
An experiment on how graduating students represent software
designs

Silvana Moreno1, Diego Vallespir1, Martin Solari2

1Universidad de la República, Uruguay

2Universidad ORT Uruguay

{smoreno, dvallesp}@fing.edu.uy, martin.solari@ort.edu.uy

Abstract. As a practice, software design seeks to contribute to developing qual-
ity software. For graduating students, the design is difficult to understand, and
building a good design seems to require a certain level of cognitive develop-
ment. In this study, we report an experiment to know how students habitually
represent detailed design (what artifacts and ways of design representation they
use) and if there is an effect on software quality when they deliver the design rep-
resentation. We found that students design on a basic level, they do not achieve
complete designs that combine several artifacts to model dynamic and static
aspects. Also, the delivery of design representation did not improve software
quality.

1. Introduction
Software design is one of the most important components to ensure the success of a
software system [Hu 2013]. Software design has two main activities: architectural de-
sign and detailed design. During architectural design, high-level components are struc-
tured and identified. During detailed design, every component is specified in detail
[Bourque and Fairley 2014]. Our work is explicitly focused on detailed design.

From a learning point of view, design is a complex discipline for undergraduate
students to understand, and success (i.e., building a good design) seems to require a certain
level of cognitive development that few students achieve [Carrington and K Kim 2003,
Hu 2013, Linder et al. 2006]. In fact, several studies found that students do not
manage to produce a good software design [Chen et al. 2005, Eckerdal et al. 2006a,
Eckerdal et al. 2006b, Loftus et al. 2011, Tenenberg 2005].

This article presents an experiment to study how graduating students represent
software designs. This experiment is a part of a family of experiments carried out in the
context of the School of Engineering of Universidad de la República, in Uruguay. From
2012 to 2018, we conducted 7 experiments.

The Baseline experiments carried out in 2012, 2013, and 2014 were aimed at
learning about the effort (measured in minutes) dedicated by students to detailed software
design [Moreno and Vallespir 2018]. Results showed that students spend at least 3 times
more time coding than designing. The Template experiments carried out in the years
2015, 2016, and 2017, were aimed at knowing about the effect on design effort and soft-
ware quality when students represent the design using a specific set of design templates
[Moreno et al. 2020, Moreno et al. 2021]. We found that the use of design templates did



not improve code quality and that students who use templates dedicated more significant
development effort to designing than to coding.

In this article, we present the last experiment of the family. We want to study how
students habitually represent detailed design (what artifacts and ways of design represen-
tation they use) and know if there is an effect on software quality when they deliver the
design representation to the teachers as part of a course.

We used the term graduating for our students because they are in
the fourth year of the degree of the School of Engineering. The cur-
riculum of the School of Engineering is a five-year degree, similar to the
IEEE/ACM’s proposal for the Computer Science undergraduate curriculum
[Joint Task Force on Computing Curricula - ACM and IEEE Computer Society 2013].
Students have already passed courses where detailed software design is taught: design
principles, artifacts and design diagrams, UML, design patterns.

The document is structured as follows: Section 2 presents the categorizing student
software designs; Section 3 presents the related work; Section 4 presents the research
methodology; Section 5 presents the results, and Section 6 is the discussion; threats to
validity are mentioned in Section 7, and Section 8 presents the conclusions and future
work.

2. Categorizing Student Software Designs
Some researchers have proposed frameworks to analyze and categorize design artifacts
[Eckerdal et al. 2006a, Thomas et al. 2014]. Eckerdal’s category categorizes the design
artifacts students produce, and Thomas’ category categorizes how students understand
software design. In our experiment, we used these categories, and therefore we describe
them below. Both categorizations use a scalar measurement approach, from basic descrip-
tions to more sophisticated design representation

Eckerdal et al. developed a categorization of students design artifacts of six levels
[Eckerdal et al. 2006b]:

• 0N - Nothing: little or no intelligible content.
• 1R - Restatement: merely restating requirements in some fashion from the task

description.
• 2S - Skumtomte: a small amount restatement of the task with a small amount of

information in text, or some unimportant implementation details with no descrip-
tion of its design.

• 3FS - First step: some significant work beyond the description. Either a partial
overview of the system with the parts identified, but generally no identification of
how they are related in the system; or the design of one of the system’s compo-
nents.

