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Abstract

Because of the inevitable impact factors such as
pose, expression, lighting and aging on faces, iden-
tity verification through faces is still an unsolved
problem. Research on biometrics raises an even
challenging problem—is it possible to determine
the kinship merely based on face images? A criti-
cal observation that faces of parents captured while
they were young are more alike their children’s
compared with images captured when they are old
has been revealed by genetics studies. This enlight-
ens us the following research. First, a new kinship
database named UB KinFace composed of child,
young parent and old parent face images is col-
lected from Internet. Second, an extended trans-
fer subspace learning method is proposed aiming at
mitigating the enormous divergence of distributions
between children and old parents. The key idea is
to utilize an intermediate distribution close to both
the source and target distributions to bridge them
and reduce the divergence. Naturally the young
parent set is suitable for this task. Through this
learning process, the large gap between distribu-
tions can be significantly reduced and kinship veri-
fication problem becomes more discriminative. Ex-
perimental results show that our hypothesis on the
role of young parents is valid and transfer learning
is effective to enhance the verification accuracy.

1 Introduction

Face recognition [Zhao et al., 2003; Jain and Li, 2005; Stone
et al., 20101, as an essential problem in pattern recognition
and social media computing, attracts many researchers for
decades. Differed from other biometric problems, e.g., finger-
print or iris based recognition, face recognition inherently
relies on the un-controlled environment and inevitably suf-
fers from degrading factors such as illumination, expression,
pose and age variations. Successful approaches proposed dur-
ing past decades can be found in [Turk and Pentland, 1991;
Belhumeur et al., 2002; Bartlett ef al., 2002] and meanwhile
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Figure 1: Four groups of typical kinship images (from (a) to
(d)). Images (from (1) to (3)) represent the faces of children,
their parents captured while they were young, and their par-
ents captured while they are old, respectively.

some popular databases, e.g., Yale B, CMU PIE and FERET
[Jain and Li, 2005], have been set up for researchers to test or
refine existing methods. Though including many unsure fac-
tors mentioned above, these databases are constructed under
controlled environments with no exception.

A more unconstrained database called “Labeled Faces in
the Wild” [Huang et al., 2007] was set up recently, aiming at
providing a data set applied to the real application. By col-
lecting substantial typical face images from the real world,
this database manages to include natural variations rather than
artificial controls or designs. Challenging as it is, [Kumar
et al., 2009] proposed to utilize a group of local features
to build two classifiers, namely, “attribute” and “simile” by
which the recognition rate of this database is significantly im-
proved. Besides, contextual information [Berg et al., 2004,
Gallagher and Chen, 2009] was considered as well to facili-
tate face recognition in the real world such as text around im-
ages, relationship of a group of people and even more, kinship
[Fang et al., 2010]. Figure 1 shows some typical examples of
kinship images'. Frequently, people with kin appear in the
same image, e.g., family album, and if used properly it is able
to assist identification for image database management, e.g.,

'All the face images shown in this paper are collected from
Internet search, which are only used for academic research (non-
commercial).



building family trees. Meanwhile, as an important problem,
kinship verification has applications in image retrieval and
annotation, lost children search, etc. However, little research
has been systematically conducted along this direction.

Recently, several important discoveries [Dal Martello and
Maloney, 2006; Alvergne et al., 2007; DeBruine et al., 2009]
encourage people to continue exploring in this domain. For
example, facial resemblance among kinship members varies
when children are aging. Analogously, a critical observation
is that faces of parents captured while they were young are
more alike their children’s compared with images captured
when they are old. This, promising in terms of statistics
though, enlightens us the following research. First, a kin-
ship database named UB KinFace consisting of child, young
parent and old parent face images is collected from Internet
search, most of which are with uncontrollable variations. Uti-
lizing this database, the hypothesis in this paper based on ge-
netic statistics is experimentally proved. Second, to eliminate
the enormous divergence of distributions between children
and old parents, we develop an extended transfer subspace
learning approach. The key idea is to take advantage of an
intermediate distribution close to both source and target dis-
tributions and naturally the young parent set is fairly suitable.
Large gap between distributions can be significantly reduced
through this learning process and child-old parent verification
problem becomes more tractable.

