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Abstract

Several logistics service providers serve a certain
number of customers, geographically spread over
an area of operations. They would like to coor-
dinate their operations so as to minimize overall
cost. At the same time, they would like to keep
information about their costs, constraints and pref-
erences private, thus precluding conventional ne-
gotiation. We show how AI techniques, in partic-
ular Distributed Constraint Optimization (DCOP),
can be integrated with cryptographic techniques to
allow such coordination without revealing agents’
private information. The problem of assigning cus-
tomers to companies is formulated as a DCOP, for
which we propose two novel, privacy-preserving
algorithms. We compare their performances and
privacy properties on a set of Vehicle Routing Prob-
lem benchmarks.

1 Introduction

Consider delivery companies that must serve customers ge-
ographically spread over an area of operations. Assume the
companies are working under the same franchise, so that their
common goal is to serve all customers at minimal total cost.
While they desire to collaborate, the companies still want
to protect their strategical information, such as their inter-
nal costs and constraints. This precludes the use of a fully
centralized approach in which they would formalize their re-
spective subproblems under a common framework, and report
it to a third party that would perform the optimization. Fur-
thermore, such a complete formalization of their subproblems
might not even be feasible nor desirable, because each com-
pany is used to planning the routes of its own vehicle fleet
using its own, specific planning tool. This problems calls for
an integration of the companies’ various vehicle routing tools
into a multi-agent platform that coordinates their decisions.

In this paper, we propose to perform this integration using a
master-slave problem decomposition approach, in which the
master problem is the distributed coordination problem of as-
signing customers to companies, and the slave problems are
the local Vehicle Routing Problems (VRPs) of the companies,
as illustrated in Figure 1. Given a subset of customer demands
that must be served, each company’s VRP solver computes

optimal routes for the company’s vehicles, and outputs a cor-
responding optimal cost. These costs are fed to the master
problem that consists in exploring the space of allocations of
customer demands to companies, in search for the optimal
allocation; this is where we propose to apply AI techniques,
integrating them as one part of the larger software system.
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Figure 1: Integration model for the distributed VRP.

This paper focuses on the master problem, formalized as
a Distributed Constraint Optimization Problem (DCOP). The
algorithm should provide guarantees to the companies about
the protection of their private information that could be leaked
by the messages exchanged. To obtain such privacy guar-
antees, we investigate four DCOP algorithms, two of which
are novel, which integrate various techniques borrowed from
cryptography. We theoretically compare their privacy prop-
erties, and empirically compare their performances on VRP
benchmarks, both in terms of distributed runtime, and amount
of information exchanged between the companies.

One issue that we do not address, however, is that of ma-
nipulation of the DCOP algorithm by the companies so as
to steer the solution towards one that better meets their re-
spective selfish interests. Techniques based on payments can
be used to address incentive-compatibility, by aligning each
company’s objective to the minimization of the overall cost;
such techniques are outside the scope of this paper. We as-
sume that each company truthfully reports to its DCOP agent
the true optimal costs computed by its local VRP solver.

Section 2 first formalizes a distributed variant of the VRP,
reviews some of the previous work on VRPs, and presents
our general, DCOP-based approach to solve the master as-
signment problem while preserving the privacy of the partic-
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ipants. Sections 3 and 4 then introduce two new, privacy-
preserving DCOP algorithms for the master problem, and an
empirical evaluation of their performances is reported in Sec-
tion 5, in which we also compare against a novel variant of
another algorithm based on Secure Multiparty Computation.

2 Preliminaries

Section 2.1 first introduces a new class of Vehicle Routing
Problems, the DisSDMDVRP. Section 2.2 then briefly men-
tions the existing VRP literature, and Section 2.3 presents the
DCOP framework we use to solve the problem of assigning
customers to companies in the DisSDMDVRP.

2.1 Definition of the DisSDMDVRP

The Distributed, Multiple-Depot, Vehicle Routing Problem
(DisMDVRP) was first defined by Léauté et al. [2010]. We
propose a novel variant, in which we now allow any cus-
tomer’s demand to be split among the delivery companies.

