
Automatic Construction of Efficient Multiple Battery Usage Policies

Maria Fox and Derek Long

University of Strathclyde, UK
Daniele Magazzeni

University of Chieti-Pescara, Italy

Abstract

There is a huge and growing number of systems
that depend on batteries for power supply, ranging
from small mobile devices to large high-powered
systems such as electrical substations. In most of
these systems, there are significant user-benefits or
engineering reasons to base the supply on multiple
batteries, with load being switched between batter-
ies by a control system. The key to efficient use
of multiple batteries lies in the design of effective
policies for the management of the switching of
load between them. This paper1 describes work in
which we show that automated planning can pro-
duce much more effective policies than other ap-
proaches to multiple battery load management in
the literature.

1 Introduction

We are solving the problem of extracting the maximum pos-
sible charge from a suite of battery cells that can be indepen-
dently loaded. Our approach learns battery-switching policies
that attempt to maximise lifetime. The novelty behind our ap-
proach is that policies are learned from high quality contin-
uous plans generated for a large number of sampled power
demand distributions. Our approach has enormous potential
significance – it can extend the lifetimes of batteries in multi-
ple battery situations, which can significantly reduce the num-
ber (and weight) of batteries required to power a device. In
an environment of ubiquitous, embedded and wearable sys-
tems relying on battery power, this will support the design of
lighter-weight and more flexible electrical systems. We have
shown that we can achieve an efficiency improvement over
other battery management techniques in the literature, of up
to 20% in simulation.

There are many interesting potential applications of this
technology. Efficient battery load management has the poten-
tial to significantly reduce the weight in batteries that soldiers
carry to power their high-tech military equipment. A soldier
carries 20-40 pounds of batteries on a typical four-day mis-
sion. The batteries power everything from soldiers’ GPS sys-

1A full version of this paper, including a complete account
of the technical detail, was published in the Proceedings of the
International Conference on Automated Planning and Scheduling
(ICAPS) [Fox et al., 2011].

tems to their night-vision goggles. Being able to extend the
lifetimes of the batteries could substantially reduce the num-
ber of batteries and therefore the weight that needs to be car-
ried. Other applications include mobile systems and battery-
powered vehicles and prosthetics. The only requirement is
that the system must have multiple independently schedulable
batteries to benefit from our load management approach.

We restrict our attention to the situation in which the load
can be serviced entirely by a single battery at a time, so the
problem is distinct from the management of cells within a
single battery. This is a crucial difference, because within a
single battery the goal is to keep the voltage level even across
the cells. This can be achieved by a simple set-point control
system. In the multiple battery case the goal is to switch the
load between cells in such a way that their lifetime is max-
imised, and this can result in very diverse load distributions.
The control problem we face is much more complex because
there is no single set-point that can be used to correct the be-
haviour of the system.

More efficient use of multiple batteries can be achieved
by exploiting the phenomenon of recovery, which is a con-
sequence of the chemical properties of a battery: as charge
is drawn from a battery, the stored charge is released by a
chemical reaction, which takes time to replenish the charge.
In general, charge will be drawn from a battery faster than
the reaction can replenish it and this can lead to a battery ap-
pearing to become dead when, in fact, it still contains stored
charge. By allowing the battery to rest, the reaction can re-
plenish the charge and the battery become functional once
again. Thus, efficient use of multiple batteries involves care-
fully timing the use and rest periods. This problem can be
seen as a planning problem.

The key to being able to learn intelligent policies of suffi-
cient scope and coverage in complex situations, is to have an
underlying capability in planning. This is because the prob-
lem for an automated system of deciding on the best thing to
do next, is highly combinatorial even in a deterministic sys-
tem. Being able to generate very good plans for deterministic
cases, coupled with large-scale representative sampling, pro-
vides a strong basis for learning how to behave in complex
uncertain situations. This is the heart of the approach that we
have developed.

