
Extending the Sustainability-Quality Model for supporting the
design of Persuasive Software Systems

Marcela Quispe-Cruz1, Nelly Condori-Fernandez2, 3

1Universidad Nacional de San Agustı́n (UNSA)
Arequipa – Perú

2CITIC, Computer Science Department – Universidade da Coruña
Galicia, Spain.

3Computer Science department – Vrije Universiteit Amsterdam
The Netherlands.

mquispecr@unsa.edu.pe, n.condori-fernandez@vu.nl

Abstract. This research aims at providing a guiding support for the selection
of relevant features and quality requirements for designing persuasive software
systems. To do this, a mapping between the Persuasive System Design (PSD)
model and a generic Sustainability-Quality (SQ) model was carried out. As
a result of this mapping, we extended the SQ model, by adding certain types
of relationships with specific features of the PSD model. A Graph database
tool, named Neo4j, was used for facilitating the visualization of the identified
relationships. And we also used the query language Cypher in order to retrieve
data from the graph Finally, we used an existing persuasive software system for
illustrating the usefulness of the extended SQ model represented as graphs.

1. Introduction

Persuasive technology can be defined as “design, research, and analysis of interactive
computing products created to change people’s attitudes 1 or behaviors 2” [Fogg 2003].
As technology can be used as a promoter of sustainable behaviour, many stud-
ies have investigated the possibilities to persuade people within the context of
environmental sustainability (e.g., increase consumers’ awareness of energy con-
sumption [Froehlich 2009]). However, most of these studies have shortcomings
that limit their long-term effectiveness. Although behavioral models (e.g., Trans-
theoretical Model of behavior change [Prochaska and DiClemente 2005], the Goal-
setting Theory [Locke and Latham 1991], the Fogg Behavior Model [Fogg 2009])
are very useful for conceptualizing the impact of persuasive technology, most of
them cannot be applied directly to the design or assessment of persuasive sys-
tems [Harjumaa and Oinas-Kukkonen 2007, Condori-Fernández et al. 2018]. For exam-
ple, through a user experience assessment of existing persuasive software applications,
Condori-Fernandez et al. [Condori-Fernández et al. 2018] found that some relevant non-
functional requirements had not been addressed, and consequently users experienced neg-
atively in using such kind of systems.

1Attitude represents how a person thinks or feels about someone or something.
2Behavior represents an individual’s reaction to a particular action, person or environment

As the identification and management of non-functional requirements (NFR)
in software projects are challenging [Ameller et al. 2019], various assessment mod-
els have been proposed for software product quality (e.g., ISO/IEC 25010 quality
model). In the last years, software sustainability has gained more attention from
researchers to address sustainability requirements along the software life-cycle
(e.g., [Condori-Fernandez and Lago 2018], [Calero et al. 2013], [Venters et al. 2014]).
Lago et al. [Lago et al. 2015] defined software sustainability based on
a four-dimensional model that adds the technical dimension to the so-
cial, environmental and economic dimensions that already appear in
the Brundtland report [Brundtland et al. 1987]. Condori-Fernandez and
Lago [Condori Fernandez and Lago 2018, Lago and Condori-Fernandez 2022] proposed
a Sustainability-Quality (SQ) model, an instrument of the Sustainability Assessment
Framework, for supporting the identification of quality requirements that contribute to the
four-dimensional model of software-intensive systems 3. The multidimensional approach
of Becker et al. [Becker and et al 2016] adds the individual dimension to the four
sustainability dimensions [Lago et al. 2015]. However, Calero et al. [Calero et al. 2013]
define sustainability only in terms of energy consumption, resource optimization and
perdurability, and they do not consider the individual, social, and economic dimensions.

In this paper, we aim to extend the SQ model [Condori-Fernandez and Lago 2018]
in order to provide a guiding support for (i) the NFR identification and (ii) the selection
of relevant features from the PSD Model [Oinas-Kukkonen and Harjumaa 2009] for de-
signing persuasive systems. To do this, we first use the PSD Model as a means to extend
the SQ model with the inclusion of new type of relationships. It is achieved through a
mapping carried out between some elements of the PSD model and the SQ model. Sec-
ond, given that designers of persuasive systems may achieve more success if adequate
methodological support was available, we changed the tabular visualization of the SQL
model (static) to a graph-based visualization (dynamic). Therefore, we consider that such
kind of visualization can be helpful not only for identifying relevant quality requirements
usually ignored in practice, but also for supporting the selection of persuasive software
system features.

