Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Reinforcement Learning to Adjust
Robot Movements to New Situations

Jens Kober Erhan Oztop Jan Peters
MPI Tiibingen, Germany ATR/CMC, Japan MPI Tiibingen, Germany
jens.kober@tuebingen.mpg.de erhan@atr.jp jan.peters @tuebingen.mpg.de

Abstract

Many complex robot motor skills can be repre-
sented using elementary movements, and there ex-
ist efficient techniques for learning parametrized
motor plans using demonstrations and self-
improvement. However with current techniques, in
many cases, the robot currently needs to learn a new
elementary movement even if a parametrized motor
plan exists that covers a related situation. A method
is needed that modulates the elementary movement
through the meta-parameters of its representation.
In this paper, we describe how to learn such map-
pings from circumstances to meta-parameters us-
ing reinforcement learning. In particular we use a
kernelized version of the reward-weighted regres-
sion. We show two robot applications of the pre-
sented setup in robotic domains; the generaliza-
tion of throwing movements in darts, and of hitting
movements in table tennis. We demonstrate that
both tasks can be learned successfully using simu-
lated and real robots.

1 Introduction

In robot learning, motor primitives based on dynamical sys-
tems [Ijspeert et al., 2003; Schaal et al., 2007] allow acquir-
ing new behaviors quickly and reliably both by imitation and
reinforcement learning. Resulting successes have shown that
it is possible to rapidly learn motor primitives for complex
behaviors such as tennis-like swings [Ijspeert et al., 2003], T-
ball batting [Peters and Schaal, 2006], drumming [Pongas et
al., 2005], biped locomotion [Nakanishi er al., 2004], ball-
in-a-cup [Kober and Peters, 2010], and even in tasks with
potential industrial applications [Urbanek er al., 2004]. The
dynamical system motor primitives [Ijspeert ef al., 2003] can
be adapted both spatially and temporally without changing
the overall shape of the motion. While the examples are im-
pressive, they do not address how a motor primitive can be
generalized to a different behavior by trial and error with-
out re-learning the task. For example, if the string length
has been changed in a ball-in-a-cup [Kober and Peters, 2010]
movement, the behavior has to be re-learned by modifying
the movements parameters. Given that the behavior will not
drastically change due to a string length variation of a few

2650

centimeters, it would be better to generalize that learned be-
havior to the modified task. Such generalization of behav-
iors can be achieved by adapting the meta-parameters of the
movement representation’.

In reinforcement learning, there have been many attempts
to use meta-parameters in order to generalize between tasks
[Caruana, 1997]. Particularly, in grid-world domains, sig-
nificant speed-up could be achieved by adjusting policies by
modifying their meta-parameters (e.g., re-using options with
different subgoals) [McGovern and Barto, 2001]. In robotics,
such meta-parameter learning could be particularly helpful
due to the complexity of reinforcement learning for complex
motor skills with high dimensional states and actions. The
cost of experience is high as sample generation is time con-
suming and often requires human interaction (e.g., in cart-
pole, for placing the pole back on the robots hand) or super-
vision (e.g., for safety during the execution of the trial). Gen-
eralizing a teacher’s demonstration or a previously learned
policy to new situations may reduce both the complexity of
the task and the number of required samples. For example,
the overall shape of table tennis forehands are very similar
when the swing is adapted to varied trajectories of the in-
coming ball and a different targets on the opponent’s court.
Here, the human player has learned by trial and error how he
has to adapt the global parameters of a generic strike to vari-
ous situations [Miilling er al., 2010]. Hence, a reinforcement
learning method for acquiring and refining meta-parameters
of pre-structured primitive movements becomes an essential
next step, which we will address in this paper.

We present current work on automatic meta-parameter
acquisition for motor primitives by reinforcement learning.
We focus on learning the mapping from situations to meta-
parameters and how to employ these in dynamical systems
motor primitives. We extend the motor primitives (DMPs)
of [Ijspeert et al., 2003] with a learned meta-parameter func-
tion and re-frame the problem as an episodic reinforcement
learning scenario. In order to obtain an algorithm for fast re-
inforcement learning of meta-parameters, we view reinforce-
ment learning as a reward-weighted self-imitation [Peters and
Schaal, 2007; Kober and Peters, 2010].