The paper is organised as follows: we first describe the bat-
tery load management problem and explain why it can be
seen as a planning problem. We describe how we have ex-
ploited planning in battery load management, and we then in-

2620

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



dicate the next steps that need to be carried out in progressing
this research. Our goal is to produce usable “off-the-shelf” in-
telligent battery management technology, and we have made
some significant progress towards achieving this.

2 The Multiple Battery Usage Problem

The multiple battery usage planning problem has been ex-
plored by several authors, from an electrical engineering per-
spective (e.g. Benini et al. [2003]) and also from a schedul-
ing perspective [Jongerden et al., 2009]. Due to the physical
and chemical properties of batteries, it is possible to extract
a greater proportion of the energy stored in a single battery
of capacity C than of that stored in n batteries of capacity
C/n. It therefore follows that a good measure of the effi-
ciency of a battery load management technique is to com-
pare the proportion of charge extracted, in the service of a
load, with the maximum that could be extracted by servic-
ing the same load from a single battery with equivalent ca-
pacity and physical properties. Benini et al. construct a very
accurate battery model, parameterising it to capture lithium-
ion, nickel-cadmium and lead-acid battery types, and show
how hand constructed policies can achieve efficiency, relative
to a single battery, between 70% and 97.5% (with an aver-
age around 80%) in simulation. To achieve this, the policy is
constructed to select a new battery whenever the voltage of
the battery currently servicing a load drops below a certain
threshold. The next battery is selected according to one of
four alternative policies [Benini et al., 2003]:

• Vmax: select the battery pack with highest state of
charge.

• Vmin: select the battery pack with lowest state of charge.
• Tmax: select the battery pack that has been unused for

the longest time.
• Tmin: select the battery that has been unused for the

shortest time.
The authors show that Vmax is the best of these policies,
tested on up to four batteries.

Jongerden et al. [2009] uses a model checking strategy,
based on UPPAAL [Behrmann et al., 2001], to schedule bat-
tery use given a known load profile. The approach is based
on the use of a different battery model, the Kinetic Battery
Model, discussed in more detail below. The model is “ki-
netic” because it emphasises the correct modelling of the
chemical processes that govern the discharge behaviour. This
is a non-linear continuous model and the authors treat it by
discretisation and scheduling to a horizon. This approach al-
lows them to find highly effective schedules, but it does not
scale well because of the need to use a fine-grained discretisa-
tion of the temporal dimension. It is worth emphasising, since
it contrasts with our approach, that Jongerden et al. work with
a fixed size discretisation of time, allowing them to focus on
scheduling the resources (batteries) into the load periods.

In deployed systems, the standard policies are typically
static, based on rapid switching between available batteries.
In fact, an optimal use of multiple batteries can be achieved
theoretically by switching between them at extremely high
frequency, when the behaviour converges on that of a single
battery. Unfortunately, this theoretical solution is not achiev-
able in practice because of the losses in the physical process

of switching between batteries, as the frequency increases.
Round-robin (which is similar to Tmax above) or best-of-n
(similar to Vmax above) policies applied at fixed frequen-
cies are the most commonly fielded solutions, but these of-
ten achieve less than 80% efficiency [Benini et al., 2003].
The efficiency of the use of multiple batteries can be assessed
both by the relative lifetime compared with a single battery
(to be maximised) and by the number of switches required to
achieve it (to be minimised).

2.1 The Two-Phase Approach

We show how to use planning to construct policies automat-
ically for multiple battery problems, where load is modelled
probabilistically using known distributions for load size, load
duration and load frequency (or equivalently, the gaps be-
tween successive loads). Outside our approach, the best de-
ployed solutions typically deliver less than 80% efficiency,
while the best published solutions deliver less than about 95%
efficiency. We show that our approach, based on construc-
tion of optimising solutions to Monte Carlo sampled prob-
lem instances and their use in the construction of appro-
priate policies, produces robust solutions that deliver better
than 99% efficiency, while using smaller numbers of battery
switches than published policies. The reduction in the number
of switches required is very important in practice, because it
reduces wear and tear and avoids overheating. This is a sim-
ulation result that has yet to be tested on a physical battery
setup. We use the Kinetic Battery Model, a well-established
continuous battery model, as the basis of our approach. The
model is a first-order approximation of battery behaviour, but
analysis has shown that it is one of the most accurate analytic
models available [Jongerden and Haverkort, 2009].