The following sections provide a detailed account of our paper. Section 2 de-
scribes the SQ model and PSD model on which our work is based. Section 3 presents
the procedure and results of the mapping carried out between both models. In Section 4,
we present the corresponding queries to support the NFR discovery and Feature selection.
Section 5 illustrates the application of the most important queries in a specific example.
In section 6, we conclude the paper and discuss further work.

2. Background
In this work, we consider the PSD model [Oinas-Kukkonen and Harjumaa 2009],
as the theoretical framework for our research, and the SQ
model [Condori-Fernandez and Lago 2018].

2.1. The PSD model
The PSD model is a recent conceptualization for designing, developing and evaluating
persuasive systems. It consists of the premises behind any persuasive system, the persua-

3Systems in which software interacts with other software, systems, devices, sensors and people.

sion context and the persuasive software system features. All persuasive software systems
are based on the following premises [Oinas-Kukkonen and Harjumaa 2009]:

• P1: Useful. The system really serves the needs of the user.
• P2: User-friendly. The system should be easy to use or dealt with.
• P3: Unobtrusiveness. The system should avoid being disturbing while the user

is performing tasks.
• P4: Open. Designers should make the ideas and the goals of persuasion transpar-

ent.
• P5: Cognitive Consistency. People like their views about the world to be or-

ganized and consistent. Inconsistency disturbs people, and they easily want to
reorganize their thinking and restore consistency, perhaps even feel obliged to do
so.

• P6: Incremental. This means that persuasion goes stepwise, and all steps con-
tribute to the goals to be realized.

• P7: Information Technology (IT) is never neutral. IT always influences atti-
tudes and behavior.

• P8: Direct and indirect routes. Persuasion strategies can be divided into direct
and indirect routes, and persuasion will depend on the ability and motivation of
people to process information.

The analysis of the persuasion context consists of looking into (1) the intent, (2)
the event and (3) the strategy. A central feature of analyzing the intent is to consider the
change type, in particular whether the persuasion aims at attitude and/or behavior change.
The event comprises the use situation, user’s characteristics, technological platform and
environment. The strategy includes the message itself and the route to be used to achieve
a goal.

The PSD model describes 28 persuasive software system features grouped in four
categories: (i) The primary activity support category focuses on supporting the ac-
tivities that lead to achievement of the persuasive software system goals. (ii) Dialogue
support refers to techniques/mechanisms to motivate users to use the persuasive software
system goals. (iii) The credibility category relates to how to design a system so that
it is more credible and thereby more persuasive. iv) The social influence category de-
scribes how to design the system so that it motivates users by leveraging different aspects
of social influence. More details of the features can be found in Appendix B.

2.2. The SQ model
It is defined in terms of four sustainability dimensions: (i) Technical dimension addresses
the long-term use of software-intensive systems and their appropriate evolution in an ex-
ecution environment that continuously changes. (ii) Economic dimension focuses on pre-
serving capital and (economic) value. (iii) Social dimension focuses on supporting current
and future generations to have the same or greater access to social resources by pursu-
ing generational equity. For software-intensive systems, this dimension encompasses the
direct support of social communities in any domain, as well as the support of activi-
ties or processes that indirectly create benefits for social communities. (iv) Environmen-
tal dimension aims at improving human welfare while protecting natural resources. For
software-intensive systems, this dimension aims at addressing ecologic concerns, includ-
ing energy efficiency and ecologic awareness creation.

Each dimension is characterized by a set of Quality attributes, which can be inter-
dependent. Such dependency can be of two types: (i) it is inter-dimensional if it relates a
pair of quality attributes defined simultaneously in two different dimensions (e.g. security
defined in the technical dimension can influence security in the social dimension); and (ii)
it is intra-dimensional if a dependency exists between two different quality requirements
defined within the same dimension (e.g. in the technical dimension, security may depend
on reliability).

Since our SQ model provides support to both identify design concerns, and assess
the qualities of the software architecture, a set of metrics are used for measuring the qual-
ity requirements, which should be measurable. Instances of metrics can be also defined
for sustainability-related requirements.