• 4PD - Partial design: providing an understandable description of each of the parts
and an overview of the system that illustrates the relationships between the (may
be incomplete) parts without completely described communications between the
parts.

• 5C - Complete: showing a well-developed solution, including an understandable
overview, part descriptions that include responsibilities, and explicit communica-
tion between the parts.



Thomas et al. investigated students’ understanding by asking them for a task to
“produce a design” [Thomas et al. 2014]. The authors analyzed the designs made by
students and categorized them based on the following characteristics that express the dif-
ferent ways in which students understand the design phenomenon:

• 0ID - Informal design: does not include formal artifacts. Generally, text but may
include detailed pictures without reference to software.

• 1A - Analysis: uses some formal notation for analysis (use case diagrams/not
describe system structure or behavior).

• 2SS - Static structure: focus on design techniques of software engineering, ex-
pressing the components and their structural relationships using notations like
class or architecture diagrams.

• 3DB - Dynamic behavior: focus on design techniques, expressing the compo-
nents and some sequential behavior using notations like sequence diagrams or
flowcharts.

• 4MRA - Multiple related artifacts: use multiple artifacts and relates components
across different artifacts.

• 5EC - Expert category: the notations are relaxed, and only the essential artifacts
are included.

3. Related Work
Software design involves identifying and abstractly describing the software system and its
relationships. It is a creative activity, which can be done in different ways: implicitly, in
the developer’s mind before coding, on a sketch on paper, through diagrams, using both
formal and informal languages or tools [Chemuturi 2018].

Research shows that students have (still) difficulties in designing. Building good
designs requires a certain level of cognitive development that few students achieve
[Carrington and K Kim 2003, Hu 2013, Linder et al. 2006]. This cognitive development
is related to the ability to recognize design patterns, architectural design styles, and related
data and actions that can be extracted into appropriate design abstractions [Hu 2013].

Students’ ability to build a good design is related to the abstraction, under-
standing, reasoning, and data-processing ability [Kramer 2007, Leung and Bolloju 2005,
Siau and Tan 2005]. In fact, it is more difficult for students learning to design than learn-
ing to code. Besides, there is no single method for designing software. Students may
confuse the different methods and may not appreciate the similarities, differences, and
their uses [Carrington 1998].

How students design software has been studied previously from differ-
ent points of view [Eckerdal et al. 2006a, Eckerdal et al. 2006b, Thomas et al. 2014,
Thomas et al. 2017, Loftus et al. 2011, Tenenberg 2005, Hu 2016].

A study reported by Tenenberg describes the skills that students have when de-
signing software [Tenenberg 2005]. They used the designs elaborated by two types of
students: first competency students and graduating students. Each participant is given
the specification of a “super alarm clock” (system to get people to sleep) to produce a
design. The results indicate that graduating students use less textual design notations and
more graphical and standardized notations. In addition, a large number of students under-
estimated the importance of representing structural groupings and interactions between
design parts.



Eckerdal et al. undertook a detailed examination of the design artifacts produced
by graduating students also using the “super alarm clock” task [Eckerdal et al. 2006a,
Eckerdal et al. 2006b]. The designs constructed by the students are grouped using Eck-
erdal’s categorization. They found that 62% of the students cannot design a software
system. The percentages associated with the proposed categories indicate that: 3% pro-
duce nothing, 18% restatement, 41% skumtomte, 29% first step, 7% partial design and,
2% complete.

The study published by Eckerdal et al. [Eckerdal et al. 2006a] was subsequently
reviewed by Loftus et al. [Loftus et al. 2011]. This work aims to find out if students about
to graduate (graduating) are able to design in groups and if they are able to recognize good
and bad designs produced by others. The results confirm those reported by Eckerdal et
al. In addition, they found that the main things missing from the students’ designs were
descriptions of system behavior and consistency between the use case diagrams and the
implemented designs.

A study presented by Lynda Thomas et al. [Thomas et al. 2014] expanded on
the research of Eckerdal et al.[Eckerdal et al. 2006a]. They used the task, “super alarm
clock,” and Eckerdal’s categorization. The results obtained do not turn out to be as bad
in the area of students’ design skills as previously reported. Most of the designs were
mapped in the first step and partial design. Furthermore, the authors built the list of funda-
mental characteristics that differentiate how students understand the design phenomenon
presented in Section2 as Thomas’ category.