The rest of the paper is organized as follows. Section 2
discusses related work. A new database and hypothesis are
described in section 3. We then present the transfer subspace
learning method for kinship verification. Section 4 shows ex-
perimental results. Conclusions are drawn in section 5.

2 Related Work

Differed from research based on the designed data set, real
world’s data generally consist of more than one impact fac-
tor that is combined in a natural way compared with other
well-controlled experimental data sets. [Kumar et al., 2009]
proposed two methods, i.e., “attribute” and “simile”, to sig-
nificantly enhance the face recognition rates. The common
part of their approaches, also adopted by many other papers,
is to use local and structure information. As to the local infor-
mation, not only color, gray value and texture but also shape,
expression and action information that can be interpreted by
human are extracted. Adaboost takes charge in the low-level
feature selection and SVM determines if the feature exists. A
group of results of such determination form a vector which
can be further utilized by two methods to proceed with the
final classification.

[Fang et al., 2010] was the first attempt to tackle the chal-
lenge of kinship verification in the real world. To utilize local
information of faces, they first localized key parts of faces
by which facial features such as skin color, gray value, his-
togram of gradient as well as facial structure information are
extracted. Then K-Nearest-Neighbor (KNN) with Euclidean
metric is adopted to classify faces. Though simple the strat-
egy is, it somehow works well for this problem. Different
from the verification problem of the same person, kinship ver-
ification might not expect each feature pair is exactly the same
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due to genetic variations. Besides, similar parts or features
on faces between kin are mostly fixed on eyes, nose, mouth,
etc., according to genetic studies. Therefore, it is reasonable
to concentrate only on features inherited from parents rather
than the entire appearance of face. Though with these heuris-
tic information, the kinship verification is still challenging
due to tremendous differences between the query and gallery
images. The most significant degrading factor, in terms of
face recognition, is aging. Parent images used in kinship ver-
ification often contain elders and queries are usually young
males or females. Texture distributions of these faces are
quite different due to the aging effect, let alone the structure
variations on faces from different identities. Meanwhile, in
the real world, other factors are also out of control, as de-
scribed in [Huang et al., 2007]. These facts together lead to a
complex problem in biometrics.

On the other hand, recently a more significant problem
draws considerable attentions that common assumption of
training and testing data from the same feature space and
distribution is not always fully satisfied. This is natural for
any new problems in classification. Manual labeling work
is time-consuming and people hope to reuse the knowledge
that has already been thoroughly explored. In such a case,
knowledge transfer or transfer learning is desirable. In [Pan
and Yang, 2010], several practical instances have been intro-
duced to illustrate transfer learning role, e.g. Web-document
classification, WiFi data remodeling and sentiment classifi-
cation based on customers’ reviews. The common thing, as
described above, is how to reuse the knowledge learned be-
fore from other data or features. Specifically, transfer learn-
ing as we mentioned here can be further categorized into two
classes, inductive transfer learning [Dai et al., 2007a; 2007b;
Quinonero-Candela et al., 2009] and transductive transfer
learning [Joachims, 1999; Arnold ef al., 2008]. For the for-
mer one, the domains in which two sets of data embedded are
the same or not, but learning targets are differed. Meanwhile,
the latter one can tolerate different distributions between data
sets and learning targets are quite identical. In this paper, as
to our kinship verification problem, three distributions exist,
namely, children, young parents and old parents. Differed
from [Fang et al., 20101, we introduce young parent data set
as an intermediate distribution to facilitate transfer learning
and clearly our approach falls into the transductive transfer
learning category.