'Note that the tennis-like swings [Ijspeert ez al., 2003] could only
hit a static ball at the end of their trajectory, and T-ball batting [Pe-
ters and Schaal, 2006] was accomplished by changing the policy’s
parameters.

- ~

"
.,

.
B
4

joint| velocity ~?
joint| position s
internal sf

learned meta-parameter function ~(s)

states s = meta-parameters <y |

Figure 1: This figure illustrates a table tennis task. The sit-
uation, described by the state s, corresponds to the positions
and velocities of the ball and the robot at the time the ball is
above the net. The meta-parameters =y are the joint positions
and velocity at which the ball is hit. The policy parameters
represent the backward motion and the movement on the arc.
The meta-parameter function (s), which maps the state to
the meta-parameters, is learned.

As it may be hard to realize a parametrized representa-
tion for meta-parameter determination, we reformulate the
reward-weighted regression [Peters and Schaal, 2007] in or-
der to obtain a Cost-regularized Kernel Regression (CrKR)
that is related to Gaussian process regression [Rasmussen and
Williams, 2006]. We evaluate the algorithm in the acquisition
of flexible motor primitives for dart games such as Around the
Clock [Masters Games Ltd., 2011] and for table tennis.

2 Meta-Parameter Learning for DMPs

The goal of this paper is to show that elementary movements
can be generalized by modifying only the meta-parameters
of the primitives using learned mappings. In Section 2.1, we
first review how a single primitive movement can be repre-
sented and learned. We discuss how such meta-parameters
may be able to adapt the motor primitive spatially and tem-
porally to the new situation. In order to develop algorithms
that learn to automatically adjust such motor primitives, we
model meta-parameter self-improvement as an episodic rein-
forcement learning problem in Section 2.2. While this prob-
lem could in theory be treated with arbitrary reinforcement
learning methods, the availability of few samples suggests
that more efficient, task appropriate reinforcement learning
approaches are needed. To avoid the limitations of parametric
function approximation, we aim for a kernel-based approach.
When a movement is generalized, new parameter settings
need to be explored. Hence, a predictive distribution over the
meta-parameters is required to serve as an exploratory policy.
These requirements lead to the method which we employ for
meta-parameter learning in Section 2.3.

2.1 DMPs with Meta-Parameters

In this section, we review how the dynamical systems motor
primitives [Ijspeert et al., 2003; Schaal et al., 2007] can be
used for meta-parameter learning. The dynamical system mo-
tor primitives [Ijspeert et al., 2003] are a powerful movement

2651

representation that allows ensuring the stability of the move-
ment, choosing between a rhythmic and a discrete movement.
One of the biggest advantages of this motor primitive frame-
work is that it is linear in the shape parameters 6. Therefore,
these parameters can be obtained efficiently, and the resulting
framework is well-suited for imitation [Ijspeert et al., 2003]
and reinforcement learning [Kober and Peters, 2010]. The re-
sulting policy is invariant under transformations of the initial
position, the goal, the amplitude and the duration [Ijspeert er
al., 2003]. These four modification parameters can be used as
the meta-parameters < of the movement. Obviously, we can
make more use of the motor primitive framework by adjust-
ing the meta-parameters < depending on the current situation
or state s according to a meta-parameter function ~y(s). The
state s can for example contain the current position, veloc-
ity and acceleration of the robot and external objects, as well
as the target to be achieved. This paper focuses on learning
the meta-parameter function ~(s) by episodic reinforcement
learning.

Ilustration of the Learning Problem: As an illustration
of the meta-parameter learning problem, we take a table ten-
nis task which is illustrated in Figure 1 (in Section 3.2, we
will expand this example to a robot application). Here, the
desired skill is to return a table tennis ball. The motor prim-
itive corresponds to the hitting movement. When modeling a
single hitting movement with dynamical-systems motor prim-
itives [Ijspeert et al., 2003], the combination of retracting and
hitting motions would be represented by one movement prim-
itive and can be learned by determining the movement pa-
rameters 0. These parameters can either be estimated by im-
itation learning or acquired by reinforcement learning. The
return can be adapted by changing the paddle position and
velocity at the hitting point. These variables can be influ-
enced by modifying the meta-parameters of the motor primi-
tive such as the final joint positions and velocities. The state
consists of the current positions and velocities of the ball and
the robot at the time the ball is directly above the net. The
meta-parameter function (s) maps the state (the state of the
ball and the robot before the return) to the meta-parameters ~y
(the final positions and velocities of the motor primitive). Its
variance corresponds to the uncertainty of the mapping.