Chenglie Hu continues this line of work by reporting an experiment in which
graduating students perform the design to the same “super alarm clock” [Hu 2016]. The
results show that 50% of the designs were categorized in the partial design category,
16.6% in the first step, and 33.3% in the complete category.

Years later, Thomas et al. studied software designs of students who were halfway
through their 3-year undergraduate computing degree [Thomas et al. 2017]. Students
were asked to “Produce a design” using a problem that appeared to require about the
same design skill level as the “super alarm clock” problem. They used Eckerdal’s cate-
gorization. Then, the authors compared the results with those obtained from a group of
graduating students from the same university [Thomas et al. 2014].

The results show that most of the designs from both cohorts were in the first step
category, followed by the skumtomte category. The graduating students produced a few
more partial and complete designs but were relatively low cases.

In general, studies have shown that most graduating students are not competent
in designing software [Eckerdal et al. 2006a, Eckerdal et al. 2006b, Loftus et al. 2011].
Students do not describe the behavior of the system [Loftus et al. 2011], do not seem
to understand what kind of information they should include [Eckerdal et al. 2006a] and
produce incomplete class diagrams, sequence diagrams with missing responsibilities, and
objects at inconsistent abstraction levels [Sien 2011].

4. Research Method
We conducted the experiment in the context of an undergraduate course to study how
graduating students habitually design software and if there is an effect on software quality



when they deliver the design representation to course teachers.

4.1. Course context

The course lasts 9 weeks. In the first week (week 1), a base process (that students must
follow) is taught, and the practical work dynamics are explained. Students participate in
the course voluntarily.

The base process is a defined process that intends to help the software development
tasks and collect product and process metrics. The process has different phases, scripts
that guide the work in each phase, and logs that are used to collect data (see Figure 1).

The base process is divided into the following phases: plan, design, code, compile,
unit test (UT), and postmortem. In each phase of the process, students must log the time
dedicated to the phase and data on the defects they remove (injection phase, removal
phase, and time spent to correct it). Students log the size (using a web tool) in lines of
code of the program built in the postmortem phase.

Figure 1. Base Process

The practical work consists of each student developing 8 small projects following
the base process and recording the process data in the tool. Students carry out the projects
individually, consecutively and at home. Project 2 does not begin until project 1 has
been completed and so on. From week 2 to week 9, one project is assigned per week.
At the beginning of each week, a teacher sends the student the project requirements.
Each student’s submission must contain the code that solves the problem, the test cases
executed, and the export of the data registered in the tool.

Before starting the first exercise each student must choose the programming lan-
guage to be used throughout the course. Our interest is to collect data on the execu-
tion of the development process using a programming language that the student masters.
All the students have passed the courses Programming 3, Programming 4, Programming
Workshop, and Software Engineering. During these courses, software design artifact and
techniques, programming languages, algorithms and fundamental software engineering
concepts are taught. We consider the group of students who participated to be homoge-
neous, since they are students at a similar stage of their career.

Projects are small in size and of low and similar complexity so design phase refers
to detailed design (i.e. identifying classes, attributes, operations, program scenarios, sta-
tus changes, and pseudo-code). Seven projects deal with numerical and statistical analysis
problems, and one deals with a text-processing problem (project 2).



Previous studies using the same projects, showed that the nature of project 2 is
different from the other projects, the process measures and product measures in project 2
are extremely different than in the rest of the projects (i.e., project 2 is an outlier), and it
is usually discarded in statistical analysis [Grazioli et al. 2014]. Therefore, we excluded
the data of this project from the analyzes presented in this article.

4.2. Goals and research questions
The goals of our experiment are, first, get to know if there is an effect on software quality
when they deliver the design representation. We pose this goal to determine whether
asking for the delivery of the habitual design representation changes student behavior
and affects the software’s quality. Second, get to know how students habitually represent
software design (what artifacts and ways of design representation they use).

To get students to deliver the design representation they would habitually build,
we do not request the use of templates or specific approaches to design representation (as
we did in previous iterations of the family of the experiment).