Our approach is as follows. We define a PDDL+ model
of the Kinetic Battery Model and generate a large number
(thousands) of deterministic battery loads. In each case, we
use a deterministic continuous planner to decide how to ser-
vice the load. We use a discretise-and-validate planning ap-
proach [Della Penna et al., 2009], that works by proposing a
discretisation and testing to see whether the problem is ren-
dered solvable with respect to the original continuous model.
If not, a new discretisation is tried and this process continues
until the problem can be solved (or the attempt is terminated).
We use a sophisticated mechanism for exploring the discreti-
sation space which exploits the heuristic that the total charge
of any battery decreases monotonically (a safe assumption
when batteries cannot be recharged). An important aspect of
our approach is that we use variable, rather than uniform, dis-
cretisation. This yields important properties of our solutions,
such as reduced switching.

This part of the process results in a training set containing
thousands of high quality solutions to different fixed loads.
The next step is to learn a policy from the training set. The
policy will be able to determine how best to service any un-
seen, probabilistic, load that it encounters in the future. To
acquire the policy we use the J48 classifier provided by the
WEKA framework [Hall et al., 2009]. This classifier learns
a mapping from the “state” of the battery suite to the pos-
sible actions, and produces a decision tree that can be used
to quickly determine the best action to use in any state. The
work thus breaks down into two phases: building a high qual-
ity training set, which relies on a good model of battery

2621



δ

γTotal charge

Bound
charge

charge

Charge flow Load draws

charge

Available

Figure 1: Kinetic Battery Model

behaviour and a sophisticated continuous planner, and con-
structing the policy from the training data using a classifier.

2.2 The Kinetic Battery Model

The battery model we use is the Kinetic Battery Model
(KiBaM) [Manwell and McGowan, 1994], in which the bat-
tery charge is distributed over two wells: the available-charge
well and the bound-charge well (see Figure 1). A fraction c
of the total charge is stored in the available-charge well, and a
fraction 1− c in the bound-charge well. The available-charge
well supplies electrons directly to the load (i(t)), where t de-
notes the time, whereas the bound-charge well supplies elec-
trons only to the available-charge well. The charge flows from
the bound-charge well to the available-charge well through a
“valve” with fixed conductance, k. When a load is applied to
the battery, the available charge reduces, and the height differ-
ence between the two wells grows. When the load is removed,
charge flows from the bound-charge well to the available-
charge well until the heights are equal again.

To describe the discharge process of the battery, we fol-
low Jongerden et al. [2009], adopting coordinates represent-
ing the height difference between the two wells, δ, and the to-
tal charge in the battery, γ. The change in both wells is given
by the system of differential equations (1), with solutions (2):

dδ
dt = i(t)

c − k′δ dγ
dt = −i(t) (1)

δ(t) = i
c · 1−e−k′t

k′ γ(t) = C − it. (2)

where k′ = k/(1− c)c, δ(0) = 0 and γ(0) = C, and C is the
total battery capacity.

This model is less sophisticated than that used by Benini et
al. [2001], but a comparison of battery models by Jongerden
and Haverkort [2009] concludes that the KiBaM is the best
for performance modelling.

