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Abstract

There are common intuitions about how social
graphs are generated (for example, it is common to
talk informally about nearby nodes sharing a link).
There are also common heuristics for predicting
whether two currently unlinked nodes in a graph
should be linked (e.g. for suggesting friends in an
online social network or movies to customers in
a recommendation network). This paper provides
what we believe to be the first formal connection
between these intuitions and these heuristics. We
look at a familiar class of graph generation models
in which nodes are associated with locations in a
latent metric space and connections are more likely
between closer nodes. We also look at popular link-
prediction heuristics such as number-of-common-
neighbors and its weighted variants [Adamic and
Adar, 2003] which have proved successful in pre-
dicting missing links, but are not direct derivatives
of latent space graph models. We provide theoreti-
cal justifications for the success of some measures
as compared to others, as reported in previous em-
pirical studies. In particular we present a sequence
of formal results that show bounds related to the
role that a node’s degree plays in its usefulness
for link prediction, the relative importance of short
paths versus long paths, and the effects of increas-
ing non-determinism in the link generation process
on link prediction quality. Our results can be gen-
eralized to any model as long as the latent space
assumption holds.

1

Link prediction is a key problem in graph mining. It under-
lies recommendation systems (e.g., movie recommendations
in Netflix, music recommendation engines like last . fm),
friend-suggestions in social networks, market analysis, and
so on. As such, it has attracted a lot of attention in recent
years, and several heuristics for link prediction have been pro-
posed [Adamic and Adar, 2003]. In-depth empirical studies
comparing these heuristics have also been conducted [Liben-
Nowell and Kleinberg, 2003] and [Brand, 2005], and three
observations are made consistently: (1) a simple heuris-
tic, viz., predicting links between pairs of nodes with the
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most common neighbors, often outperforms more compli-
cated heuristics, (2) a variant of this heuristic that weights
common neighbors using a carefully chosen function of their
degrees [Adamic and Adar, 2003] performs even better on
many graphs, and (3) heuristics which weight short paths ex-
ponentially more than long paths between two nodes [Katz,
1953] often perform better than those which are more sensi-
tive to longer paths. However, there has been little theoretical
work on why this should be so. In this paper, we present a
theoretical analysis of link prediction on graphs. We show
how various heuristics compare against each other, and under
what conditions would one heuristic be expected to outper-
form another. Crucially, we are able to provide theoretical
justifications for all of the empirical observations mentioned
above.

We define the link prediction problem as follows. There is
a latent space in which the nodes reside, and links are formed
based on the (unknown) distances between nodes in this la-
tent space. Individual differences between nodes can also be
modeled with extra parameters. The quality of link prediction
now depends on the quality of estimation of distance between
points. We show how different estimators provide bounds on
distance. Clearly, the tighter the bounds, the better we can
distinguish between pairs of nodes, and thus the better the
quality of link prediction.

While any latent space model can be used, we extend a
model by [Raftery et al., 2002] due to two characteristics: (1)
it is simple to state and analyze, (2) yet, it is powerful enough
to show all of the effects that affect estimation, such as node
degree, lengths of paths, etc. Our results do not assume any
degree distribution on the graph; in fact, they depend on very
simple properties that should be generalizable to other models
as well.

Our primary contributions are as follows:

(1) We formulate the link prediction problem as a prob-
lem of estimating distances between pairs of nodes, where
the nodes lie at unknown positions in some latent space and
the observed presence or absence of links between nodes pro-
vides clues about their distances.

(2) We show that the number of common neighbors be-
tween a pair of nodes gives bounds on the distance between
them, with the upper bound on distance decreasing quickly as
the count of common neighbors increases. This justifies the
popular heuristic of predicting links simply by picking node



pairs with the maximum number of common neighbors.

(3) Empirical studies [Liben-Nowell and Kleinberg, 2003]
have shown that another popular heuristic [Adamic and Adar,
2003] that uses a carefully weighted count of common neigh-
bors often outperforms the unweighted count. We present
theoretical justification for this, and find an optimal weighting
scheme (under certain assumptions).