In the next sections, we derive and apply an appropriate
reinforcement learning algorithm.

2.2 Kernalized Meta-Parameter Self-Improvement

The problem of meta-parameter learning is to find a stochastic
policy 7(7|x) = p(|s) that maximizes the expected return

J(m) = /S () /G r(vS)R(s,Y)dvds, (1)

where R(s,~y) denotes all the rewards following the selection
of the meta-parameter «y according to a situation described by
state s. The return of an episode is R(s,v) = T~! ZtT:o rt
with number of steps 7" and rewards r¢. For a parametrized
policy 7 with parameters w it is natural to first try a policy
gradient approach such as finite-difference methods, vanilla
policy gradient approaches and natural gradients”. Reinforce-

“While we will denote the shape parameters by 6, we denote the
parameters of the meta-parameter function by w.

Algorithm 1: Meta-Parameter Learning
Preparation steps:
Learn one or more DMPs by imitation and/or
reinforcement learning (yields shape parameters 8).

Determine initial state s, meta-parameters ~°, and
cost CY corresponding to the initial DMP.

Initialize the corresponding matrices S, I, C.

Choose a kernel k, K.

Set a scaling parameter .

For all iterations j:
Determine the state s’ specifying the situation.

Calculate the meta-parameters v by:
Determine the mean of each meta-parameter ¢
7i(s7) = k(s/)T (K + AC) ' T,
Determine the variance ‘
o2(s7) = k(s?,s7)—k(s?)T (K + AC) ' k(s?),
Draw the meta-parameters from a Gaussian
distribution

¥~ N(ylv(s?), o2 (s)T).
Execute the DMP using the new meta-parameters.
Calculate the cost ¢/ at the end of the episode.

Update S, T', C according to the achieved result.

ment learning of the meta-parameter function ~(s) is not
straightforward as only few examples can be generated on the
real system and trials are often quite expensive. The credit as-
signment problem is non-trivial as the whole movement is af-
fected by every change in the meta-parameter function. Early
attempts using policy gradient approaches resulted in tens of
thousands of trials even for simple toy problems, which is not
feasible on a real system.

Dayan and Hinton [1997] showed that an immediate re-
ward can be maximized by instead minimizing the Kullback-
Leibler divergence D(m(~y|s)R(s,~)||7'(|s)) between the
reward-weighted policy 7(+y|s) and the new policy 7’ (-y|s).
Williams [Williams, 1992] suggested to use a particular pol-
icy in this context; i.e., the policy

m(vls) = N (vly(s), 0% (s)D),

where we have the deterministic mean policy ~(s) =
¢(s)tw with basis functions ¢(s) and parameters w as
well as the variance o2(s) that determines the exploration
€ ~ N(0,0%(s)I). The parameters w can then be adapted
by reward-weighted regression in an immediate reward [Pe-
ters and Schaal, 2007] or episodic reinforcement learning sce-
nario [Kober and Peters, 2010]. The reasoning behind this
reward-weighted regression is that the reward can be treated
as an improper probability distribution over indicator vari-
ables determining whether the action is optimal or not.