2.3 A PDDL+ Battery Model

PDDL+ [Fox and Long, 2006] is an extension of the standard
planning domain modelling language, PDDL, to capture con-
tinuous processes and events. The dynamics of KiBaM can be
captured very easily in PDDL+. In Figure 2 we show the two
processes, consume and recover, that govern the behaviour
of cells and the event triggered by attempting to load a cell
once its available charge is exhausted. In addition, there is
a durative action of variable duration that allows the planner
to use a cell over an interval. The two processes are active
whenever their preconditions are satisfied, meaning that they
usually execute concurrently. Together, they model both the
draining of charge and the recovery that are described in the

(:process consume
:parameters (?c - cell)
:precondition (switchedOn ?c)
:effect (and (decrease (gamma ?c)

(* #t (load)))
(increase (delta ?c)

(* #t (/ (load) (cParam ?c))))))

(:process recover
:parameters (?c - cell)
:precondition (>= (delta ?c) 0)
:effect (and

(decrease (delta ?c)
(* #t (* (kprime ?c) (delta ?c))))))

(:event cellDead
:parameters (?c - cell)
:precondition

(and (switchedOn ?c)
(<= (gamma ?c)

(* (- 1 (cParam ?c)) (delta ?c))))
:effect (and (not (switchedOn ?c))

(dead ?c)))

Figure 2: Part of PDDL+ encoding of KiBaM dynamics

differential equation dδ/dt. An event is triggered if there is
ever a positive load and no active service.

The use of PDDL+ as our modelling language grants sev-
eral benefits. Firstly, it allows us to use our well-established
plan validation tool VAL [Howey et al., 2004], to validate dis-
cretised solutions analytically against the continuous model.
Secondly, it provides us with a semantics for our model
in terms of a timed hybrid automaton (following Fox and
Long [2006]).

3 Battery Usage Planning

In most real battery usage problems the load profile is gener-
ated by external processes, typically controlled directly or in-
directly by user demands. These demands can often be mod-
elled probabilistically, reflecting typical patterns of use. In
our work we assume that the profiles are drawn from a known
distribution. The consequence is that the problem is not a de-
terministic optimisation problem, but a probabilistic problem
requiring a policy.

The problem can be cast as a continuous Markov Decision
Process, in which the states are characterised by the states of
charge of the batteries, the current load and the currently ac-
tive battery. Battery switching actions are deterministic, but
the events that cause load to change are not. The time be-
tween events is governed by a stochastic process, but the
timing of switching actions is controllable. There is also a
non-deterministic action, wait(T), where T is a time inter-
val, which causes a transition to a state in which time has
advanced, the state of charge of battery B is updated accord-
ing to the battery model and the load might be different (ac-
cording to the probability distribution governing loads). The
interpretation of the action is that it advances time to the next
event, which will be when a battery is depleted of available
charge, or when the load changes, or when T time has passed,
whichever is first.

A variety of approaches have been proposed for solv-

2622



ing continuous Markov Decision Processes. Meuleau et
al. [2009] propose hybrid AO* search, using a dynamic pro-
gramming approach to guide heuristic search for problems
involving continuous resources used by stochastic actions.
This approach does not handle time-dependent resource con-
sumption, but it appears that the above MDP could be mod-
elled for solution by this approach. The authors give empir-
ical data for solution of problems with up to 25,000 states.
Our model, with an appropriate discretisation, contains more
that 1086 states for 8 batteries. Mausam and Weld [2008]
describe a planner for concurrent MDPs, which are MDPs
with temporal uncertainty. Again, these problems are simi-
lar to ours, although their planner does not manage continu-
ous time-dependent resources, so is not directly applicable to
our problem. Furthermore, the largest problems they consider
contain 4,000,000 states and take more than an hour to solve.

In solving very large MDPs, researchers have identified
a variety of techniques that can help to overcome the pro-
hibitive cost of policy iteration or value iteration, the classi-
cal techniques for solving MDPs. In general, these techniques
approximate the solution, often focussing on those parts of
the policy that apply to states that are likely to be visited
along the trajectory. Relevant techniques are discussed by
Bertsekas and Tsitsiklis [1996]. We use a variant of hind-
sight optimisation (see eg Chang et al. [2000]), in which
we solve a deterministic sampled problem, using UPMur-
phi [Della Penna et al., 2009], modified to generate a sin-
gle ideal trajectory for the problem instance. Using a col-
lection of such samples as our base, we then learn a clas-
sifier that characterises the policy for the part of the space
we have sampled. This approach is similar to other work
built on the use of machine learning applied to policy roll-
out samples, particularly due to Fern, Yoon and Givan [2006;
2007], except that their approach uses a randomly generated
starting point, whereas we start with a good quality plan, and
their work addresses only propositional domains while we are
concerned with continuous problems.