(4) Another set of heuristics considers longer paths be-
tween pairs of nodes, e.g., hitting-time and other measures
based on random walks. We show that while the number
of long paths can, indeed, provide bounds on distance, these
are looser than the bounds obtained if enough short paths (or
ideally, common neighbors) exist. Thus, longer paths are
more useful if shorter paths are rare or non-existent. The
bounds obtained from long paths can be tightened given just
the knowledge of existence of a short path.

(5) Finally, our results can be applied to any social net-
work model where the nodes are distributed independently in
some latent metric space, the probability of a link satisfies ro-
mophily, and links are independent of each other given node
positions in the latent space.

This paper is organized as follows. In section 2 we discuss
previous work on latent space models. Sections 3 and 4 prove
the utility of popular heuristics like common neighbors under
our latent space model for graph generation. In section 5, we
analyze the implication of paths of length ¢ > 2. Section 6
shows how to extend the analysis to handle non-determinism
in the link generation process. In section 7, we summarize
this paper and discuss several implications of our work.

2 The Latent Space Model

Research in sociology suggests that an important factor un-
derlying many social networks is the notion of homophily:
two nodes are more likely to have a link if they share sim-
ilar characteristics [McPherson et al., 2001; Faust, 1988].
These characteristics can be thought of as different features
of a node, i.e. geographic location, college/university, work
place, hobbies/interests etc. [Raftery er al., 2002] modeled
this by explicitly associating every node with a location in a
D-dimensional space; links are more likely if the entities are
close in latent space. All the pairwise events are independent,
conditioned on their latent positions, i.e. distances in the la-
tent space. Formally, P(i ~ j|d;;) = 1/(1 4 e*(%i=1). We
alter this model to incorporate a radius 7 in the exponent:
1

1 + ealdi;—r)
The radius r can be interpreted as the sociability of a node.
Parameter « > 0 controls the sharpness of the function
whereas 7 determines the threshold. Setting o = oo yields a
simple deterministic model with links being formed iff nodes
are less than r apart (hence, we call the finite o case the non-
deterministic RHH model). Note, however, that given the dis-
tances the links are deterministic, but given the links, infer-
ring the distances is an interesting problem since the node
positions in latent space can still be stochastic. We build most
of our analysis in this deterministic setting, and in section 6,
we show how this analysis can be carried over to the non-
deterministic case. We also extend the model to allow nodes

(modified) RHH model:  P(i ~ j|d;;) =
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to have distinct radii, thereby generating directed graphs; this
is studied in section 4.

We assume that the nodes are uniformly distributed in a
D dimensional Euclidean space. Hence P(d;; < z)
V(1)zP, where V(1) is the volume of a unit radius hyper-
sphere. This uniformity assumption has been made in earlier
social network models, e.g. by [Kleinberg, 20001, where the
points are assumed to lie on a two dimensional grid. In or-
der to normalize the probabilities, we assume that all points
lie inside a unit volume hypersphere in D dimensions. The
maximum 7 satisfies V(r) = V(1)r? = 1.

Connection to the Link Prediction Problem. A latent space
model is well-fitted for link prediction because, for a given
node ¢, the most likely node it would connect to is the node
closest to it in latent space (that it is not already linked to).
Thus, the predicting distances between a pair of nodes is the
key. While this can be obtained by maximizing the likeli-
hood of the underlying statistical model, we show that one
can obtain high probability bounds on distances from graph
based heuristics. In fact we show that the distance to the node
picked using a popular heuristic is within a small factor of
the true distance. This factor quickly goes to zero as IV be-
comes large. Although our analysis uses an extension of the
RHH model to actually obtain the bounds on distances, the
only property we use is of homophily in a latent metric space,
i.e. if two nodes are close in some social space, then they are
likely to form a link. Hence this idea should carry over to
other social network models as well.

3 Deterministic Model with Identical Radii

Consider a simple version of the RHH model where all radii
are equal to 7, and & — oo. This implies that two nodes ¢ and
Jj share a link (henceforth, ¢ ~ j) iff the distance d;; between
them is constrained by d;; < r. Thus, given node positions,
links are deterministic; however the node positions are still
non-deterministic. While this might appear to be a strong
constraint, we will show later in Section 6 that similar results
are applicable even for finite but large ov. We now analyze the
simplest of heuristics: counting the common neighbors of ¢
and j. Let there be N nodes in total.