We defined the following research questions and the corresponding research
hypotheses:

RQ1: Is there any improvement in the quality of the products when students
deliver the representation of their habitual design?
H1.0: Deliver the design in the habitual way does not modify defect density in the unit test phase.
H1.1: Deliver the design in the habitual way modifies defect density in the unit test phase.

We defined the defect density as the number of defects found in the unit test phase
(UT) per every thousand lines of code. The consequence of high defect density in UT
in software engineering is typically seen in the form of defect-fixing or rework effort
incurred in projects, which results in poor quality products.

RQ2: How do students habitually represent the design?
To answer RQ2, we analyze using Eckerdal’s categorization, Thomas’ categorization and
direct observations of the delivered designs handed by the students.

4.3. Experimental design
We carried out the experiment in 2018, and 15 students took part. Experimental design is
of repeated measures of one factor (software design representation) with two alternatives:
submitting the design representation or not.

To address the goals, students submit the habitual representation of their designs
as part of the solution to each project. With the submission of the design representation,
we seek to know the students’ design practices. Even though it is an optional submission
(i.e. the student can decide not to design in the design phase of the base process), we
emphasize the importance of designing in the way they habitually do so, following their
usual design representation. Besides, students are told that their designs will not influence
the grading.

Students carry out the first four projects following the base process. Then, students
are randomized divided into two groups: “habitual design delivery” (HDD), and “without



Figure 2. Experimental design

habitual design delivery” (noHDD). The control group (noHDD) carries out projects 5 to
8 following the base process. The HDD group continues applying the base process and
also has to submit their design representations. The only difference between groups is the
submission of the representation. However, it is important to remark that the students of
both groups should produce a design for each of the programs as part of the design phase
of the base process. In the HDD group, 7 students participated, and in the noHDD group,
8 students participated (see Figure 2).

The response variables considered in this experiment are external quality, mea-
sured as the defect density in the unit test phase of the base process, and the design quality.
The design quality is measured using the design categorizations already mentioned.

5. Analysis and Results
5.1. Quality Improvement
To answer RQ1: “Is there any improvement in the quality of the products when students
deliver the representation of their habitual design?” we analyzed the following hypothesis
test:

H1.0: Delivering the habitual design does not change the defects density in unit test
H1.1: Delivering the habitual design does change the defects density in unit test

For each student, we calculated two average defect density in UT: for projects 1, 3
and 4, and projects 5 to 8. The calculation of each sample for projects 5 to 8 is as follows
(the same applies for projects 1, 3, and 4):

1000 ∗
∑8

n=5 #defectsUTn∑8
n=5#LOCn

(1)

Table 1 presents the average defect density (dd) in UT for the 8 students in the
noHDD group and the 7 students in the HDD group projects 1, 3, and 4 and projects 5 to
8.

First, we studied if exists a difference in the quality of the products between the
group’s HDD and noHDD in projects 1, 3, and 4. During projects 1, 3, and 4, both
groups apply the base process, so comparing the software quality of both groups during
those projects allows to confirm that they are homogeneous groups. For this analysis, we
defined the following hypothesis test:



Table 1. average defect density (number of defects in the unit test phase per
every thousand lines of code) for the students in both groups

Group St. dd134 dd58 Group St. dd134 dd58
noHDD 1 30.51 28.05 HDD 1 27.78 58.82
noHDD 2 11.63 24.69 HDD 2 9.48 28.90
noHDD 3 8.47 21.18 HDD 3 85.71 120.00
noHDD 4 98.98 82.88 HDD 4 26.12 14.13
noHDD 5 15.56 19.17 HDD 5 31.25 15.47
noHDD 6 7.35 0.00 HDD 6 60.61 52.12
noHDD 7 62.50 21.19 HDD 7 19.48 70.51
noHDD 8 60.47 55.56

H1.0: Median(Def. density in UT i) = Median(Def. density in UT j)
H1.1: Median(Def. density in UT i) <> Median(Def. density in UT j)
being i, j the students of HDD and noHDD groups in projects 1, 3 and 4.

The value of the median and the interquartile range of the defects density for the
noHDD group are (23.0, 33.5) and for the HDD group are (27.8, 26.5) respectively. In
this case, the samples correspond to defects density in UT of different students. So, we
applied the Mann-Whitney-Wilcoxon test for independent samples.