To extend the learned classifier to a complete policy in-
volves ensuring that an action is assigned to every possible
state. This can be achieved by adding some default behaviour
to cover states that are otherwise not handled by the classifier,
or else by managing run-time errors in the use of an incom-
plete policy in a way appropriate to the application.

3.1 Plan Search with Variable Discretisation

We now illustrate the way in which the range of differently
sized duration intervals can lead to significant benefits in the
size of the set of visited nodes in the search space, compared
with using a fixed duration increment.

Consider the load profile shown at the top of Figure 3. The
planning problem is to service the whole load profile within
a temporal horizon that is equal to the duration of the profile.
The set of actions is A = {useC1,useC2,wait} where
the former actions refer to the cell being used while the latter
one is applicable when there is no active service. The set of
durations we use for this example is D = {0.01, 0.4, 0.5, 1.0}
(measured in minutes). In practice, to define the set of dura-
tions we start with a minimum value given by the time re-
quired for the decision making process, then we add exponen-
tially increasing values up to a maximum duration given by
the longest interval between different events (i.e., load varia-

����������������

�����������������

�������	
�������������������������

�������	��������������	
���������

�����������	����

��������

�	
��


�������	
���������

�������	��������	�




�

�

�

�

�

�	��
�

������

��� 
�� 
�� ��� ��� ����

�����
��

Figure 3: Example of search using variable discretisation

tions). In particular, the smallest duration is included in order
to handle very sensitive interactions.

In the initial state s0 there is no load and no active service
and both cells have a limited initial capacity. In this setting,
the plan search with variable discretisation proceeds as fol-
lows:

1. No cell is used for a period of 1 minute (when the load is
idle). The corresponding transition is shown in Figure 3.

2. After 1 minute a load is applied and cell 1 is used. This
corresponds to transition 〈s1,useC1, 1.0, s2〉. How-
ever, for sake of simplicity, let us assume that, due to
their limited capacity, cells cannot be used continuously
for 1 minute. The transition is thus not valid and a shorter
duration has to be considered.

3. Cell 1 is used for 0.5 minutes. Then, since a load is still
applied, the second cell is used. As before, the transition
〈s2,useC2, 1.0, s3〉 can be considered, but in this case
there would be an active service and no load.

4. Cell 2 is used for 0.5 minutes. In the next period no
load is applied, then no cell is used. The transition
〈s3,wait, 0.5, s4〉 is considered, but it would lead to
a positive load and no active service, so the duration of
action wait has to be reduced to 0.4.

5. To service the last load period of 0.02 minutes, cell 1
could be used. However, in this sample instance let us
assume that the remaining charge in cell 1 allows it to
service only 0.01 minutes. So, finally, cell 2 is used until
the end of the load profile.

The validity of a transition is dynamically checked during
the search since invalid transitions trigger specific events (e.g.
event cellDead is triggered at step 2 and event disaster
is triggered at step 4) which, in turn, violates the invariant
conditions of corresponding actions (a cell must not die dur-
ing use). Moreover, with variable discretisation only 6 states
have to be visited in order to reach the goal, while using a
uniform discretisation it is necessary to explore at least 242
states since the finest discretisation of 0.01 must be used in
order to correctly handle the interactions in steps 5 and 6.