Let N (i) be the set of neighbors of node i. Let Y be a
random variable which is 1 if & € A (i) NN (J), and 0 other-
wise. Given d;;, Yk ¢ {i,j}, the Y s are independent since
they only depend on the position of point k. This gives:

E[Yi|dsj] = P(i ~ k ~ j|di;)
- / P(i ~ Kldi) P(j ~ Kld;) P(di, dix|diy)d(dir) ()

dik,djx

In the deterministic model, this quantity is exactly equal to
the volume of intersection of two balls of radius r centered
at ¢ and j (see Figure 1). Denote this volume by A(r,r,d;;).
Also, the observed value of ), Y}, is simply the number of
common neighbors 7. From now on we will drop the d;;
part when we write expectation for notational convenience.
However any expectation in terms of area of intersection is
obviously computed given the pairwise distance d;;. Thus by
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Figure 1: Common neighbors of two nodes must lie in the
intersection A(r,r, d;;).

using empirical Bernstein bounds [Maurer and Pontil, 20091,
we have:
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where e = \/2vary(Y)log2/(6N) + Tlog2/(36(N — 1)),

and varn(Y) is the sample variance of Y. Now, A(r,r,d;;)
is a monotonically decreasing function of d;;, so Equation 1
can be used to infer bounds on d;;. One such bound, which
we state without proof, is as follows.

> 2/D

- (539 ) 5o

Using common neighbors in link prediction. Recall that
in link prediction, we want to pick the node which is most
likely to be a neighbor of ¢, and is not currently a neighbor
(call this OPT). If we knew all node positions, we would pick
the non-neighbor with the minimum distance (dp pr). How-
ever, since positions in latent space are unknown, we instead
predict a link to the node that shares the most common neigh-
bors with 7 (call this MAX). We show next that the distance
to the node with largest common neighbors (d s 4 x) is within
an additive factor of dp pr, and this factor goes to zero as IV
increases. This implies that, as /V increases, link prediction
using the number of common neighbors converges to the op-
timal prediction.

Let the number of common neighbors between
i and OPT be nopr, and between ¢ and MAX be

n/N + €
Vi(r)

n/N —e
V(r)

NMAX - The corresponding distances are dopr with
dyax, and the corresponding areas of intersection
with ¢ are Apopr and Ajprax respectively. Let ¢, =

V2varn(Yopr)log2/(6N) + 7log2/(36(N — 1))  and

em = /2varny(Yarax)log2/(6N) + 7log2/(35(N — 1)),

where Ypopr and Yj;4x denote the random variable for
common neighbors between ¢ and OPT, and ¢ and MAX
respectively. Let €; = €, + €.

2724

Theorem 3.1.

w.h.

€ €
dopr <dmax < dopr+2r / /
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As N — o0, €4 — 0, so the node with the highest num-
ber of common neighbors will be the optimal node for link
prediction.

4 Deterministic Model with Distinct Radii

Until now our model has used the same r for all nodes. The
degree of a node is distributed as Bin(N, V (r)), where V (r)
is the volume of a radius r. Thus r determines the degree of a
node in the graph, and identical » will lead to a roughly reg-
ular graph. In practice, social networks are far from regular.
In order to accommodate complex networks we will now al-
low a different radius (r;) for node 7. For this section, we will
assume that these radii are independent, and are known. The
new connectivity model is: 7 — j iff d;; < r;, where ¢ — j
now represents a directed edge from 7 to j. While variants of
this are possible, this is similar in spirit to a citation network,
where a paper 7 tends to cite a well-cited paper j (with larger
number of in-neighbors) than another infrequently cited paper
on the same topic; here, r; can be thought of as the measure
of popularity of paper j. Under this model, we will show why
some link prediction heuristics work better than others.