Designing good basis functions is challenging. A non-
parametric representation is better suited in this context. We
can transform the reward-weighted regression into a Cost-
regularized Kernel Regression

¥, =7:(s) = k(s)" (K+AC) ' T,

2652

where I'; is a vector containing the training examples
7; of the meta-parameter component, C = R =
diag(R;*,..., R; ") is a cost matrix,) is a ridge factor, and
k(s) = ¢(s)T®" as well as K = ®® " correspond to a ker-
nel where the rows of @ are the basis functions ¢ (s;) = ®; of
the training examples. Please refer to [Kober et al., 2010] for
a full derivation. Here, costs correspond to the uncertainty
about the training examples. Thus, a high cost is incurred
for being further away from the desired optimal solution at a
point. In our formulation, a high cost therefore corresponds
to a high uncertainty of the prediction at this point. In order to
incorporate exploration, we need to have a stochastic policy
and, hence, we need a predictive distribution. This distribu-
tion can be obtained by performing the policy update with a
Gaussian process regression and we see from the kernel ridge
regression

o?(s) = k(s,s) + A — k(s)T (K + AC) " k(s),

where k(s,s) = ¢(s)T¢(s) is the distance of a point to itself.
We call this algorithm Cost-regularized Kernel Regression.

The algorithm corresponds to a Gaussian process regres-
sion where the costs on the diagonal are input-dependent
noise priors. If several sets of meta-parameters have simi-
larly low costs the algorithm’s convergence depends on the
order of samples. The cost function should be designed to
avoid this behavior and to favor a single set. The exploration
has to be restricted to safe meta-parameters.

2.3 Reinforcement Learning of Meta-Parameters

As a result of Section 2.2, we have a framework of motor
primitives as introduced in Section 2.1 that we can use for re-
inforcement learning of meta-parameters as outlined in Sec-
tion 2.2. We have generalized the reward-weighted regression
policy update to instead become a Cost-regularized Kernel
Regression (CrKR) update where the predictive variance is
used for exploration. In Algorithm 1, we show the complete
algorithm resulting from these steps.

The algorithm receives three inputs, i.e., (i) a motor prim-
itive that has associated meta-parameters -y, (ii) an initial ex-
ample containing state s, meta-parameter v° and cost CY,
as well as (iii) a scaling parameter A. The initial motor
primitive can be obtained by imitation learning [Ijspeert er
al., 2003] and, subsequently, improved by parametrized rein-
forcement learning algorithms such as policy gradients [Pe-
ters and Schaal, 2006] or Policy learning by Weighting Explo-
ration with the Returns (PoWER) [Kober and Peters, 2010].
The demonstration also yields the initial example needed for
meta-parameter learning. While the scaling parameter is an
open parameter, it is reasonable to choose it as a fraction of
the average cost and the output noise parameter (note that
output noise and other possible hyper-parameters of the ker-
nel can also be obtained by approximating the unweighted
meta-parameter function).

Illustration of the Algorithm: In order to illustrate this
algorithm, we will use the example of the table tennis task in-
troduced in Section 2.1. Here, the robot should hit the ball ac-
curately while not destroying its mechanics. Hence, the cost
corresponds to the distance between the ball and the paddle,

(a) Intial Policy based on Prior: R=0 (b) Policy after 2 updates: R=0.1

(c) Policy after 9 updates: R=0.8

(d) Policy after 12 updates: R=0.9

goal

mean prediction
— — = variance
training points/cost

Gaussian process regression

state state

state

state

Figure 2: This figure illustrates the meaning of policy improvements with Cost-regularized Kernel Regression. Each sample
consists of a state, a meta-parameter and a cost where the cost is indicated the blue error bars. The red line represents the
improved mean policy, the dashed green lines indicate the exploration/variance of the new policy. For comparison, the gray
lines show standard Gaussian process regression. As the cost of a data point is equivalent to having more noise, pairs of states
and meta-parameter with low cost are more likely to be reproduced than others with high costs.

as well as the squared torques. The initial policy is based on
a prior, illustrated in Figure 2(a), that has a variance for ini-
tial exploration (it often makes sense to start with a uniform
prior). This variance is used to enforce exploration. To return
a ball, we sample the meta-parameters from the policy based
on the current state. After the trial the cost is determined and,
in conjunction with the employed meta-parameters, used to
update the policy. If the cost is large (e.g., the ball was far
from the racket), the variance of the policy is large as it may
still be improved and therefore needs exploration. Further-
more, the mean of the policy is shifted only slightly towards
the observed example as we are uncertain about the optimal-
ity of this action. If the cost is small, we know that we are
close to an optimal policy (e.g., the racket hit the ball off-
center) and only have to search in a small region around the
observed trial. The effects of the cost on the mean and the
variance are illustrated in Figure 2(b). Each additional sam-
ple refines the policy and the overall performance improves
(see Figure 2(c)). If a state is visited several times and dif-
ferent meta-parameters are sampled, the policy update must
favor the meta-parameters with lower costs. Algorithm 1 ex-
hibits this behavior as illustrated in Figure 2(d).