A further benefit of the use of differently sized durations in
the discretisation is that favouring longer durations reduces

2623



load best-of-two UPPAAL-KiBaM DD-KiBaM 8 batteries B2

profile lifetime lifetime lifetime (visited states) lifetime (number of switches)
B1 B2 B1 B2 B1 B2 best-of-8 DD DD-Policy

CL 250 12.16 46.92 12.04 N/A 12.14 (194) 46.91 (691) 310.6 (31072) 307.6 (485) 307.6 (992)

CL 500 4.59 12.16 4.58 N/A 4.59 (116) 12.14 (194) 134.7 (13472) 133.4 (266) 133.4 (571)

CL alt 7.03 21.26 6.48 N/A 7.03 (136) 21.20 (350) 192.8 (19280) 190.8 (355) 190.8 (806)

ILs 250 44.79 132.8 40.80 N/A 44.76 (552) 132.70 (1068) 660.7 (33076) 654.1 (495) 654.1 (904)

ILs 500 10.82 44.79 10.48 N/A 10.80 (131) 44.76 (552) 308.7 (15476) 305.7 (293) 305.7 (513)

ILs alt 16.95 72.75 16.91 N/A 16.92 (159) 72.55 (599) 424.8 (21280) 420.6 (357) 420.6 (614)

ILl 250 84.91 216.9 78.96 N/A 84.88 (488) 216.8 (1123) 1008.9 (33692) 998.8 (471) 998.8 (822)

ILl 500 21.86 84.91 18.68 N/A 21.85 (173) 84.88 (488) 480.9 (16090) 476.1 (295) 476.1 (597)

Table 1: System lifetime (in minutes) for all load profiles according to different battery usages

the number of switches in the solutions we generate, leading
to solutions that are better in practical terms than those based
on a high frequency switching between batteries, as is shown
in subsequent results.

3.2 Performance on Deterministic Load Problems

We now present a first set of experimental results to show the
performance of our solver on the deterministic battery usage
optimisation problem. We use the same case study proposed
by Jongerden et al. [2009], where two types of jobs are con-
sidered, a low current job (250 mA) and a high current job
(500 mA), according to the following load profiles:

• continuous loads: one load with only low current jobs
(CL 250), one with only high current jobs (CL 500) and
one alternating between the two;

• intermittent loads with short idle periods of one minute
between the jobs: one with only low current jobs
(ILs 250), one with only high current jobs (ILs 500),
and one alternating between the two;

• intermittent loads with long idle periods of two min-
utes between the jobs: one with only low current jobs
(ILl 250) and one with only high current jobs (ILl 500).

As a first step, we used these load profiles to validate our
variable-range discretisation KiBaM model (DD-KiBaM),
and to find an appropriate discretisation for the continuous
variables involved in the system dynamics (i.e. variables γ
and δ and process durations). To do this we used VAL to val-
idate solutions for the discretised model against the continu-
ous model, using single cell batteries. Following Jongerden
et al. [2009], we considered two battery types, one with ca-
pacity 5.5 Ah (B1) and one with capacity 11 Ah (B2). Both
battery types have the same parameters: c = 0.166 and k′ =
0.122h−1. We discretised γ and δ, rounding them to 0.00001,
and, for all the load profiles above and for both battery types,
we obtained the same lifetimes computed with the original
KiBaM and validated by Jongerden and Haverkort [2008].

To generate the scheduling plans for multi-cell batteries,
we used the approach described in Section 2.1 and the set
of durations D = {0.01, 0.02, 0.05, 0.1, 0.25, 0.5, 1.0}. We
compared our solutions to those obtained using the UPPAAL-
based approach. The resulting lifetimes are shown in Table 1
where the second column shows the theoretical upper bound
given by an extremely high-frequency switching. In all load
profiles considered we observe that our approach outperforms

significantly the UPPAAL-based one, providing solutions that
achieve more than 99% efficiency compared with the theo-
retical limit. The key points described in the preceding parts
of this section allow the resulting search to efficiently prune
the state space and quickly find the solutions. In particular,
by using variable discretisation it is possible to consider a
much finer discretisation for variables γ and δ than is used
in [Jongerden et al., 2009] and to handle very sensitive inter-
actions. This is crucial, particularly when the available charge
in the cells is almost exhausted. Jongerden et al. [2009] de-
scribe their plans as optimal, but it is important to note that
this is only with respect to the discretisation that they use; a
finer-grained discretisation offers the opportunity for a higher
quality solution to be found at the cost of a much larger state
space. Despite the very large state space our model creates,
the solver visits a very small collection of states (as shown in
the table). These problems are all solved in less than a second.