As in the previous section, we can use common neighbors
to estimate distance between nodes. We can count common
neighbors in 4 different ways as follows:

e Type-1: All k, s.t. kK — ¢ and k — j: all nodes which
point to both 7 and j. The probability of this given d;; is
P(dir, < riNdji < rjld;;), which can be easily shown
to be A(TZ', Tj, dij).

Type-2: All k, s.t. i — k and j — k: all nodes to which
both ¢ and j point. The probability of this given d;; is
A(rg, Tk dij).

Type-3: All k, s.t. ¢ — k and k — j: all directed paths
of length 2 from 7 to j. The probability of this given d;;
is given by A(ry, r;,dij).

Type-4: All k, s.t. j — k and k — 4: all directed paths
of length 2 from j to 7. The probability of this given d;;
is given by A(r;, rg, d;j).

If we count type-1 nearest neighbors, the argument from sec-
tion 3 carries over, and if there are enough common neighbors
of this type, we can estimate d,; by computing A(r;, 75, d;;).
However, if both 7; and r; are small, there might not be many
common neighbors; indeed, if d;; > r; + r;, then there will
be no type-1 common neighbors. In such cases, we consider
type-2 neighbors, i.e. the ones which both ¢ and j point to.
The analysis for type-3 and type-4 neighbors is very similar
to that for type-2, and hence we do not discuss these any fur-
ther. In the type-2 case, the radii 7, of the common neighbors
play an important role. Intuitively, if both ¢ and j point to a
very popular node (high radius r), then that should not give
us a lot of information about d;;, since it is not very surpris-
ing. In particular, any type-2 common neighbor k leads to the
following constraint: d;; < di, + djr < 27, Obviously,
the bound is stronger for small values of ;. This argues for



weighting common neighbors differently, depending on their
radii. We formalize this intuition using a toy example below,
while noting that the analysis in the following section can be
generalized to graphs where the radii of the nodes form a fi-
nite set.

Motivating Example. Take a toy network where the nodes
can have two different radii R and R’, with R < R’. The
total number of low radii nodes is Nr, whereas that of large
radii nodes is Np-.

The formula for the expectation of the number of type-2
common neighbors will now have a mixture of A(R, R, d;;)
and A(R', R',d;j). One solution is to estimate high prob-
ability bounds on distances from the two different classes of
common neighbors separately, and then examine the intersec-
tion of these bounds. Another solution is to look at weighted
combinations of common neighbors from different radii. The
weights will reflect how important one common neighbor is
relative to another. For example, consider a pair of papers
which both cite a book on introduction to algorithms (cited
by 5000 other papers, i.e. higher radius), and a specific arti-
cle on randomized algorithms (cited by 30 other papers, i.e.
lower radius). The second article gives more evidence on the
“closeness” or similarity of the pair. We will formalize this
approach next.

Suppose we observe np common neighbors of Ny nodes
of small radius, and 1z, common neighbors of Nz, nodes of
large radius, between pair of nodes 7, j. The likelihood of
these observations, given the pairwise distance d;; is:

11 <NT)A(T»T,dij)m(1—A(ﬁT,dij))N"nr ()

re{R,RN\ "

We want to rank pairs of nodes using the distance esti-
mate d* that maximizes the likelihood of this partial set of
observations. However, if ng > 0, the logarithm of the
above is defined only when d;; < 2R. To make the like-
lihood well-behaved, we introduce a small noise parameter
B: node i connects to node j with probability 1 — 3 (if
d;; < r;), or with probability 3 (otherwise). Now, the proba-
bility of having a type-2 common neighbor of radius 7 will be
B+ A(r,r,d;;)(1— ). For ease of exposition we will denote
this by Ag(r,r,d;;). The new likelihood will be exactly as
in eq. (2), except we will use Ag instead of A. Setting the
derivative of the logarithm to zero yields:

w(R,d")NrAs(R, R, d") + w(R',d")Np As(R', R, d")
= w(R7 d*)nR + w(Rl7 d*)nR’

 dA(R,R,dij)
where, w(R, d*) = i d*
7 Ap(R, R, d*)(1 — Ag(R, R, d*))

that the negative sign is only to make both sides positive,
since Ag decreases with distance.