[Si ef al., 2010] adopted the Bregman divergence to min-
imize the distribution distance in the subspace. [Su ef al.,
2010] extended this framework to the cross data set age es-
timation and successfully improved the accuracy by knowl-
edge transferred from other data set. Apparently, their meth-
ods share the same learning target but different distributions
and the goal of their problem is finding a common subspace.
Sometimes, however, transfer learning may fail due to large
discrepancy between source and target data sets [Pan and
Yang, 2010]. We therefore consider introducing intermedi-
ate data as a link to abridge the divergence between source
and target domains. These intermediate samples, namely face
images of young parents, are close to both children and old
parents and appropriately designed to fit in our formulation.
Details of the database can be found in the following sections.



Figure 2: Example images from UB KinFace database
Verl.0. Three rows (from (a) to (c)) represent the images of
children, young parents and old parents, respectively.

3 Our Approach
3.1 Database and Hypothesis

To the best of our knowledge, it is the first time when a
database of children, young parents and old parents is col-
lected for the purpose of kinship verification. UB KinFace?
database Verl.0 comprises 270 images of 180 people which
can be separated into 90 groups. Each group is composed of
child, young parent and old parent images. All images in the
database are real-world images of public figures (celebrities
in entertainment, sports and politicians) downloaded from the
Internet. We simply use people’s names as the query for im-
age search. Some sample images are shown in Figure 2. Our
hypothesis is that faces of parents captured while they were
young are more alike their children’s compared with images
captured when they are old. With this assumption and its
proof (see section 4.1), usage of transfer learning in the next
subsection can be intuitively proposed.

3.2 Transfer Subspace Learning

To fully use the young parent set, an extended transfer sub-
space learning method is proposed in this paper. The pro-
posed method aims at finding a subspace where distribution
similarity of three different data sets is maximized while the
low-dimensional representation is still discriminative. Essen-
tially, our approach is different from [Si et al., 2010] in that:

1) Our method adopts intermediate set to prevents the fail-
ure of transfer; and

2) Differed from the traditional transfer learning problem,
ours involves source, target and intermediate sets.

Back to the kinship problem in this paper, three different
data sets, namely child, young and old parent sets, are source,
intermediate and target in terms of transfer learning. Intu-
itively, since the children and young parents possess more fa-
cial resemblance based on our assumption, transfer learning

2UB KinFace has been updated to Ver2.0 with more data col-
lected when this paper was under review.
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Figure 3: Red, green and blue circles represent source, in-
termediate and target samples. These samples are projected
into an optimal discriminative subspace (under the black dot
line). The distance between the distributions of the source
and the target samples in the optimal discriminative subspace
(marked as D3’) is shorter than that in the original space
(marked as D3) due to the role of the intermediate samples.

should work on children-young parents and young parents-
old parents. Specifically, our objective is to seek a subspace
projection W where the projected features of the intermedi-
ate and the other two domains share the same distribution.
Consequently, in an implicit way, the source and the target
domains are close to each other in this subspace. Figure 3
illustrates our transfer subspace learning approach. Based on
these objectives, we formulate the problem as,

)+ M Dw (PL||Py) +

XoDw (Pr||Py)} (1

where F'(W) is a general subspace learning objective func-
tion, e.g., PCA [Turk and Pentland, 1991], LDA [Belhumeur
et al., 2002], DLA [Zhang et al., 2008] and Py, P and
Py represent the distributions of source samples, intermedi-
ate samples and target samples respectively. Dy (PL||Py)
and Dy (Pr||Py) are the Bregman divergence-based regu-
larizations that measure the distance between two different
distributions in the projected subspace. A; and \g are the
weights for the regularizations. This optimization problem
can be solved iteratively by the gradient descent method as
follows,

W = arg min{ F(W
w
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where 7(k) is the learning rate, y = W7z is the low-

dimensional representation of the sample and [, u, v are the
numbers of samples contained in distributions of Pr,, Py, Py .
Particularly, the gradient of the first term F(W) in Eq.(1) can
be obtained based on the general subspace learning method.