Defects density in UT for students in the HDD group (Mdn = 27.8) did not differ
significantly from students in the noHDD group (Mdn = 23.0) when considering projects
1, 3, and 4, W = 24 and p = 0.694. So, we can assume that both groups have similar or
homogeneous behavior with respect to defect density.

To know if software quality changes when students deliver their habitual design
representation, we analyzed the defect density between and intra groups. Between groups
refers to knowing if exists a significant difference in the software quality between the
groups. Intra groups refers to studying software quality in the HDD group before and
after the delivery of the design representations.

Between groups

The hypothesis test is similar to the one described before but considering projects
5 to 8 instead of 1, 3, and 4. We applied the Mann-Whitney-Wilcoxon test again as the
samples are independent. The values of the median and the interquartile range for the
HDD group are (52.1, 37.2) and for the noHDD group are (25.7, 25.8).

Defects density in UT for students in the HDD group (Mdn = 52.1) did not differ
significantly from students in the noHDD group (Mdn = 25.7) when considering projects
5 to 8, W = 20 and p-value = 0.397. Students who deliver their habitual designs did not
differ significantly from those who do not deliver their habitual designs.

Intra groups

We also studied if there is any change within the group who delivered their habit-
ual design (HDD group). We compared the defect density when they did not delivered
their design (projects 1, 3 and 4) and when they delivered their design (projects 5 to 8).
For this analysis, we defined the following hypothesis test:



H1.0: Median(Def. density in UT i) = Median(Def. density in UT j)
H1.1: Median(Def. density in UT i) <> Median(Def. density in UT j)
being i the students of HDD in project 1, 3 and 4, j the students of HDD in project 5 to 8.

The values of the median and the interquartile range for the HDD group in projects
1, 3 and 4 are (27.7, 26.5) and for the same group in projects 5 to 8 are (52.1, 37.2).

The samples are paired since the sampled pairs (Def. density in UT i, Def. density
in UT j) correspond to the same student, so we applied Wilcoxon signed-rank test.

Defects density in UT for students in the HDD group in projects 1, 3 and 4 (Mdn =
27.7) did not differ significantly from students in the HDD group in projects 5 to 8 (Mdn
= 52.1), V = 6, p-value = 0.219. That is, the delivery of the design representation did not
differ significantly from the non-delivery of the design representation.

5.2. Habitually software design representation

To answer research question RQ2: “How do students habitually represent design?” we
analyzed the 28 design representations submitted by the 7 students of HDD group from
project 5 to project 8 using Eckerdal et al. categories, Thomas et al. categories, and direct
observations. In this case, we do not have a control group because we do not have the
design representation for students in the noHDD group. Therefore, it is not possible to
answer this question using the framework of controlled experiments, but we do it in an
exploratory and analytical way.

We mapped each design to Eckerdal’s categorization and Thomas’s categorization.
The first author of the paper did the mapping, and the second author evaluated it both
resolved discrepancies by discussion. Figure 3 illustrates the mapping associated with
Eckerdal’s and Thomas’s categorizations for the 7 students for projects 5 to 8.

(a) Eckerdal (b) Thomas

Figure 3. Eckerdal and Thomas categories for the 7 students in projects 5 to 8

From Figure 3 arise that the ranking of some students’ designs (students 1, 4,
5, 6 and 7) across the different projects does not change much. That is, their design is
relatively consistent according to these categorizations.

Furthermore, it can be observed how some students (students 4, 5, and 6) managed
to elaborate intermediately designs mapping to Eckerdal’s categories 3-4. On the other



hand, students 2, 3, and 7 elaborate more basic designs that categorize in the lowest
Eckerdal and Thomas categorizations.

Some interesting aspects of the results associated with Eckerdal’s categorization
are observed. Students 4, 5 and 6 produced designs that provide an understandable
description of each of the parts and an overview of the system that illustrates the rela-
tionships between the parts, without completely describing communications between the
parts. Student 3 (in three of the four projects) and 7 handled designs that merely re-
stated the requirements (i.e., it is not a software design). Student 1 generally manages
to describe the system and its parts partially but fails to relate them. Finally, student 2’s
designs vary, ranging from only transcribing the requirements (half of the projects) to
partially describing the system and its parts (the other half of the projects).