Definition 1 (DisSDMDVRP) A Distributed, Split-Delivery,
Multiple-Depot, Vehicle Routing Problem consists of a set
D = {d1, . . . , dnD

} of depots in the Euclidian plane, each
controlled by a different delivery company. Each company
owns nV vehicles, with maximum load Qmax and a max-
imum route length Lmax. The companies must serve a set
C = {c1, . . . , cnC} of customers at known locations, so that
each customer ci has a demand qi ∈ N that must be served
fully, but can be split among companies. Each vehicle must
come back to its initial depot at the end of its route. Each
company also has a visibility radius R ≤ Lmax/2 that de-
fines the boundaries of its knowledge of the overall problem.
The company owning depot di is only aware of the customers
that are within distance R of di, and only knows another com-
pany if their areas of visibility overlap.

The goal is for the companies to agree on who should serve
which customers, using which vehicle routes, so as to serve
all visible customers at minimal total route length.

The DisSDMDVRP can be seen as consisting of two sub-
problems (Figure 1). The slave problem is each company’s
VRP, given assignments of customer demands to depots; Sec-
tion 2.2 briefly recalls methods that have been proposed to
solve such problems. The master problem consists in opti-
mally assigning customer demands to depots (Section 2.3).

2.2 Related Work on the Vehicle Routing Problem

There is a very large body of literature on the Vehicle Routing
Problem and its numerous variants, traditionally named by
appending pre- and suffixes to the VRP acronym; a rule from
which we did not derogate in Definition 1. As the focus of
this paper is not on solving these slave VRPs, we only briefly
go over some of the previous work on this subject. For more
comprehensive surveys of the VRP theory and practice, the
reader can refer to [Hjorring, 1995; Toth and Vigo, 2001].

Examples of complete algorithms that have been pro-
posed to solve VRPs to optimality include Branch-and-Bound
search [Christofides and Eilon, 1969], Dynamic Program-
ming [Christofides et al., 1981], or Mixed-Integer Linear Pro-
gramming techniques, such as Set Partitioning [Agarwal et
al., 1989] and Vehicle Flow [Laporte and Nobert, 1987].

However, due to the NP-hard nature of the problem, most
algorithms proposed for the VRP are incomplete heuristics or
metaheuristics. The most famous, specialized heuristics may
be the savings algorithm by Clarke and Wright [1964], and
the sweep algorithm by Gillett and Miller [1974]. More re-
cently, metaheuristics [Gendreau et al., 2007] were success-
fully applied to the VRP, such as Ant Colony Optimization,
Genetic Algorithms, Simulated Annealing, or Tabu Search.

It is important to stress that the integrated approach we pro-
pose in this paper is not specific to any of these techniques.
In fact, the delivery companies may use their own preferred
VRP solvers, as long as the DCOP agent can query them for
the optimal (or sub-optimal) costs of serving subsets of the
customer demands (Figure 1).

2.3 Distributed Constraint Optimization

This section first describes the framework of Distributed Con-
straint Optimization (DCOP), and how we use it to model the
problem of assigning customers to depots. We then present
privacy properties expected from a DCOP algorithm, and an
existing algorithm that exhibits some of these properties.
Definition 2 (DCOP) A discrete Distributed Constraint Op-
timization Problem is a tuple < A,X ,D, C >, where:

• A = {a1, . . . , a|A|} is a set of agents;

• X = {X1, . . . , Xn} are variables owned by the agents;
• D = {D1, . . . , Dn} is a set of finite domains, such that

variable Xi takes values in Di = {x1, . . . xk};
• C = {c1, . . . , cm} is a set of soft constraints, where each
ci defines a cost ∈ R ∪ {∞} for each combination of
assignments to a subset of variables. A constraint is ini-
tially known only to the agents involved.

A solution to the DCOP is an assignment to all variables that
minimizes the overall sum of costs

∑
i ci.

Léauté et al. [2010] applied this formalism to the assign-
ment problem for the DisMDVRP; we introduce the follow-
ing novel adaptation that allows split deliveries, in which the
agents are the depots. Depot di owns one variable Xi,j ∈
[0, qj ] for each visible customer cj of demand qj , modeling
how much of ci’s demand it serves. Variables need not be cre-
ated for customers that can only be served by a single depot,
since these variables would necessarily take their respective
maximum values; this is an improvement over [Léauté et al.,
2010]. The DCOP constraints are of two types:

1. For each customer cj , if the set Dj of depots within vis-
ible distance R of cj is non-empty, then one constraint∑

di∈Dj Xi,j = qj enforces that cj must be fully served.

2. For each depot di, if the set Ci = {cj1 , . . . , cjn}
of visible customers is non-empty, then one constraint
vrpi(Xi,j1 , . . . , Xi,jn) ∈ R∪{∞} expresses the cost of
the optimal solution to di’s own VRP, as a function of
how much of each customer’s demand it serves.