The list of attributes of the SQ model, and corresponding contributions to the
four dimensions, can be found at [Condori Fernandez and Lago 2018]. In the following
section, we explain how the SQ model has been extended, by means of a mapping with
certain elements of the PSD model (i.e., premises and features).

3. Mapping the PSD model to the SQ model

3.1. Procedure

The mapping was carried out iteratively by the first two authors of the paper, which con-
sisted of three iterations. And a first validation of the mapping was carried out in the
fourth iteration.

First iteration: The PSD model was analyzed regarding the premises and features
that should be considered for designing persuasive systems. Researcher 1 focused on the
analysis of the categories and corresponding features of the PSD model. Researcher 2
focused on the analysis of the premises of the PSD model.

During this first iteration, both researchers used independently an Excel template-
for marking with an “X” whenever they identified some attributes of the SQ model as
relevant.

Second iteration: Two online meetings were organized between both researchers
for discussing regarding (i)the QAs identified in the first iteration and (ii) and the relation-
ships that can be identified between the selected QAs of the SQ model and the elements
of the PSD model (premises and features). The outcomes of the first iteration were in-
terchanged and reviewed before the meetings. As a result of these meetings, researchers
agreed on some type of relationships such as “Helps to” that represents a positive contri-
bution and “Hurts to” that represents a negative contribution. Both type of relations were
adopted from the Non-Functional Requirements framework [Chung et al. 2000]. There-
fore, the SQ model is extended by means of the mapping carried out along these two first
iterations. The outcome of this mapping can be found in Appendix A.

Third iteration: In this iteration, a visualization of the outcome produced in
the previous iterations is implemented, by using a Graph database tool named Neo4j 4

version 4.0. To build the graph database we place the selected characteristics and QAs of
the SQ model as well as the features of the PSD model in nodes and the corresponding

4https://neo4j.com/

relationships between them as transitions of the graph. To visualize a graph, we use
Cypher that is the Neo4j’s graph query language.

Fourth iteration: A third participant was involved, a professional in software
engineering, for the review of the mapping (only relationships between QAs and Features
of the PSD model). This review was in two stages. The first stage was in offline mode,
where the reviewer received the corresponding instructions and an excel file that contains
(i) definitions of QAs of the SQ model as well as definitions of features of the PSD model;
and (ii) the relations to the PSD features with their corresponding explanations. For each
identified relationship, the following question was formulated: Do you agree with the
identified relationship? If not, please explain your own rationale.

In the second stage, an online meeting was held with the participation of our ex-
ternal reviewer and the two researchers that defined the first version of mapping. As a
result of this review, two type of changes were implemented regarding:

• Type of relationship: With the purpose of highlighting a greater contribution from
some quality attributes to some features of the PSD model, or vice versa, a new
relationship “Strong helps to” was added. For example, an “Strong helps to” was
identified for the relationship between the context completeness attribute and two
Primary Task Support features: tailoring, and personalization.

• Features: Due to the relevance of some few features (e.g., simulation, reduction)
some few relationships were also added to certain QAs. For example, researchers
had only considered that unobtrusiveness HELPS to the tunneling feature, when
this QA could also helps to the reduction feature.

Figure 1 shows the resulting scheme in the graph database.

Figure 1. Scheme with types of nodes and relationships in the graph database.

The graph database consists of:
• Four kinds of coloured edges: The edges HELPS TO (orange), STRONG

HELPS TO (brown) and HURTS TO (red) represent that the source node (QA
or Feature) helps, strongly helps or hurts the target node (QA or Feature), respec-
tively.

COMPOSED OF (green) represents a composition relationship.
• Four kinds of coloured nodes: Characteristic-node (purple) represents a quality

characteristic of the SQ model, Attribute-node (fucsia) represents a QA of the SQ
model, Category-node (olive) represents a features category of the PSD model,
Feature-node (lime) represents a feature of the PSD model.

3.2. Results
Next, we discuss the type of relations with the PSD model at two levels: Premises and
Features.

3.2.1. Premises

Thanks to the mapping with the premises of the PSD model, we were able to identify two
new QAs that were not present in the SQ model: Unobtrusiveness (P3) and Transparency
(P4). Other premises such as P1 (useful) could be directly related to usefulness of the
SQ model; whereas user-friendly (P2) was related to usability (operability). The premise
Incremental (P6) was related to maintainability since the system should be easy to modify
for adding new suggestions or recommendations.