Take DLA [Zhang et al., 2008] for instance, we have

o) G)
where L encapsulates the local geometry and the discrimi-
native information and X is the matrix of input samples in-
cluding all training images. This formulation essentially aims
to preserve as much discriminative information as possible by
assigning a margin degree to each sample. The margin degree
quantifies the importance of a sample for discriminative sub-
space selection. Moreover, the distributions Py, Pr, and Py
in the projected subspace can be obtained by Kernel Density
Estimation (KDE) technique. Then the Bregman divergence
based on KDE (also see [Si et al., 2010)) is given by,
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where G's (%) is the d-dimensional Gaussian kernel with the
covariance matrix X. According to Eq.(4), the derivative of
the second and third term in Eq.(1) with respect to W is
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Figure 4: Cumulative Match Characteristic (CMC) for kin-
ship classfication. Rank 1 happens when query is the nearest
neighbor of the corresponding person in the gallery.

where Y11 = X1 + X1, X120 = X + Yo, Y13 = X1 +
X3, Y90 = Yo + Yo, X33 = X3 + X3. The iterative process
of Eq.(2) can be obtained based on Eq.(3) and Eq.(5). Fi-
nally, optimized projection matrix W is achieved by this gra-
dient descent based optimization. Through the induction of
former formulas, one projection matrix is derived to connect
three different distributions rather than two described in [Si er
al., 2010]. The experimental results in section 4 demonstrate
that the verification accuracy with the intermediate domain is
higher than that only with source and target domains.

4 Experiments

4.1 Pairwise Kinship Verification

Before following experiments, we conduct face and fiducial
points detection on all images in the UB KinFace database
to obtain cropped face images. Then we align faces accord-
ing to corresponding points using an affine transform. For
the whole face and its small regions in each image, we crop
them to fixed sizes. A few image pre-processing techniques,
e.g., histogram equalization, are implemented to mitigate ir-
relevant factors. A series of experiments are finely designed
to verify the proposed hypothesis as well as the transfer sub-
space learning framework.

First, a kinship classification experiment is performed.
Here, in terms of biometrics, classification means finding the
proper identity for the query. Child images are used as query
while young parent and old parent images are used as gallery
images, respectively. Gabor [Adini et al., 2002] features (5
scales and 8 directions) of the entire face are extracted after il-
lumination normalization [Chen et al., 2006]. Euclidean dis-
tance metric and Nearest-Neighbor are adopted for this task
and Cumulative Match Characteristic (CMC) [Jain and Li,
2005] is shown in Figure 4. We can see that young parents
possess more facial resemblance with their children than old
parents and particularly it is very significant between rank 10
and 30. Clearly, this result experimentally suggests to accept
our hypothesis.



Table 1: Verification results by five-fold cross validation. 1-5
means different folds. “C vs. Y and “C vs. O” mean child-
young parent and child-old parent verification respectively.
“Raw” and “Struct” indicate the features used, which mean
raw image and structure features respectively.

Verification | Cvs.Y Cvs.O [ Cvs.Y Cvs. O
5 fold (Raw) (Raw) | (Struct) (Struct)

1 4722% 47.22% | 50.00% 61.11%

2 58.88% 50.00% | 58.33% 41.67%

3 55.56% 55.56% | 69.44% 50.00%

4 55.56% 50.00% | 52.78% 52.78%

5 52.78% 50.00% | 52.78% 61.11%
Average 53.89% 50.56% | 56.67% 53.33%

Second, we conduct kinship verification to further prove
our assumption described in section 3: given two images of
faces, determine if they are the true child-parent pair. In our
experiments, we use the appearance as well as anthropomet-
ric models [Ramanathan and Chellappa, 2006] that are based
on the measurements and proportions of the human faces for
feature extraction. In order to classify the image pairs into
true or false child-parent pairs, we use Euclidean distance and
KNN classifier with five-fold cross validation, where 90 pos-
itive example pairs and 90 negative example pairs are used.
The positive examples are true child-parent pairs and neg-
ative examples are children with randomly selected parents
from non-corresponding parent images (who are not their true
parents).