Moreover, when dealing with larger batteries of type B2,
the state space becomes so large that any exhaustive approach
is infeasible. Indeed, Jongerden et al. [2009; 2008] were not
able to handle this second case. We also found high quality
solutions for batteries of type B2, obtaining a huge improve-
ment over the Vmax policy.

Our results on an 8 battery system, presented in Table 1,
show that we can scale effectively to much larger problems.
Notice that the number of switches we use to produce the
results is very significantly smaller than the best-of-8 policy
(Vmax), however the resulting solutions achieve more than
99% efficiency. The final column, labelled DD-Policy, shows
the performance of the dynamic discretisation-based policies
applied to these load profiles. These generate slightly worse
performance in switches than the deterministic plans shown
in the penultimate column, but this degradation is not signif-
icant when compared to the switching rate required by the
best-of-8 policy.

3.3 Results from Policies

In order to use the decision tree we embedded the WEKA
classes for loading the classification model into our battery
simulation framework. The model for the 8 battery case is
represented by a tree with 61 levels and consists of 7645
nodes, each one containing a comparison between one of the
state variables and a threshold. Applying this decision tree to
determine which battery to load at each decision point takes
negligible time.

2624



load best-of-8 DD-Policy
profile time(σ) sw(σ) time(σ) sw(σ)

R100 792.6(15.50) 71383(1379) 786.2(15.40) 1667(161)

R250 369.8(1.91) 28952(853) 366.7(2.02) 1518(143)

R500 226.7(2.13) 14671(512) 224.6(2.27) 987(122)

R750 188.3(0.80) 11519(463) 186.4(0.70) 302(33)

Table 2: Average system lifetime and number of switches for
stochastic load profiles for 8 battery systems

To evaluate the performance of the policy we considered
four probability distributions with different average value for
the load amplitude, namely 100, 250, 500, 750 mA. For each
distribution we generated 100 stochastic load profiles and
we used the policy to service them. Table 2 shows the av-
erage value and standard deviation for the system lifetime
and the number of switches obtained, comparing the theoret-
ically optimal upper bound (generated by a best-of-8 policy
with unlimited frequency switching) with our Determinised-
Discretised (DD) policy.

We observe that our policy achieves more than 99% effi-
ciency compared with the theoretical upper bound given by
the best-of-8 policy executed at very high frequency (recall
that very high frequency switching is infeasible in practice).

4 Conclusions and Future Work

In this paper we have presented an effective solution to an in-
creasingly important multiple battery management problem.
Our solution achieves better than 99% efficiency, compared to
a maximum of 95% achieved in the literature. Although this
margin is small, in many applications a small margin can be
of considerable added value. We adapt several existing tech-
nologies for automated planning, to solve a problem that can
be seen as an MDP. We use a form of hindsight optimisation,
generating samples of determinised load profiles and solving
these problems using an optimal deterministic solver, before
combining the solutions to form a policy. We use a special
variable-range discretisation to solve a non-linear continuous
optimisation problem with very high accuracy, while explor-
ing a very small proportion of the state space. Our policy con-
struction approach adapts the use of machine learning to con-
struct a classifier.

Our approach is scalable and effective. The elements of our
technique that are most tailored to our problem are the selec-
tion of the discretisation range and the search heuristic. We
are currently exploring techniques to automatically generate
an appropriate discretisation range for a problem, based on an
analysis of the problem instance characteristics and the nature
of the dynamics in the domain description.

Acknowledgements

The authors wish to thank Marijn Jongerden and Boudewijn
Haverkort for introducing them to this problem and for early dis-
cussions on approaches to solving it.

References

[Behrmann et al., 2001] G. Behrmann, A. David, K.G. Larsen,
O. Möller, P. Pettersson, and W . Yi. UPPAAAL – Present and
Future. In Proc. 40th IEEE Conf. on Decision and Control, 2001.