There were also some premises like Cognitive consistency (P5) and Direct and
indirect routes (P8) that could not be related to any specific QA. We consider that both
premises could be addressed by more than one QA. For example, attributes regarding
context coverage, satisfaction, and effectiveness could enable that software systems can
implement their persuasion strategies into direct and indirect routes (P8). It is also im-
portant to note that a persuasive system that causes any user disturbance would affect to
efficiency (more time to perform tasks) and timeliness (being not opportune). For this
reason, Unobtrusiveness (P3) was also related to both QAs.

3.2.2. Features

The mapping with the features of the PSD model allowed us to extend the SQ model,
by using some the identified type of relations between QAs and features of the four cat-
egories: primary task support, dialog support, system credibility support and social sup-
port. Figure 2 summarizes the corresponding features (Fx) and premises (Px) mapped to
the quality characteristics that contribute to each sustainability dimension.

An example of graph that shows different type of relationships like COM-
POSED OF (i.e., Satisfaction composed of Trust) HELPS TO, and HURTS TO (i.e., re-
lationships between Trust and Features of the System Credibility Support category) is
shown in Figure 3. In the graph, we considered some features of the Primary task sup-
port and System Credibility Support categories that might help to the system in providing
information that is truthful. Thus, a system, which incorporates the features like exper-
tise, real-world feeling, leverages roles of authority, and third-party endorsements, makes
easy verify the accuracy of site content, and consequently achieves that the stakeholders
become confident.

Looking at the same graph (Figure 3), we also see the relationship HELPS TO
from the node labelled “Self-monitoring” (feature) to the node “Trust” (QA). This is be-

Figure 2. SQ model characteristics related to Features (F) or Premises (P) of the
PSD model (Tabular view)

Figure 3. An illustration of relationships: HELPS TO, HURTS TO and COM-
POSED OF between the PSD model and the SQ model (Satisfaction in
terms of Trust, and Data privacy)

cause having such feature implemented (user can track his/her own performance through
the system), it might help to address the quality attribute “Trust” due to stakeholders are
confident in that product. However, we can also observe that the “Self-monitoring” fea-
ture could also affect negatively to data privacy (HURTS TO). This is because a system
tracking the performance or status might cause some privacy concerns due to the collec-
tion of personally identifiable information.

Figure 4. An illustration of relationships: HELPS TO and COMPOSED OF be-
tween the PSD model and the SQ model (Context coverage in terms of
Flexibility)

In Figure 4, we illustrate the relationships for the quality attribute: Flexibility.
In this case, we want to remark the arrows direction. For example, five features of the
category Dialogue Support (“Suggestions”, “Praise”, “Rewards”, “Social role” and “Re-
minders”) contribute (helps to) to address the quality attribute: Flexibility. The implemen-
tation of the Praise, Rewards, Reminders, and Suggestions features can help users keep
moving towards their goal or target behavior in contexts beyond those initially specified
in the requirements. The social role feature might help in communication between users
and specialists for example, consequently help the system to be used in contexts beyond
those initially specified in the requirements as well.

We can also have contributions in the other direction, (QA→FE), such as Flex-
ibility might help to the Tunneling, Personalization and Tailoring features. This means
that if a system can be used in contexts beyond those initially specified in the require-
ments then the system should be able of: (i) offering personalized content or services; (ii)
providing information that should be tailored to the potential needs, interests, personality,
usage context, or other factors relevant to a user group; and (iii) guiding the user through
a process or experience providing opportunities to persuade it.

4. Retrieval of Features and Quality Attributes using Cypher
The importance of the extended SQ model in a graph database lies in the fact that rela-
tionships between features, quality attributes and dimensions of sustainability can be con-
sulted. We take advantage of neo4j’s Cypher language to facilitate the designer’s query.
To better illustrate the retrieval from the graph database using Cypher, we first present the
syntax of the language [Neo4j 2022].

Cypher’s syntax The Cypher query language depicts patterns of nodes and re-
lationships and filters those patterns based on labels and properties. For instance, nodes
are represented with parentheses around the attributes and information regarding the en-
tity. Relationships are depicted with an arrow (either directed or undirected) with the
relationship type in brackets.