Further analysis of this equation ([Sarkar er al., 2010])
shows that for a given distance d and increasing radius r,
the weight w(r, d) first decreases sharply but increases again
once r becomes close to the maximum radius, i.e., V(r) & 1.
Thus, it is high for both nodes of very low and very high
radius. The reason for giving high weight to a low-radius
common neighbor is clear: the presence of such a neighbor

. Note
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gives strong evidence that d is small. On the other hand, the
absence of a very high degree node in the set of common
neighbors gives strong evidence that d is very large, which is
why w(r, d) is large for common neighbors of very high de-
gree. Note that the presence of low radius common neighbors
in the absence of very high radius common neighbors is ex-
tremely unlikely. This is because if a pair of nodes are close
enough to connect to a low radius node, they are also very
likely to both be within the radius of some very high radius
node.

Since NV (r) is the expectation of the indegree of a node
of radius r, high-radius nodes are expected to have extremely
high degrees. However, high-degree nodes in real-world set-
tings typically connect to no more than 10 — 20% of the set of
nodes, which is why a practical weighting only needs to focus
on situations where V() < 1. For relatively small d (which
are the interesting candidates for link prediction), the weights
w(r, d) can then well approximated by w(r) = 1/r up to a
constant. Note that this is identical to weighting a node by
1/(NV(r))Y/P ie., essentially weighting a common neigh-
bor i by 1/ deg(i)'/P.

The Adamic/Adar link prediction heuristic. The
Adamic/Adar measure [Adamic and Adar, 2003] was in-
troduced to measure pairwise web-page similarity. Instead
of computing the number of common features of two web-
pages, the heavier weights were assigned to the rarer features.
In our social networks context, this translates to:

Adamic/Adar = Z 1
exrn Es)

Note that this has the same trend as the 1/ deg(i)'/? formula
discussed above. [Liben-Nowell and Kleinberg, 2003] have
shown that Adamic/Adar out-performs the number of com-
mon neighbors in terms of link prediction accuracy in a va-
riety of social and citation networks, confirming the positive
effect of a skewed weighting scheme that we observed in the
motivating example.

We can analyze the Adamic/Adar measure as follows.
In our model, the expected degree of a node k of radius
Ty is simply NV (rg), so we set the weights as w, =
1/10g(NV(ry)). Let S = Y, wyY%, where random vari-
able Y, = 1 if k is a type-2 common neighbor of 7 and j,
and zero otherwise. Clearly, E[S] = )", wipA(ry, 7%, dij) =
Yop Alri, ri,dij)/1og(NV (rg)). Let the minimum and
maximum radii be 7, and .5 respectively. The follow-
ing can be easily obtained from the Chernoff bound:

Lemma 4.1. % (1 — \/SIOg(NV(T“““"))ln(l/‘s)) < % <

N'A(7 max max»dij)
S

310g(NV (rmin)) 1n(1/6))
N-A(Tmin,Tmin,dij)

Clearly, the error terms decay with increasing N, and for
large N, we can tightly bound E[S]. Since E[S] is monoton-
ically decreasing function of d;;, this translates into bounds
on d;; as well.

We have seen that low radius common neighbors imply that
distance is small, whereas fewer high degree common neigh-
bors in the absence of any low degree common neighbors im-
ply that distance is large. Based on these observations we can




also examine the number of common neighbors, say Qg (Tr)
with radii smaller (larger) than a given radius R. This trans-
lates into bounds on distance, the key idea being that large
QR for small R indicates a small distance, whereas small T
for large R indicates large distance with high probability. In
addition, we design ([Sarkar et al., 2010]) Sweep Estimators
that obtain bounds on distance from the entire range of radii
of common neighbors and retains the best bounds.

5 Estimators using Longer Paths in the
Deterministic Model

The bounds on the distance d;; described in the previous sec-
tions apply only when ¢ and j have common neighbors. How-
ever, there will be no common neighbors if (for the undirected
case) (a) d;; > 2r, or (b) no points fall in the intersection area
A(r,r,d;;) due to small sample size N. In such cases, look-
ing at paths of length ¢ > 2 between ¢ and j can yield bounds
on d;;. Even if common neighbors exist, these bounds can be
tighter, especially when there are few common neighbors but
many longer paths.