Using Thomas’s categorization, it can be observed that the students manage basic
designs. The delivery of students 2, student 3 and student 7 are in most of the projects (in
9 projects out of 12) text notations (category 0ID). In the remaining 3 projects students
manage to identify some part of the system in an incompetent way (category 1A). Designs
of students 4, 5, and 6 fall into category 2SS.; that is, their designs use static notation.
Specifically, the designs elaborated by these students consist of incomplete class diagrams
of the system. Student 1 elaborates incomplete class diagrams in the delivery of projects
5, 6, and 7 (category 2SS.), and identifies some incomplete part of the system for project
8 (category 1A)

Finally, no designs fall into categories 3DB, 4MRA and 5EC, which implies the
ability to represent dynamic design with multiple related artifacts.

To add a complementary perspective to the students’ design analysis, we analyzed
project 8 in detail as a sample of the projects submitted. Table 2 presents for the 7 students
a description of the main characteristics of the design submitted, the defect density in UT
(dd), the Eckerdal’s category and Thomas’ category for project 8.

It can be observed that students 4 and 5 manage to represent designs using both
class diagrams and pseudo-code. According to the categorizations of Eckerdal et al. and
Thomas et al., these two students were the ones who categorized their designs better. It
could be observed that these two students are the ones with less defect density in UT for
project 8 (see Table 2). The rest of the students represent their design more informally,
transcribing the requirements to natural language, doing a pseudo-code, or incomplete
class diagrams. In these cases, the defect density in UT is higher.

In order to illustrate what kind of design the students deliver, some of the designs
are presented as they were delivered in project 8 (the most complex project of the course).
Figure 4 illustrates a part of the delivery of the design representation for students 5, 6
and 7. Student 5 makes a pseudo-code of a part of the project, student 6 develops an
incomplete class diagram and student 7 transcribes the requirements into natural language.
Figures correspond to the actual capture sent by the students of their design reflected on
the sheet.

6. Discussion
In our experiment, we observed that the submission of the habitual design representation
does not have an impact on the software quality produced by students. The results of the



Table 2. Main characteristics of the design submitted, the defect density in UT,
the Eckerdal’s category and Thomas’ category for project 8

St. Design description dd Eck. Tho.
1 uses natural language to explain that he will extend a class

by adding a method
33.78 2S 1A

2 performs a pseudo code of a part of the project 43.80 3FS 1A
3 transcribe the requirements to natural language, inputs and

expected outputs of the project
66.67 1A 1R

4 performs a pseudo code of a part of the project, identifying
classes, methods and attributes

14.71 4PD 2SS

5 performs a pseudo code of a part of the project, identifying
classes, methods and attributes

8.40 4PD 2SS

6 makes a class diagram, identifying attributes and relation-
ships between classes

43.48 4PD 2SS

7 transcribe the requirements to natural language 142.86 1R 0ID

(a) Student 6 (b) Student 7

(c) Student 5

Figure 4. Habitual design representation for students 5, 6 and 7 in project 8



statistical tests applied (intra and between groups) indicate that the quality of the group
delivering the design representation does not vary significantly concerning the quality of
the group that does not deliver it. However, the median value indicates that the submis-
sion of the usual design representation seems to negatively impact the software compared
to the non-submission of the usual representation. This comes to our attention because
we did not expect any difference between groups (considering that the experimental group
was handling their habitual design). Furthermore, if there were differences in the medians
(as is the case), we would expect the opposite results (i.e., students “caring” more about
submitting their design and this having a positive impact on software quality). New ques-
tions arise from this: How does the design request affect the student’s usual design-code
process? Does the design request modify the student’s habitual way of coding?

Using the categorizations by Ekerdal et al. and Thomas et al., we can affirm
that students (in our Engineering School) design on a basic level. Even though they
do not achieve complete designs that combine several artifacts to model dynamic and
static aspects simultaneously, they manage to produce simple designs. We can observe
that using natural language to transcribe requirements (restatement category) is a habitual
practice of some students to represent their designs (student 2, student 3, and student 7).
Two of these three students manage to describe the system and its parts in some exercise
partially. Students 4, 5, and 6 provide an understandable description of the system’s parts
that illustrates the relationships between them (partial design category). Finally, student 1
manages to partially describe the system without relating its parts (first step category). No
student used sequence, use case, collaboration, or dynamic diagrams. Furthermore, the
delivered designs vary between text notations, the incomplete identification of the parts
of the system, and the use of static notations to describe the system.