In the dart throwing example (Section 3.1) we have a cor-
respondence between the state and the outcome similar to a
regression problem. However, the mapping between the state
and the meta-parameter is not unique. The same height can be
achieved by different combinations of velocities and angles.
Averaging these combinations is likely to generate inconsis-
tent solutions. The regression must hence favor the meta-
parameters with the lower costs. CrKR could be employed as
a regularized regression method in this case. In the dart set-
ting, we could choose the next target and thus employ CrKR
as an active learning approach by picking states with large
variances.

3 Evaluation

In Section 2, we have introduced both a framework for meta-
parameter self-improvement as well as an appropriate rein-
forcement learning algorithm used in this framework. In
[Kober et al., 2010] we have shown that the presented rein-
forcement learning algorithm yields higher performance than
the preceding reward-weighted regression and an off-the-
shelf finite difference policy gradient approach on a bench-

2653

mark example. The meta-parameter learning framework can
be used in a variety of settings in robotics. We consider two
scenarios here, i.e., (i) dart throwing with a simulated Bar-
rett WAM and the real JST-ICORP/SARCOS humanoid robot
CBi, and (ii) table tennis with a simulated robot arm and a real
Barrett WAM.

3.1 Dart-Throwing

Now, we turn
towards the
complete
framework,
i.e., we in-
tend to learn
the meta-
parameters
for motor
primitives

in discrete
movements.
We compare
the Cost-
regularized
Kernel Re-
gression
(CrKR) al-
gorithm to the reward-weighted regression (RWR). As a
sufficiently complex scenario, we chose a robot dart throwing
task inspired by [Lawrence er al., 2003]. However, we take
a more complicated scenario and choose dart games such
as Around the Clock [Masters Games Ltd., 2011] instead of
simple throwing at a fixed location. Hence, it will have an
additional parameter in the state depending on the location
on the dartboard that should come next in the sequence.
The acquisition of a basic motor primitive is achieved using
previous work on imitation learning [Ijspeert er al., 2003].
Only the meta-parameter function is learned using CrKR or
RWR.

The dart is placed on a launcher attached to the end-effector
and held there by stiction. We use the Barrett WAM robot
arm in order to achieve the high accelerations needed to over-
come the stiction. The motor primitive is trained by imitation
learning with kinesthetic teach-in. We use the Cartesian coor-

1.4

Cost-regularized Kernel Regression
Reward—weighted Regression

0.8

average cost

0.6
0.4
0.2

200 400 600

number of rollouts

800 1000

Figure 3: This figure shows the cost func-
tion of the dart-throwing task in simulation
for a whole game Around the Clock in each
rollout. The costs are averaged over 10
runs with the error-bars indicating standard
deviation.

(b) The arm moves
back.

(a) The dart is placed
in the hand.

forward on an arc.

dinates with respect to the center of the dart board as inputs.
The parameter for the final position, the duration of the mo-
tor primitive and the angle around the vertical axis are the
meta-parameters. The popular dart game Around the Clock
requires the player to hit the numbers in ascending order, then
the bulls-eye. As energy is lost overcoming the stiction of the
launching sled, the darts fly lower and we placed the dart-
board lower than official rules require. The cost function is
the sum of ten times the squared error on impact and the ve-
locity of the motion. After approximately 1000 throws the
algorithms have converged but CrKR yields a high perfor-
mance already much earlier (see Figure 3). We again used a
parametric policy with radial basis functions for RWR. De-
signing a good parametric policy proved very difficult in this
setting as is reflected by the poor performance of RWR.

This experiment is carried out in simulation and on a
real, physical robot, i.e., the humanoid robot CBi (JST-
ICORP/SARCOS). CBi was developed within the framework
of the JST-ICORP Computational Brain Project at ATR Com-
putational Neuroscience Labs. The hardware of the robot was
developed by the American robotic development company
SARCOS. CBi can open and close the fingers which helps
for more human-like throwing instead of the launcher. See
Figure 4 for a throwing movement. The results on the real
robot are significantly more noisy but qualitatively compara-
ble to the simulation.