The resulting constraint graph is illustrated in Figure 2, for a
DisSDMDVRP instance taken from [Léauté et al., 2010].

Faltings et al. [2008] defined four types of privacy guar-
antees one might expect from a DCOP algorithm; we recall
them below, illustrating them on Figure 2.
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Figure 2: A simple DisSDMDVRP instance.

Agent privacy is respected if the algorithm does not reveal
to any agent the identity nor even the presence of non-
neighboring agents: company d1 does not discover the
existence of company d3. This type of privacy guarantee
might not be highly relevant if we assume that all deliv-
ery companies are working under the same franchise.

Topology privacy precludes agents from discovering topo-
logical constructs of the constraint graph (variables, con-
straint scopes, cycles...) they are not involved in. De-
pot d1 should not discover anything about c2 and c3.

Constraint privacy covers the cost values of any constraint,
which should not be revealed to any agent not involved
in the constraint. Depot d1 should not discover anything
about the internal costs of the other depots, which in-
cludes for instance the details of their fleets of vehicles.1

Decision privacy imposes that no agent discovers the values
chosen for variables it does not own. If a customer’s
demand is split among at least three companies, each
only discovers how much of the demand it must serve,
not how the remaining has been split among the others.

These four types of privacy guarantees necessarily exclude
semi-private information, which is information that may be
revealed by the solution chosen to the DCOP, regardless of the
algorithm used to compute this solution. For instance, since
customer c1’s demand q1 can only be served by depots d1
and d2, then d1 can inevitably infer how much of c1’s demand
has been assigned to d2, since the split must sum up to q1.

Faltings et al. [2008] introduced the P-DPOP algorithm,
which partially addresses these privacy guarantees as follows.
Variables are first ordered along a pseudo-tree obtained by a

1Definition 1 assumes that all companies have identical fleets,
but this can be relaxed without making our approach invalid.

distributed, depth-first traversal of the constraint graph. The
choice of the root that initiates the traversal is performed us-
ing an anonymous leader election algorithm, guaranteeing the
identity and position of the root in the constraint graph are
only revealed to its owner agent. This pseudo-tree generation
algorithm protects agent and topology privacy (Table 1).

agent topology constraint decision
P-DPOP � � ∼
P3/2-DPOP � � ∼ �
P2-DPOP � � � �
MPC ∼ ∼

Table 1: Privacy guarantees of various DCOP algorithms.

The leaves then initiate a bottom-up, cost propagation, dur-
ing which costs are aggregated and variables are eliminated
one after the other, along each branch of the pseudo-tree in
parallel. Agents only send messages to neighbors, and vari-
able names and values are replaced with secret codenames,
so that agent and topology privacy are guaranteed. To ad-
dress constraint privacy, secret, large, random numbers are
added to the cost values in the messages in such a way that
the variable elimination procedure can still be performed on
obfuscated costs. This only guarantees partial constraint pri-
vacy (Table 1), because this obfuscation is not cryptographi-
cally secure; it leaks small amounts of statistical information
about the cost values, which can be made as small as desired
by increasing the sizes of the random numbers.

Once the cost propagation has reached the root, an opti-
mal value for this variable is obtained, and sent back down
the pseudo-tree until all variables have been assigned optimal
values. During this last phase, each agent discovers the val-
ues of its ancestor variables in the pseudo-tree, and therefore
decision privacy is partially violated (Table 1).

3 The P2-DPOP Algorithm for DCOP

To address the privacy leaks in the P-DPOP algorithm, Léauté
and Faltings [2009] proposed P2-DPOP (Section 3.1). Their
algorithm only applies to Distributed Constraint Satisfac-
tion Problems (DisCSPs), which are restrictions of DCOPs
in which costs can only take values in {0,∞}. Section 3.2
introduces a novel generalization to DCOPs.

3.1 The P2-DPOP Algorithm for DisCSP

Léauté and Faltings [2009] replaced P-DPOP’s obfusca-
tion method by ElGamal homomorphic encryption [Elgamal,
1985]. Encryption is performed using one public key, and de-
cryption is collaborative, requiring all agents to use their re-
spective private keys. By representing the cost value ∞ with
the cleartext integer 1, and the cost value 0 with a cleartext
integer z �= 1, the multiplicative homomorphic property en-
ables the minimization, with respect to some variable Xi, of
an encrypted cost function E(c(Xi)), as follows:

min
Xi=x1...xn

E(c(Xi)) = E(c(x1))× . . .× E(c(xn)) (1)

= E(c(x1)× . . .× c(xn)) , (2)
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which decrypts to a cost of ∞ if and only if ∀j c(xj) = 1 (i.e.
c(Xi) is constantly equal to ∞), and to a cost of 0 otherwise.