Some previously reported results are similar to ours [Eckerdal et al. 2006a,
Eckerdal et al. 2006b, Thomas et al. 2014, Thomas et al. 2017]. Most of the designs cat-
egorized by Eckerdal et al. are associated with basic categories (18% restatement, 41%
skumtomte, 29% first step) [Eckerdal et al. 2006a, Eckerdal et al. 2006b]. In the study re-
ported by Thomas et al. [Thomas et al. 2014], the majority of designs categorized was in
the first step and in partial design. Results from their following study [Thomas et al. 2017]
shows most designs categorized were in the first step, followed by the skumtomte cate-
gory. These authors agree that students do not know how to design, and our results show
the same.

This experiment and the previous experiments in our family of experiments
allowed us to know how graduating students are currently designing, their habitual
practices, and the effects of design on software quality [Moreno and Vallespir 2018,
Moreno et al. 2020, Moreno et al. 2021]. From the family results, we believe that a usual
practice of the students when developing software is to follow the code-and-fix model.
That is to say, they do not stop to think of a solution (design), but instead, they rush to
code. Students dedicate at least three times less time to design than to coding. Also,
using templates for the design representation did not help the students develop software
products of a higher quality. These results in addition to those obtained in this experiment
reveal that students do not have a great domain of design techniques and how to combine
them. We believe, just as Loftus et al. [Loftus et al. 2011], that students have difficulties
in designing software. Within the context of graduating students, those difficulties may



be associated with several reasons: the lack of experience, the lack of awareness of the
importance of design on quality, and the lack of education regarding design techniques
among others.

7. Threats to validity
This section describes the threats to validity we have detected.

Internal validity - The fact that the context of the experiment is a course implies that
the students do not develop naturally. We tried to minimize this threat with a non-graded
course, that is, a course in which the student passes or fails. Besides, we remarked on the
importance of monitoring and registering the process just as it was, and we emphasized
that students’ assessments would not be done according to results, defects found, efforts
made, or delivered designs.

External validity - In our experiment, students voluntarily took part in a course, and they
signed an informed consent that the data recorded and the designs delivered in the process
could be used for research purposes, guaranteeing anonymity. Conversely, the results
obtained in this experiment (academic context) cannot be generalized to the student’s
design practice in a professional context.

Construct validity - We measured software quality as the number of defects in UT
and design quality using design categorizations (Eckerdal and Thomas). Although we
used software quality and design quality scales from previous research, these are complex
constructs to measure, and there could be a bias between theory and construction.

Conclusion validity - The number of students in the research constitutes a threat to the
statistical conclusion (only 15). This causes the statistical analysis to be carried out using
non-parametric tests with lower statistical power than the parametric tests. To measure
this threat, we completed the non-parametric tests with descriptive statistics and in an
observational way.

8. Concluding Remarks and Future Work
In this paper, we report the results from an experiment to know how students habitually
represent detailed design (what artifacts and ways of design representation they use) and
know if there is an effect on software quality when they deliver the design representation.

We analyzed the software quality (defect density) between and intra groups. The
results of the statistical tests applied in both groups indicated that the quality of the group
delivering the design representation does not vary significantly concerning the quality of
the group which does not deliver it.

Also, we analyzed the design representations delivered by the students and catego-
rized them using the categorizations by Eckerdal and Thomas.We found that the delivered
designs vary between text notations, the incomplete identification of parts of the system,
and the use of static notations to describe the system. Our results are similar to those re-
ported in the literature [Eckerdal et al. 2006a, Eckerdal et al. 2006b, Thomas et al. 2014,
Thomas et al. 2017], and we agree with them on the fact that students do not know how
to deliver a design representation beyond using basic artifacts.

We propose a new experiment and conduct interviews with students as they carry
out the projects as future work. Our interest is to know how they face design thinking



during the design phase, if they carry out any design aspect during the code, why they
choose the design artifacts they use, if they know others, why they are not used, etc.

References

Bourque, P. and Fairley, R. E. (2014). Guide to the Software Engineering Body of Knowl-
edge - SWEBOK v3.0. IEEE Computer Society, 2014 version edition.

