into a
simultaneous process can achieve better performance of
predicting gene mentions and their corresponding IDs in
contrast to a step-by-step approach, which identifies men-
tions first and then normalizes them to IDs.
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