[Benini et al., 2001] L. Benini, G. Castelli, A. Macii, E. Macii,
M. Poncino, and R. Scarsi. Discrete-time battery models for
system-level low-power design. IEEE Trans. Very Large Scale
Int. Sys., 9(5):630–640, 2001.

[Benini et al., 2003] L. Benini, A. Macii, E. Macii, M. Poncino, and
R. Scarsi. Scheduling battery usage in mobile systems. IEEE
Trans. Very Large Scale Int. Sys., 11(6):1136–1143, 2003.

[Bertsekas and Tsitsiklis, 1996] D.P. Bertsekas and J.N. Tsitsiklis.
Neuro-Dynamic Programming. Athena Scientific, 1996.

[Chang et al., 2000] H.S. Chang, R. Givan, and E.K. P. Chong. On-
line scheduling via sampling. In Proc. AI Planning and Schedul-
ing (AIPS), pages 62–71, 2000.

[Della Penna et al., 2009] G. Della Penna, B. Intrigila, D. Maga-
zzeni, and F. Mercorio. UPMurphi: a tool for universal planning
on PDDL+ problems. In Proc. 19th Int. Conf. Aut. Planning and
Scheduling (ICAPS), pages 106–113, 2009.

[Fern et al., 2006] A. Fern, S. Yoon, and R. Givan. Approximate
Policy Iteration with a Policy Language Bias: Solving Relational
Markov Decision Processes. J. AI Res. (JAIR), 25:75–118, 2006.

[Fox and Long, 2006] M. Fox and D. Long. Modelling Mixed
Discrete-Continuous Domains for Planning. J. AI Res. (JAIR),
27:235–297, 2006.

[Fox et al., 2011] M. Fox, D. Long, and D. Magazzeni. Automatic
Construction of Efficient Multiple Battery Usage Policies. In
Proc. Int. Conf. on Aut. Planning and Scheduling (ICAPS), 2011.

[Hall et al., 2009] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA data mining soft-
ware: An update. SIGKDD Explorations, 11(1), 2009.

[Howey et al., 2004] R. Howey, D. Long, and M. Fox. VAL: Au-
tomatic plan validation, continuous effects and mixed initiative
planning using PDDL. In Proc. Int. Conf. on Tools with AI, pages
294–301, 2004.

[Jongerden and Haverkort, 2008] M.R. Jongerden and B.R.
Haverkort. Battery Modeling. Technical Report TR-CTIT-08-01,
Centre for Telematics and Inf. Tech., U. Twente, 2008.

[Jongerden and Haverkort, 2009] M.R. Jongerden and B.R.
Haverkort. Which battery model to use? IET Software (Special
Issue on Performance Engineering), 3(6):445–457, 2009.

[Jongerden et al., 2009] M. Jongerden, B. Haverkort,
H. Bohnenkamp, and J.-P. Katoen. Maximizing system
lifetime by battery scheduling. In Proc. 39th IEEE/IFIP Int.
Conf. on Dependable Sys. and Net. (DSN), pages 63–72, 2009.

[Manwell and McGowan, 1994] J.F. Manwell and J.G. McGowan.
Extension of the Kinetic Battery Model for Wind/Hybrid Power
Systems. In Proc. 5th European Wind Energy Association Conf.
(EWEC), pages 284–289, 1994.

[Mausam and Weld, 2008] Mausam and D. S. Weld. Planning with
Durative Actions in Stochastic Domains. J. AI Res. (JAIR),
31:33–82, 2008.

[Meuleau et al., 2009] N. Meuleau, E. Benazera, R. I. Brafman,
E. A. Hansen, and Mausam. A Heuristic Search Approach to
Planning with Continuous Resources in Stochastic Domains. J.
AI Res. (JAIR), 34:27–59, 2009.

[Yoon et al., 2007] S. Yoon, A. Fern, and R. Givan. Using Learned
Policies in Heuristic-Search Planning. In Proc. Int. Joint Conf.
on AI (IJCAI), pages 2047–2053, 2007.

2625