An Upper Bound for ¢ > 2. Recall that a simple path of
length ¢ from i to j is a path of the form i ~ ki ~ ko ~
... kg_o ~ j, with no repeated node. We need to infer bounds
on d;; given the observed number of simple paths 7,(%, 7).

As before, we can derive these by bounding the expected
number of ¢-hop paths 7,(%, j), and the deviation of the true
number of paths from its expectation. However, for £ > 2,
the paths are dependent (e.g., two paths can share interme-
diate nodes) so Chernoff bounds do not apply. Instead, we
proceed in three steps. First, we bound the maximum degree
A of any graph generated by the RHH model, and show that
ne(i,7) < A'"!. Second, we upper-bound E[n,(i, )] by
triangulation. As shown in Figure 2, a given sequence of dis-
tinct points (¢, k1, ks, . .., 7) forms a path if each k; is within
distance a; < r of the previous point k;_; and within distance
d; of j, and the intermediate distances d; can be bounded in
terms of r and d;; by repeated applications of the triangle in-
equality. The bounds on a; and d; can, in turn, be translated
into bounds on the probability of the given sequence forming
a path in the graph. Since there at most A*~! such paths, this
gives a bound on E[n,(4, j)]. Finally, we observe that 1,(%, j)
is “robust” in the sense that changing the position of any one
point in the latent space can cause only a bounded change in
n¢(i, 7). We utilize this to bound the maximum deviation of
1¢(4, j) from its expectation. Combining these, we obtain the
following result.

Theorem 5.1. With probability at least (1 — 20),

ne(i, ) < (VW) [T Al x 7, (dig — (€~ p— 1))
/5
. (€—1)y/ =5~ (1+ 1n(N/5)> 7
VNV <1+ IH(N/‘”> v
2NV

where z = max(z,0).
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Figure 2: Triangulation for bounding d;; using £-hop paths.

Bounding d;;. Theorem 5.1 yields an upper bound d;; as
follows. Only the first term in the summation depends on d;;,
and this term decreases monotonically with increasing d;;.
Thus, a simple binary search can give us the value of d;; that
achieves the equality in Theorem 5.1, and this is an upper
bound on d;;.

A looser but analytic bound can be obtained by upper-
bounding all but one of the A(.) terms by 1. For example,
for 3-hop paths, we have:

by < W - (2 o)

In general, bounds for ¢-hop paths are of the form d;; <
£r(1 — g(ne(i,j),€)). Thus, for some ¢ > ¢, ny (i, 7) needs
to be much larger than 7,(7, j) for the bound using ¢’ to be
stronger than that for ¢. In particular, this shows that when
enough common neighbors are present (i.e., 2-hop paths),
looking at longer paths is unlikely to improve bounds and
help link prediction, thus theoretically confirming the em-
pirical observations of [Liben-Nowell and Kleinberg, 2003].
However, we note that tighter bounds can be found when
shorter paths are known to exist; this is discussed in detail
in [Sarkar et al., 2010].

Observations. Our analysis of ¢-hop paths yields the fol-
lowing observations. (1) When short paths are non-existent
or rare, the bounds on d;; that we obtain through them can
be loose. Longer paths can be used to yield better bounds
in such cases. (2) As ¢ increases, more and more long
paths need to be observed before the corresponding bound
on d;; becomes comparable or better than bounds obtained
via shorter paths. (3) Even the existence of a short path can
improve upper bounds obtained by all longer paths. In ad-
dition, lower bounds on d;; can also be obtained. (4) The
number of paths is important to the bound. Link predic-
tion using the length of the shortest path ignores this infor-
mation, and hence should perform relatively poorly, as ob-
served by [Liben-Nowell and Kleinberg, 2003; Brand, 2005]
and [Sarkar and Moore, 2007].