3.2 Table Tennis

In the second evaluation of the complete framework, we use
it for hitting a table tennis ball in the air. The setup consists
of a ball gun that serves to the forehand of the robot, a Barrett
WAM and a standard sized table. The movement of the robot
has three phases. The robot is in a rest posture and starts to
swing back when the ball is launched. During this swing-back
phase, the open parameters for the stroke are predicted. The
second phase is the hitting phase which ends with the contact
of the ball and racket. In the final phase the robot gradually
ends the stroking motion and returns to the rest posture. See
Figure 6 for an illustration of a complete episode. The move-
ments in the three phases are represented by motor primitives
obtained by imitation learning.

The meta-parameters are the joint positions and velocities
for all seven degrees of freedom at the end of the second
phase (the instant of hitting the ball) and a timing parame-
ter that controls when the swing back phase is transitioning
to the hitting phase. We learn these 15 meta-parameters as

u

2654

(e) The dart is re-
leased and the arm
follows through.

and the dart hits the
board.

Figure 4: This figure shows a dart throw on the real JST-ICORP/SARCOS humanoid robot CBi.

es moving.

a function of the ball positions and velocities when it is over
the net. We employed a Gaussian kernel and optimized the
open parameters according to typical values for the input and
output. As cost function we employ the metric distance be-
tween the center of the paddle and the center of the ball at
the hitting time. The policy is evaluated every 50 episodes
with 25 ball launches picked randomly at the beginning of
the learning. We initialize the behavior with five success-
ful strokes observed from another player. After initializing
the meta-parameter function with only these five initial ex-
amples, the robot misses ca. 95% of the balls as shown in
Figure 5. Trials are only used to update the policy if the robot
has successfully hit the ball. Figure 5 illustrates the costs over
all episodes. Current results suggest that the resulting policy
performs well both in simulation and for the real system.

4 Conclusion & Future Work

In this paper,
we have
studied the
problem

of meta-
parameter

learning for
motor prim-
itives. It is
an essential
step towards
applying mo-
tor primitives

0.9

0.7

Success

05 Cost

0.3

average cost/success

0.1

200

400 600
number of rollouts

800 1000

Figure 5: This figure shows the cost func-
tion of the table tennis task in simulation

for learning averaged over 10 runs with the error-bars
complex indicating standard deviation. The red line
motor skills represents the percentage of successful hits
in robotics and the blue line the average cost.

more flexibly.

We have

discussed an appropriate reinforcement learning algorithm
for mapping situations to meta-parameters. We show that
the necessary mapping from situation to meta-parameter
can be learned using a Cost-regularized Kernel Regression
(CrKR) while the parameters of the motor primitive can still
be acquired through traditional approaches. The predictive
variance of CrKR is used for exploration in on-policy
meta-parameter reinforcement learning. To demonstrate the
system, we have chosen the Around the Clock dart throwing

(a) Therobot is in therest ~ (b) The arm swings back. (¢) The arm strikes the (d) The arm follows (e) The arm returns to the
posture. ball. through and decelerates. rest posture.

Figure 6: This figure shows a table tennis stroke on the real Barrett WAM.

game and table tennis implemented both on simulated and [Masters Games Ltd., 2011] Masters Games Ltd. The
real robots. rules of darts, http://www.mastersgames.com/rules/darts-
Future work will require to sequence different motor prim- rules.htm, 2011.

itives by a supervisory layer.. This supe?rvisory layer would [McGovern and Barto, 2001] A. McGovern and A. G. Barto.
for example in a table tennis task decide between a fore- Automatic discovery of subgoals in reinforcement learning
hand motor primitive and a backhand motor primitive, the using diverse density. In Proceedings of the International

spatial meta-parameter and the timing of the motor primitive Conference on Machine Learning (ICML), 2001.
would be adapted according to the incoming ball, and the mo- ’

tor primitive would generate the trajectory. This supervisory [Mﬁlling'et al., 20101 K Mﬁlling., J. Kober, and J,‘ Ife.ters.
layer could be learned by an hierarchical reinforcement learn- Learning table tennis with a mixture of motor primitives.