However, ElGamal encryption is not additively homomor-
phic, so when it comes to summing costs, it is only possible
to add an encrypted cost E(c) with a cleartext cost ∈ {0,∞},
which is done as follows:

E(c) + 0 = E(c) E(c) +∞ = E(1) .

This partial homomorphism is the reason why it is necessary
to adopt a distributed algorithm, in which each company lo-
cally adds its cleartext costs to encrypted costs received from
other companies. A centralized approach in which all com-
putation would be performed centrally on encrypted costs
would require fully homomorphic encryption. Such encryp-
tion schemes were recently proposed, such as in [Gentry,
2009], but they are impractical, and currently do not scale
to DisSDMDVRP instances of any reasonable sizes.

Another consequence of this limitation is that the pseudo-
tree must be constructed such that any variable has at most
one child, i.e. the pseudo-tree contains a single branch.
Such a single-branch pseudo-tree does not necessarily exist
without introducing parent-child relationships between non-
neighboring variables, which is a threat to agent and topology
privacy. To address this issue, Léauté and Faltings [2009] de-
scribe a message routing procedure that is used during the
bottom-up propagation of costs along the pseudo-tree, such
that agent and topology privacy remain guaranteed.

Finally, the loss of decision privacy in P-DPOP is ad-
dressed by eliminating the final, top-down propagation of
variable assignments, and instead repeating the bottom-up
cost propagation, with each variable at the root of the pseudo-
tree in turn. The resulting P2-DPOP algorithm has better pri-
vacy properties than P-DPOP (Table 1), but this comes at a
high price in terms of performance, as shown in Section 5.

3.2 Adding Support for Optimization

As explained in the previous section, Léauté and Faltings’
P2-DPOP algorithm [2009] is only applicable to DisCSPs,
in which the costs are restricted to taking values in {0,∞}.
In this section, we provide a novel generalization to DCOPs,
with integer cost values in [0, cmax] ∪ {∞}, where cmax ∈ N

is a known upper bound on the cost of the optimal solution.
A cost c is represented with the following cleartext vector:

c → [

c︷ ︸︸ ︷
1, . . . , 1,

cmax+1−c︷ ︸︸ ︷
z, . . . , z ] .

Cost values greater than cmax (including ∞) are represented
with vectors full of 1’s, and cannot be discerned from ∞.

Computing the min of encrypted costs is performed by ap-
plying the same operation as in Eq. (1), element-wise on the
vectors. The sum of an encrypted cost with a cleartext cost c
is computed by shifting the vector by c as follows:

[E0, . . . , Ecmax ] + c = [

c︷ ︸︸ ︷
E(1), . . . , E(1), E0, . . . , Ecmax−c] .

This generalization of P2-DPOP only increases the runtime
and message sizes of the first cost propagation phase by a
factor of (cmax + 1). At the end of this first propagation, the

agents discover the cost copt of the optimal solution, and can
use smaller vectors of size (copt + 1) for the subsequent cost
propagations. We propose, as an additional improvement to
the P2-DPOP algorithm, to interrupt the algorithm after the
first propagation phase, if the optimal cost has been found
equal to ∞. This possibility of early termination on infeasible
problems was not mentioned by Léauté and Faltings [2009].

4 The P
3/2-DPOP Algorithm

As will be shown empirically in Section 5, the cost in terms
of performance that P2-DPOP has to pay to patch the two
privacy leaks in P-DPOP is significant. The two main sources
of this added complexity are the following:

1. The use of single-branch pseudo-trees imposed by ElGa-
mal encryption produces variable orderings of larger in-
duced widths, and Petcu and Faltings [2005] have shown
that the largest cost message is exponential in this pa-
rameter. The cost messages in P2-DPOP therefore con-
tain on average more cost values than in P-DPOP, and,
on top of this, encrypting each cost value is more expen-
sive, because ElGamal encryption costs more than sim-
ple obfuscation by addition of large random numbers.