/ / node
(v a r i a b l e : Labe l { p r o p e r t y K e y : ’ p r o p e r t y V a l u e ’ })
/ / r e l a t i o n s h i p
−[v a r i a b l e : RELATIONSHIP TYPE]−>
/ / Cypher p a t t e r n
(node1 : LabelA) −[r e l 1 : RELATIONSHIP TYPE]−>(node2 : LabelB)

Keywords: Cypher contains a variety of keywords for specifying patterns, fil-
tering patterns, and returning results. Among those most common are: (i) MATCH is
used before describing the search pattern for finding nodes, relationships, or combina-
tions of nodes and relationships together. (ii) WHERE in Cypher is used to add additional
constraints to patterns and filter out any unwanted patterns. (iii) RETURN formats and
organizes how the results should be outputted. Just as with other query languages, you
can return the results with specific properties, lists, ordering, and more.

Table 1 illustrates some queries in the graph database (Q1, Q2 and Q3) with a
brief description of them. According to the syntax shown above, the query Q1 will
search for the pattern of the node (Characteristic label) connected by the relationship
(COMPOSED OF type and outgoing direction away from the first node) to another node
(Attribute label and property called name with value of input variable $attrib) and this
is connected by the relationship (CONTRIBUTES TO type and outgoing direction away
from the second node) to the node Dimension label). In Q2 and Q3 we have queries of two
types of relationships between nodes (of types HELPS TO and STRONG HELPS TO).

Table 1. Queries

ID Query in graph database Description Input Output

Q1

MATCH p=(:Characteristic)-
[:COMPOSED OF]
->(:Attribute{name:$attrib})-
[:CONTRIBUTES TO]->
(:Dimension)
RETURN p;

Knowing a quality
attribute, the
query helps in
retrieving the
corresponding
sustainability
dimensions.

Quality
attribute

Sustaina-
bility
dimensions
and quality
characteris-
tic

Q2

MATCH p=(:Attribute
{name:$attrib})- [:HELPS TO |
:STRONG HELPS TO]-
(:Feature)<- [:COMPOSED OF]-
(:Category)
RETURN p;

Knowing a quality
attribute, the query
helps in retrieving
the corresponding
feature and
category.

Quality
attribute

Features,
categories

Q3

MATCH p=(:Feature{name:$fea})-
[:HELPS TO |
:STRONG HELPS TO]-
(:Attribute)-
[:CONTRIBUTES TO]->
(:Dimension)
RETURN p;

Knowing a feature,
the query supports
retrieving quality
attributes helped
by it and
sustainability
dimensions related.

Feature

Quality
attributes
and
sustaina-
bility
dimensions

5. Use Case: Illustration of Queries in the Graph model

In this section, we firstly describe the case from the well-being domain. Then, the use
of the queries, defined in the previous section, is illustrated in two steps, which allow us
to: (i) discover the relevant NFR and (ii) identify the features that were not present in the
existing software application.

5.1. Case description:

There exists some software applications which aim to prevent and reduce RSIs in office
workplaces, where the user has to typically be seated for a long time in front of a screen,
typing on the keyboard and using a mouse as main peripheral devices. For illustrating the
usefulness of our operationalized model, we have selected the Workrave application.

Workrave is probably one of the most complete applications of its class. It con-
siders micro-pauses, rest breaks, and guidance for exercise routines. This software is
based on timers and keyboard/mouse activity, which determine when the actions must be
displayed on screen. The user interface offers to configure a good number of parameters
and provides a monitor on micro-breaks, rest breaks and working hour limit. The re-
markable feature is the Training support, using an animated virtual human to demonstrate
the exercises in addition to a textual description (see Figure 5), which could have some
positive effects on attaining coaching goals.

5.2. Features selection and NFR discovery

To illustrate the usage of the queries, we will consider only Flexibility and Timelines as
relevant NFRs that were not addressed in Workrave:

• Flexibility. Workrave can be used in two specified contexts (writing and reading
mode). However flexibility is desirable since users might want to use it in an-
other different contexts to the specified. For example during a videoconference
(listening).

• Timeliness. As Workrave is not aware on the context of usage, the main function-
ality (i.e., Take-a-break notification) might occur at a non-favourable time.

By considering both NFRs and using the extended SQ model, we were able to
identify some new potential features that should be considered in further Workrave ver-
sions. In this paper, we illustrate some of the identified features as potential improvements
for two functionalities of Workrave.