Experimental results of five-fold cross validation in Table
1 with raw image and structure features still supports our hy-
pothesis. The kinship verification rate based on young par-
ents is about three percents higher than that of based on old
parents. Considering the poor quality of Internet-collected
“wild” images containing young parents (It is impractical to
acquire high quality images since the digital camera was not
so popular back to that time), the improvements are signifi-
cant enough to validate our assumption.

4.2 Kinship Verification with Transfer Learning

In this section, we proceed with tests for the proposed transfer
subspace learning method. In the training phase, the inputs
for the first part of transfer subspace learning are images from
the intermediate domain. For the second part, children, young
parent and old parent image samples are used for source do-
main, intermediate domain and target domain. An optimal
projective matrix W can be obtained after the training phase.
Similarly, we also use five-fold cross validation as in section
4.1 as our test protocol. All the image samples are projected
to the optimal subspace before KNN classification with Eu-
clidean distance metric. Additionally, we compare the pro-
posed method with Transfer Subspace Learning (TSL) [Si et
al., 2010] without the intermediate domain. Moreover, to il-
lustrate that our method does not merely utilize extra label
information, i.e. young parent images, a two-step TSL based
method is implemented in the comparisons as well. In this
method, we take advantage of young parent images, but put
them into two different learning phases, one for child-young
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Figure 5: Verification accuracy vs. subspace dimensions.

Table 2: Verification result comparisons. ‘“Face” means the
raw image while “Region” means combination of raw image
of different regions on face, i.e., eyes, nose, mouth. “Gabor”
indicates the Gabor feature extracted from the corresponding
raw image for verification.

Different Proposed | TSL without inter-
features method mediate domain
Face 55.00% 51.11%
Region 55.33% 52.78%
Face (Gabor) 56.11% 52.78%
Region (Gabor) | 60.00% 56.11%

parent and another for young parent-old parent. Therefore,
two subspaces can be learned instead of one in the proposed
method and we use the data in these two subspaces for the
verification. Figure 5 presents results of approaches men-
tioned above based on Gabor (region) features over different
subspace dimensions and Table 2 is a comparison of TSL and
proposed method over different features within the most dis-
criminative subspace. Note we use DLA [Zhang et al., 2008]
as TSL’s general subspace learning algorithm.

4.3 Discussion

From above experimental results, it can be concluded that
the appearance variance is so significant that the child-parent
verification is challenging. Nevertheless, our method outper-
forms TSL without young parent samples, which shows that
the intermediate domain indeed functions as a bridge to re-
duce the difference between the source domain and the target
domain. In addition, we find that the facial region information
is more effective than the whole face and Gabor feature can
improve the results as well. These phenomenons are consis-
tent with the common sense that human tends to recognize the
kinship more efficiently by facial region features, e.g., eyes,
nose, etc.

Compared with the result of [Fang et al., 2010], our exper-
imental protocol is more challenging. First, the impacts of
pose, lighting and aging of faces in UB KinFace database are
more significant. Second, color information is not used in our
experiment due to the poor quality of young parent images.



5 Conclusion and Future work

In this paper we exploit the kinship verification task through
face images. We have collected the new UB KinFace database
from Internet search. We also propose a transfer subspace
learning method including the young parent set as the inter-
mediate domain whose distribution is close to both source and
target distributions. Experimental results support our hypoth-
esis on the role of young parents and demonstrate transfer
learning can further enhance the verification accuracy.

Future work includes extending the UB KinFace database
and seeking more robust features to improve kinship verifica-
tion. With more training or testing samples involved, chance
factors will be eliminated and performance will be more ro-
bust. Local features not only capturing the kinship charac-
teristics but also invariant to illumination, poses, etc., will be
preferred in our future work. In addition, ethnicity classifica-
tion should be considered in that facial resemblance of kin-
ship varies over different races. Subjective test will also be
conducted to compare the human performance and machine
performance on kinship verification.
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