2. A factor of less influence on performance is the fact
that P2-DPOP does not perform only one bottom-up cost
propagation, but one per variable (except on infeasible
problems), each variable being at the root of the pseudo-
tree in turn. This inherently multiplies the complexity by
the number of variables in the problem. Furthermore, in-
crementally changing the root of the pseudo-tree is also
itself expensive, because it must be done in a way that
preserves agent and topology privacy. The method pro-
posed by Léauté and Faltings [2009] also internally uses
expensive ElGamal operations to preserve privacy.

If one analyses these two changes in P2-DPOP in terms
of “return on investment,” one can clearly see that the first,
very expensive change only brings a minor improvement to
constraint privacy, which was already partially guaranteed in
P-DPOP (Section 2.3 and Table 1). On the other hand, the
second, less expensive change guarantees decision privacy,
which is violated in P-DPOP.

Based on this observation, we propose a novel algorithm
that is a hybrid of P-DPOP and P2-DPOP, called P3/2-DPOP,
which guarantees decision privacy using the latter technique,
but does not use the former to obtain full constraint privacy
(Table 1). We claim that, in many real-life situations, the par-
tial constraint privacy guarantees given by P-DPOP and P3/2-
DPOP can be considered satisfactory, and the use of expen-
sive homomorphic encryption is an overkill. In fact, while
obfuscation does leak minor amounts of statistical informa-
tion about constraint costs, one could argue that it is actu-
ally stronger than ElGamal encryption, as it does not rely
on the worst-case computational complexity of breaking pri-
vate keys. Section 5 shows empirically that P3/2-DPOP per-
forms significantly better than P2-DPOP, and sometimes only
marginally worse than P-DPOP.
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prob. nD R nC qmax
P-DPOP P3/2-DPOP P2-DPOP MPC-DisWCSP4

time info time info time info time info

p01 4 13 2 / 27 25 395.0 ms 10 kB 582.0 ms 25 kB 26.5 s 10 MB - -
14 4 / 30 25 2.1 s 27 kB 22.2 s 779 kB - - - -

p03 2 10 1 / 14 20 462.0 ms 5 kB 756.0 ms 12 kB 11.8 s 2 MB 25.2 s 8 MB
12 2 / 16 20 2.1 s 21 kB 4.4 s 98 kB 5.0 min 39 MB 6.2 min 130 MB

p11 2 22 1 / 19 47 1.2 s 9 kB 1.9 s 20 kB 49.8 s 10 MB 2.1 min 69 MB
24 2 / 23 47 11.3 s 80 kB 37.2 s 334 kB 51.6 min 372 MB - -

p12 2

65 2 / 72 1 324.0 ms 3 kB 690.0 ms 23 kB 1.5 min 10 MB 1.5 min 414 MB
70 4 / 72 2 879.0 ms 7 kB 5.0 s 110 kB 31.5 min 191 MB 11.1 min 2 GB
79 8 / 80 2 6.1 s 58 kB 5.2 min 2 MB - - - -
80 10 / 80 4 2.1 min 1 MB - - - - - -

p15 4 60 8 / 144 1 943.0 ms 19 kB 13.0 s 1 MB - - - -
70 16 / 144 2 9.3 min 17 MB - - - - - -

p18 6 60 14 / 215 1 2.6 s 86 kB 2.2 min 7 MB - - - -
p21 9 60 24 / 324 1 34.4 s 2 MB - - - - - -

Table 2: Experimental results on Cordeau MDVRP benchmarks. nD is the number of depots that must coordinate their deci-
sions, and nC is reported as number of customers that can be served by at least two depots / total number of visible customers.
To solve each problem instance, P2-DPOP and MPC-DisWCSP4 need an upper bound cmax respectively on the optimal cost
and on the worst feasible cost; this bound was set to the sum of the worst costs of all VRPs.

5 Experimental Results

Experiments were performed on the open-source FRODO
platform for DCOP [Léauté et al., 2009]. DisSDMDVRP in-
stances were generated based on the Cordeau MDVRP bench-
mark instances from [VRP Web, 2007], by varying the vis-
ibility radius R of the depots. We reused the same prob-
lem instances p01, p03 and p11 as in [Léauté et al., 2010]
(except that we are now allowing split deliveries), and we
also considered four other instances p12, p15, p18 and p21,
which involve more depots and more customers, but smaller
maximum demands qmax. Two performance metrics were
used: the simulated time [Sultanik et al., 2007], and the total
amount of information exchanged by the agents. We do not
report solution quality, being the same for all algorithms. The
experiments were run on a 2.53-GHz computer, with 2 GB of
Java heap space, and a timeout of 1 hour (wall clock time).
Each entry in Table 2 is the median over 43 runs.