6 The Non-deterministic Case

Previously we have assumed that, given the positions of
points, the corresponding graph could be inferred exactly. In
terms of the RHH model introduced in section 2, this corre-
sponds to setting @ — oo. In this section, we investigate
the effects of finite . Our analysis shows that while bounds
become looser, the results are still qualitatively similar.



The core idea underlying almost all of our previous results
has been the computation of the probability of two nodes 4
and j having a common neighbor. For the deterministic case,
this is simply the area of intersection of two hyperspheres,
A(r,r,d;;), when all nodes have the same radius r. How-
ever, in the non-deterministic case, this probability is hard to
compute exactly. Instead, we can give the following simple
bounds on Pry(4, j), which is the probability of observing a
common neighbor between two nodes ¢ and j that are distance
d;; apart and have identical radius r.

Theorem 6.1.

Pra(i,5) > i (A(r, rydij) + 2¢~dij . V(r)— A(r,mr, dij)))

A(r,r,dig) + 2V (r) - W

ar (forar > D)
Pro(i,5) < A(r,r,dij) +2D - V(r) (for ar = D)
or D
A(r,r,diz) + 2V(D/a) - T (DM) ] (for ar < D)
~ D

Observations and Extensions. The importance of theo-
rem 6.1 is that the probability of observing a common neigh-
bor is still mostly dependent on the area of intersection of two
hyperspheres, i.e. A(r,r,d;;). However, there is a gap of a
factor of 4 between the lower and upper bounds. This can
still be used to obtain reasonable bounds on d;; when enough
common neighbors are observed. However, when we con-
sider longer paths, the gap increases and we might no longer
be able to get strong bounds.

The reason for this is that theorem 6.1 only uses the fact
that probability of linking ¢ and j is at least 1/2 when d;; is
less than . This statement is applicable to all a. However,
we typically want to perform link prediction only when « is
large, as small values of « yield graphs that are close to ran-
dom and where no link prediction methods would work. For
the case of large o, we can get much stronger lower bounds
and close the factor-of-4 gap, as follows.

To compute the probability Prs(i, j), we need to integrate
the product of the link probabilities over the intersection of
the two hyperspheres of radius r around nodes ¢ and j. Let
this region be denoted by S(i,7). Suppose that, instead of
integrating over S(i,j), we integrate over a smaller subset
S’(i,7). While the volume of S’(i,j) would be smaller,
the minimum probabilities inside that subset could be much
higher than in S(¢, j), leading to a better overall lower-bound.
We consider S’(i, j) = {zx|dir < 1’,djr < 1’} to be the in-
tersection of two hyperspheres of radius ' < r, centered on
¢ and j.

1

’ .o 1A >
vrt < T7PT2(17]axk S S (Zaj)) - <1_|_ea(r’—7’)

Ideally, we would like to pick 7’ to maximize this, but
vol(S’(4, 7)) depends on d,; as well. Instead we propose the
following heuristic:

1

2
W) V') 3

Pick 7’ to maximize <
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)2 vol(S'(i, 7))

Lemma 6.2. If« > D/r andr’ is picked according to Equa-
tion 3, then v’ < r.

Thus, for large enough «, we can find a good r’ which
can improve the gap between upper and lower bounds of
Pry(4,j). The optimal 7’ gets closer to r as « increases, but
its exact value has to be obtained numerically.

7 Summary and Discussion

The paper presents a theoretical study of link prediction and
the heuristics commonly used for that purpose. We formalize
the link prediction problem as one of estimating distances be-
tween nodes in a latent space, where the observed graph struc-
ture provides evidence regarding the unobserved positions of
nodes in this space. We present theoretical justifications of
two common empirical observations: (1) the simple heuristic
of counting common neighbors often outperforms more com-
plicated heuristics, (2) a variant that weights common neigh-
bors by the inverse of the logarithm of their degrees [Adamic
and Adar, 2003] often performs better. We show that consid-
ering longer paths is useful only if shorter paths (especially,
common neighbors) are not numerous enough for the bounds
obtained from them to be tight enough. However, the bounds
obtained from longer paths can be made significantly tighter
if short paths are known to exist.
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