As shown in Figure 5, one of these functionalities is to provide statistics about user
activity. For example, this functionality in the current version is limited to display mea-
sures of the keyboard/mouse usage (e.g., how long the mouse has been in use, the total
and net distances the mouse has been moved). This means that the statistics of the actual
user activity could not become accurate whether a user would be doing anything other
than typing. Using query Q2 shown in the Table 1, which receives as input the quality at-
tribute Flexibility, we get as output features (like personalization, tailoring and tunneling)
with which they help each other (HELP TO and STRONG HELP in both directions). In
our case, if workrave was flexible regarding its context of usage, the implementation of
the tailoring feature would be favoured and consequently the reporting of such type of
statistics would be improved as well. Another relation observed in the query Q2, it is that

self-monitoring feature helps to flexibility. As designers, we think that this feature could
effectively help to address the flexibility requirement since Workrave would be able to
provide other means to track user status through self-monitoring. This information might
enable the system to be used in contexts beyond those initially specified in the require-
ments. As shown Figure 5, the second functionality of Workrave is regarding “Guided
exercises”. The fact that this functionality could be done at an opportune moment (time-
liness), it would favor the use of Workrave to guide users more appropriately (tunneling),
which could provide better opportunities to persuade them along the way. As categories
are also output of query Q2 (See Table 1), we can also retrieve the corresponding cate-
gories to which the features belong (i.e., Primary task support).

Figure 5. Mapping between NFRs and features for Workrave’s functionalities:
User activity statistics (left) and Guided exercises (right)

Using Flexibility and Timeliness as inputs, we can also use the query Q1 (see Ta-
ble 1) to determine which sustainability dimensions can be addressed (output). This is
also illustrated in Figure 5, where we obtain the Economic dimension, since there is a
relation from flexibility (CONTRIBUTES TO-type relationship). The quality character-
istic Context coverage, is another output from query Q1, since there is a relation (COM-
POSED OF-type relationship) with flexibility. In similar way, we can retrieve the social
dimension, by having Timeliness as input for the query Q1.

6. Conclusions and Future Work
The present research aims to operationalize a generic Sustainability-Quality (SQ) model
for both assessing and designing persuasive systems through a mapping with the PSD

model. As a result of this mapping, the operationalization consisted of identifying: (i) the
QAs that might be addressed by the corresponding features or premises of the PSD model;
and also those QAs that might help to the implementation of the PSD features, (ii) explicit
relationships between QAs and features of the PSD model like Strong Helps to, Helps
to and Hurts to. Moreover, the presentation of our operationalized SQ model has been
visually represented by using graphs. We consider that this type of visualization might be
more efficient because we can take advantage of the graph query language (Cypher).

This mapping (with the PSD model) has also helped us to uncover two new QAs
(unobtrusiveness and transparency) that were identified as relevant for designing persua-
sive systems, which were included in the sustainability-quality model.

This mapping is the first attempt that tries to bridge the gap between both the soft-
ware engineering and the persuasive technology communities. Our extended SQ model
can be a helpful instrument not only for software engineers, who could discover NFR
and select specific features for developing persuasive systems in a easier way, but also for
researchers from the Persuasive Technology area, who could be interested in the design
and evaluation of persuasive techniques/strategies. Besides that, the extended SQ model
can be also used as a tool to identify qualities and features that might contribute to one
or more dimensions of software sustainability. We also used an existing RSI applica-
tion (Workrave) for illustrating how the extended SQ model helps in discovering missing
quality requirements and potential features that were not present in the software app. Al-
though in this research, we focus on the specific characteristics of persuasive systems, the
SQ model can be used for any other type of software-intensive systems.

As future work, we are going to evaluate the implementation of the SQ model(with
Neo4jgraph technology), by involving developers or software designers. Their feedback
will be very useful not only for reviewing our list of predefined queries, which were
formulated for retrieving quality requirements and features, but also for evaluating how
usable is our graph-based approach.

Acknowledgment
This work has received support by the projects PDC2021-121239-C31, and KUSISQA
014-2019-FONDECYTBM-INC.INV. The research of Dr. Condori-Fernandez has been
carried out as part of CITIC, Research Center accredited by Galician University System,
funded by “Consellerı́a de Cultura, Educación e Universidade” from Xunta de Galicia.