To solve each depot’s local VRP, the FRODO platform was
coupled with the OR-Objects Library [OpsResearch, 2010],
which was recently made open-source. The VRP algorithm
was set to the best out of Clarke and Wright’s savings algo-
rithm [1964] and Gillett and Miller’s sweep algorithm [1974]
as construction algorithm, with the 2-Opt TSP improvement
algorithm [Croes, 1958].

As a baseline for comparison with P-DPOP, P3/2-DPOP
and P2-DPOP, we also implemented the MPC-DisWCSP4
algorithm, which is based on the MPC-DisCSP4 algorithm
[Silaghi, 2005] for DisCSPs, with the weak extension to
weighted DisCSPs (DisWCSPs) described for the earlier
MPC-DisCSP2 algorithm in [Silaghi and Mitra, 2004]. Its
privacy properties are summarized in Table 1. First, it violates
agent privacy, because it requires all agents to be able to com-
municate pairwise securely. Second, it also violates topology
privacy, because it requires each agent to know all variables
in the problem, and their respective domains. In fact, it was

only designed to protect constraint and decision privacy, but
even on this front, its privacy properties are limited by the
fact that it relies on Shamir’s secret sharing scheme [1979],
which is a

⌊
nD

2

⌋
-threshold scheme. This means that if only⌊

nD

2

⌋
depots collude, they can break all other depots’ con-

straint and decision privacy. This is particularly problematic
for the problem instances involving nD < 4 depots, because
the collusion threshold is then

⌊
nD

2

⌋
= 1, which means that

no privacy is guaranteed whatsoever.

These problem instances are indicated in italics in Table 2,
and happen to be the only ones that MPC-DisWCSP4 could
solve before the timeout. On these instances, P2-DPOP had
comparable performance in terms of runtime, but exchanged
up to 40 times less information. Furthermore, where MPC-
DisWCSP4’s threshold scheme failed to guarantee any level
of privacy, P2-DPOP had a perfect score (Table 1). P2-DPOP
was also able to solve more instances.

Table 2 also shows that replacing ElGamal encryption with
obfuscation by addition of random numbers, like in P-DPOP
and P3/2-DPOP, cut the runtime by 1 to 2 orders of magnitude,
and the information exchange by 3 orders of magnitude, mak-
ing it possible to solve many more instances. In terms of con-
straint privacy guarantees, these performance improvements
only come at a minor loss of privacy.

Finally, comparing P3/2-DPOP against P-DPOP shows that
decision privacy (Table 1) can often be achieved at low per-
formance losses. It is only when the number of customers on
which depots need to coordinate (first number in column nC)
gets larger, that P3/2-DPOP’s performance starts to degrade
significantly. This is consistent with the theoretical perfor-
mance analysis in Section 4. Notice however that, on prob-
lem instances with only 2 depots (in italics), decision privacy
actually cannot be guaranteed, since all decisions are semi-
private information that cannot be protected (Section 2.3).
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6 Conclusion

In this paper, we have presented a method to address Vehicle
Routing Problems (VRPs) involving multiple delivery com-
panies, which integrates the companies’ possibly heteroge-
nous route planners into a multi-agent platform that optimally
coordinates their decisions. Special emphasis has been put on
solving the coordination problem of assigning customer de-
mands to companies, which we have proposed to model as a
Distributed Constraint Optimization Problem (DCOP).

Our goal being to protect the privacy of the companies’
information, we have proposed two novel DCOP algorithms
that provide various levels of privacy guarantees, by integrat-
ing techniques borrowed from the field of cryptography. Our
experimental evaluation on VRP benchmarks have shown that
reasonable levels of privacy can be achieved for medium-
sized problems, at acceptable performance costs in terms of
computational runtime and information exchange.

The issue of incentive-compatibility has been left outside
the scope of this paper. By selectively decrypting the relevant
entries in the cost messages, it is possible to determine the
cost each agent claimed and thus implement a first-price pay-
ment scheme where each agent gets paid this value. While
such schemes are the norm in auctions today, they are not
truthful. It is also possible to implement a truthful second-
price scheme by analyzing the marginal cost for each vari-
able, but this requires significant additional computation that
could affect the privacy properties. Furthermore, second-
price schemes are vulnerable to well-known problems such
as false-name bidding and revenue failures.
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