Carrington, D. (1998). Teaching software design and testing. In FIE’98. 28th An-
nual Frontiers in Education Conference. Moving from’Teacher-Centered’to’Learner-
Centered’Education. Conference Proceedings (Cat. No. 98CH36214), volume 2, pages
547–550. IEEE.

Carrington, D. and K Kim, S. (2003). Teaching software design with open source soft-
ware. In 33rd Annual Frontiers in Education.

Chemuturi, M. (2018). Software Design: A Comprehensive Guide to Software Develop-
ment Projects. CRC Press/Taylor & Francis Group.

Chen, T.-Y., Cooper, S., McCartney, R., and Schwartzman, L. (2005). The (relative)
importance of software design criteria. SIGCSE Bull., 37(3):34–38.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., and Zander, C. (2006a). Can
graduating students design software systems? In SIGCSE Bull., page 403–407. ACM,
Association for Computing Machinery.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., and Zander, C. (2006b).
Categorizing student software designs: Methods, results, and implications. Computer
science education, 16(3):197–209.

Grazioli, F., Vallespir, D., Pérez, L., and Moreno, S. (2014). The impact of the psp on soft-
ware quality: Eliminating the learning effect threat through a controlled experiment.
Adv. Soft. Eng., 2014.

Hu, C. (2013). The nature of software design and its teaching: an exposition. ACM
Inroads, 4(2).

Hu, C. (2016). Can students design software? the answer is more complex than you
think. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, Computer Science Education 2016, page 199–204, New York, NY, USA.
Association for Computing Machinery.

Joint Task Force on Computing Curricula - ACM and IEEE Computer Society (2013).
Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science. Association for Computing Machinery, New York,
NY, USA.

Kramer, J. (2007). Is abstraction the key to computing? Commun. ACM, 50(4):36–42.

Leung, F. and Bolloju, N. (2005). Analyzing the quality of domain models developed by
novice systems analysts. In 38th Hawaii International Conference on System Sciences.

Linder, S. P., Abbott, D., and Fromberger, M. J. (2006). An instructional scaffolding
approach to teaching software design. Journal of Computing Sciences in Colleges, 21.



Loftus, C., Thomas, L., and Zander, C. (2011). Can graduating students design: revisited.
In Proceedings of the 42nd ACM technical symposium on Computer science education.
ACM.

Moreno, S., Casella, V., Solari, M., and Vallespir, D. (2020). La representación del diseño
detallado utilizando plantillas y sus efectos en la calidad del software. In En Proceed-
ings XXIII Ibero-American Conference on Software Engineering (CIBSE 2020).

Moreno, S. and Vallespir, D. (2018). ¿los estudiantes de pregrado son capaces de diseñar
software? estudio de la relación entre el tiempo de codificación y el tiempo de diseño
en el desarrollo de software. In Conferencia Iberoamericana de Ingenierı́a de Software
2018.

Moreno, S., Vallespir, D., Solari, M., and Casella, V. (2021). Representation of software
design using templates: impact on software quality and development effort. Journal of
Software Engineering Research and Development, 9(1):1 – 15.

Siau, K. and Tan, X. (2005). Improving the quality of conceptual modeling using cogni-
tive mapping techniques. Data & Knowledge Engineering, 55(3). Quality in concep-
tual modeling.

Sien, V. Y. (2011). An investigation of difficulties experienced by students developing
unified modelling language (uml) class and sequence diagrams. Computer Science
Education, 21(4):317–342.

Tenenberg, J. (2005). Students designing software: a multi-national, multi-institutional
study. Informatics in Education, 4.

Thomas, L., Eckerdal, A., McCartney, R., Moström, J. E., Sanders, K., and Zander, C.
(2014). Graduating students’ designs: Through a phenomenographic lens. In Proceed-
ings of the Tenth Annual Conference on International Computing Education Research,
page 91–98. Association for Computing Machinery.

Thomas, L., Zander, C., Loftus, C., and Eckerdal, A. (2017). Student software designs at
the undergraduate midpoint. In Proceedings of the 2017 ACM Conference on Innova-
tion and Technology in Computer Science Education, ITiCSE ’17, page 34–39, New
York, NY, USA. Association for Computing Machinery.