References
Ameller, D., Franch, X., Gómez, C., Martı́nez-Fernández, S., Araujo, J., Biffl, S., Cabot,

J., Cortellessa, V., Méndez, D., Moreira, A., Muccini, H., Vallecillo, A., Wimmer,
M., Amaral, V., Bühm, W., Bruneliere, H., Burgueño, L., Goulão, M., Teufl, S., and
Berardinelli, L. (2019). Dealing with non-functional requirements in model-driven
development: A survey. IEEE Transactions on Software Engineering, pages 1–1.

Becker, C. and et al (2016). Requirements: The key to sustainability. IEEE Software,
33(1):56–65.

Brundtland, G., Khalid, M., Agnelli, S., Al-Athel, S., Chidzero, B., Fadika, L., Hauff, V.,
Lang, I., Shijun, M., Morino de Botero, M., Singh, M., and Okita, S. (1987). Our com-

mon future (brundtland report). Technical report, World Commission on Environment
and Development.

Calero, C., Moraga, M. Á., and Bertoa, M. F. (2013). Towards a software product sus-
tainability model. CoRR, abs/1309.1640.

Chung, L., Nixon, B., Yu, E., and Mylopoulos, J. (2000). Non-functional requirements in
software engineering. SPRINGER, LLC, New York, NY, USA.

Condori-Fernández, N., Bolos, A. C., and Lago, P. (2018). Discovering requirements of
behaviour change software systems from negative user experience. In Proceedings of
the 40th International Conference on Software Engineering: Companion Proceeed-
ings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 222–223.

Condori-Fernandez, N. and Lago, P. (2018). Characterizing the contribution of quality
requirements to software sustainability. Journal of systems and software, 137:289–
305.

Condori Fernandez, N. and Lago, P. (2018). A Sustainability-quality Model: (version
1.0). VU Technical Report.

Fogg, B. (2003). Persuasive Technology: Using Computers to Change What We Think
and Do. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Fogg, B. (2009). A behavior model for persuasive design. Proceedings of the 4th Inter-
national Conference on Persuasive Technology - Persuasive ’09, page 1.

Froehlich, J. (2009). Promoting energy efficient behaviors in the home through feedback:
The role of humancomputer interaction. In HCIC 2009 Winter Workshop, volume 9,
pages 1–11.

Harjumaa, M. and Oinas-Kukkonen, H. (2007). An analysis of the persuasiveness of
smoking cessation web sites. In The Second International Symposium on Medical
Information and Communication Technology.

Lago, P. and Condori-Fernandez, N. (2022). The Sustainability Assessment Framework
(SAF) Toolkit: Instruments to help Sustainability-driven Software Architecture Design
Decision Making. S2 Group, Vrije Universiteit Amsterdam.

Lago, P., Koçak, S. A., Crnkovic, I., and Penzenstadler, B. (2015). Framing sustainability
as a property of software quality. Communications of the ACM, 58(10):70–78.

Locke, E. and Latham, G. (1991). A theory of goal setting & task performance. The
Academy of Management Review, 16:480–483.

Neo4j (2022). Cypher introduction.

Oinas-Kukkonen, H. (2013). A foundation for the study of behavior change support
systems. Personal Ubiquitous Comput., 17(6):1223–1235.

Oinas-Kukkonen, H. and Harjumaa, M. (2009). Persuasive systems design: Key issues,
process model, and system features. Communications of the Association for Informa-
tion Systems, 24:485–500.

Prochaska, J. O. and DiClemente, C. C. (2005). The transtheoretical approach. Admin-
istration and Policy in Mental Health and Mental Health Services Research, pages
147––171.

Venters, C., Jay, C., Lau, L., Griffiths, M. K., Holmes, V., Ward, R., Austin, J., Dibsdale,
C. E., and Xu, J. (2014). Software sustainability: The modern tower of babel. In
RE4SuSy: Third International Workshop on Requirements Engineering for Sustainable
Systems.

7. Appendix A: Mapping between PSD model and the SQ model

Figure 6. Relationships between quality attributes (SQ model) and features of
system credibility support(category of the PSD model)

8. Appendix B: Features of the PSD model

Figure 7. Features of the PSD model [Oinas-Kukkonen and Harjumaa 2009]
[Oinas-Kukkonen 2013]