ing approach [Barto and Mahadevan, 2003] (as introduced In Proceedings of the International Conference on Hu-
in the early work by [Huber and Grupen, 1998]). In this manoid Robots (HUMANOIDS), 2010.
framework, the motor primitives with meta-parameter func- [Nakanishi et al., 2004] J. Nakanishi, J. Morimoto, G. Endo,
tions could be seen as robotics counterpart of options [Mc- G. Cheng, S. Schaal, and M. Kawato. Learning
Govern and Barto, 2001]. from demonstration and adaptation of biped locomotion.
Robotics and Autonomous Systems, 47(2-3):79-91, 2004.
References [Peters and Schaal, 2006] J. Peters and S. Schaal. Policy gra-
[Barto and Mahadevan, 2003] A. Barto and S. Mahadevan. dient methods for robotics. In Proceedings of the Inter-
Recent advances in hierarchical reinforcement learning. national Conference on Intelligent RObots and Systems
Discrete Event Dynamic Systems, 13(4):341 — 379, 2003. (IROS), 2006.
[Caruana, 1997] R. Caruana. Multitask learning. Machine [Peters and Schaal, 2007] J. Peters and S. Schaal. Reinforce-
Learning, 28:41-75, 1997. ment learning by reward-weighted regression for opera-

[Dayan and Hinton, 1997] P. Dayan and G. E. Hinton. Us- tional space control. .In Proce.edmgs of the International
. . L . . Conference on Machine Learning (ICML), 2007.
ing expectation-maximization for reinforcement learning.

Neural Computation, 9(2):271-278, 1997. [Pongas et al., 2005] D. Pongas, A. Billard, and S. Schaal.

Rapid synchronization and accurate phase-locking of

[Huber apd Grupen, 1998] M Huber and .R.' A. Grupen. rhythmic motor primitives. In Proceedings of the Inter-

Learning robot control using control policies as abstract national Conference on Intelligent RObots and Systems
actions. In Proceedings of the NIPS’98 Workshop: Ab-

straction and Hierarchy in Reinforcement Learning, 1998. (IROS), 2005. o
i Cetal.2003] A. J. Ti] Nakanishi d [Rasmussen and Williams, 2006] C.E. Rasmussen and C.K.
Jspeert et ar., - o Jspeert, . Nakanisii, - an Williams. Gaussian Processes for Machine Learning.

S.‘Sc'h'aal. Learning att.ractor landscapes.for learning motor MIT Press, 2006.
primitives. In Proceedings of Advances in Neural Informa- o
tion Processing Systems (NIPS), 2003. [Schaal et al.,2007] S. Schaal, P. Mohajerian, and A. J.

Ijspeert. Dynamics systems vs. optimal control — a uni-

[Kober and Peters, 201.0] J quer anq I Peters.. Policy fying view. Progress in Brain Research, 165(1):425-445,
search for motor primitives in robotics. Machine Learn- 2007
ing, 2010.)

[Urbanek et al., 2004] H. Urbanek, A. Albu-Schiffer, and

[Kober ez al., 20101 J. Kober, E. Oztop, and J. Peters. Re- P. v.d. Smagt. Learning from demonstration repetitive

il}forqementl le;rning :10 adjust 20[}? bmo.ve.mtgnFs to neval movements for autonomous service robotics. In Proceed-
thuatlonz N mceenggs 3{)3 Oe obotics: Science an ings of the International Conference on Intelligent RObots
ystems Conference (R:SS), 2010. and Systems (IROS), 2004.

[Lawrence et al., 2003] G. L_awre:nce, N. Cowan, and S. Rus- [Williams, 1992] R.J. Williams. Simple statistical gradient-
sell. Efficient gradient estimation for motor control learn- following algorithms for connectionist reinforcement

ing. In Proceedings of the Conference on Uncertainty in 1 ine. Machine L ne. 8:229-256. 1992
Artificial Intelligence (UAI), 2003. carnmg. Machine Ledrming. o: it

2655

