
Patterns in Microservices-based Development: A Grey
Literature Review

Fabio Gomes Rocha1, Michel S. Soares1, Guillermo Rodriguez2

1Universidade Federal de Sergipe
Sergipe, Brazil

2ISISTAN (UNICEN-CONICET) Research Institute
Tandil, Buenos Aires, Argentina

fabio.gomes@souunit.com.br, michel@dcomp.ufs.br

guillermo.rodriguez@isistan.unicen.edu.ar

Abstract. Microservices emerged due to the massive adoption of cloud
computing and the need to integrate legacy systems. However, there still needs to
be a greater understanding of adopting a microservice-based architectural style.
Besides, there is a need for guidelines to operationalize those microservices.
We conducted a grey literature review to identify commonly used architectural
patterns and how they are implemented following design patterns. We present
two key contributions. Firstly, we identified four architectural patterns and 23
design patterns. Secondly, we identified a catalog of tools for implementing
the main patterns adopted when using the microservices style. The Proxy and
the SAGA patterns are the most used in communicating and linking data for
services. Additionally, tools such as Kubernetes, Docker, and Amazon WS
are the most used for implementing microservices and deploying them into
containers.

1. Introduction
Software Architecture deals with the properties a system has, incorporating the elements
and their relationships, design and evolution [ISO 2011]. In this sense, designing the
architecture of the software is a complex activity, requiring analysis beyond the modular
structure of the software, and it is necessary to consider the required technology and
the dependencies between technology and modules [Sievi-Korte et al. 2019]. Thus, to
design a high-level system, it is necessary to make decisions related to the various quality
requirements. However, without this harming the system as a whole [Yang et al. 2016],
[Ribeiro et al. 2018]. In this sense, microservices emerge, a software architecture
pattern that emerges from systems based on service-oriented architecture (SOA), with
characteristics arising from the adoption of the cloud in a distributed and independent
way [Balalaie et al. 2015].

Microservices emerged as a result of the massive adoption of cloud computing
and the need to integrate legacy systems [Balalaie et al. 2015]. Thus, the adoption
of microservices architecture results in flexibility related to scalability and availability.
However, according to Christoforou et al. [Christoforou et al. 2017], such a model
brings with it new complexities, requiring analysis for adoption. In this sense, the
authors point out the redistribution, as a high operational cost point, in addition to



the difficulty of maintaining the various resources and addresses [Balalaie et al. 2015],
[Christoforou et al. 2017]. In addition to the problems pointed out, there is a need for
new patterns for how these services’ communications will be performed and how they
will be implemented and operationalized. Thus, this article seeks to characterize the
standards adopted by the industry through a systematic review of grey literature. We
selected 125 articles between the years 2014 to 2021, divided into six bases. We identified
four architectural patterns and 23 design patterns. In addition, we identified ten tools with
five or more occurrences. We developed a catalogue of the main patterns adopted when
using the microservices style based on the data. The rest of the paper is divided as follows:
in section II, we present the background of the research, followed by the related work in
section III. Section IV offers the grey literature methodology adopted in the study. Section
V presents the results, answering the research questions, discussions about the results in
section VI, and finally, the paper’s conclusions.

2. Background

Using Microservices [Balalaie et al. 2016] as a solution for distributed software
architecture has grown rapidly in the business environment in recent years
[Balalaie et al. 2016]. Companies such as Netflix, eBay and Uber have adopted
Microservices for the architecture of their systems to replace the monolithic architecture
design. However, the lack of consensus in defining what a microservice is and what
methodology to adopt when migrating from traditional services to this new paradigm
has created several challenges for IT teams. Microservices require differentiated forms
of infrastructure, here called agile infrastructure. Agile infrastructure consists of three
layers: Technical, Project and Operations. Technical relates to hardware and software
used in the environment. Project is about the process that introduces the changes
into the environment. Operations is the process of keeping the environment working
[Debois 2008]. Within this paradigm arise new technologies such as containerization
environments, automation of deliveries, among others.

The microservices architecture paradigm can be considered an approach for
developing a single application as a set of small services, each working in an isolated
process and communicating through mechanisms [Kitchenham and Charters 2007].
Along this line, microservices have their growth linked to the platform of container
[Pahl et al. 2020]. Containerization is a technology for virtualizing applications in a light
way that resulted in a significant absorption in the management of cloud applications.
How to orchestrate the construction and deployment of containers individually and in
clusters has become a central problem [Pahl et al. 2017].

3. Related work

Systematic mapping studies and systematic literature reviews are used to find and assess
relevant data for a research issue or topic. However, for this type of secondary research,
only academic materials, often known as white literature, are used. We claim that
grey literature is crucial for supplying useful insights to researchers from the industrial
community. In this Section, we present the grey reviews already conducted on this field.

Based on an online survey (with three questions answered by 25 interviewed
practitioners), Ghofrani and Lübke gave a preliminary analysis of state-of-practice on



microservices. Ghofrani and Lübke (2018)’s findings provide a high-level summary
of industry-oriented microservices’ difficulties without going into the specifics of their
actual pains and rewards. Instead, the research attempts to provide a more in-depth
examination of the technical/operational challenges and benefits of microservices as
identified by industrial researchers and practitioners who work with microservices
[Ghofrani and Lübke 2018].

Based on interviews with developers who have worked with microservice-based
systems, Taibi and Lenarduzzi identified 11 microservice-specific bad practices. Some
of the problems that we discover in our study, whose goal is distinct from Taibi
and Lenarduzzi, reflect such faulty behaviors. Rather than conducting interviews to
uncover problematic practices, the goal is to carefully analyze the grey literature on
the topic to elicit microservices’ primary technical/operational challenges and gains
[Taibi et al. 2018].

The authors of [Taibi et al. 2020] wanted to help practitioners understand the
various patterns by classifying them and reporting potential benefits and concerns.
They used a multivocal literature review process, sifting through peer-reviewed and
grey literature and categorizing patterns (standard solutions to common problems) as
well as benefits and drawbacks. They found 32 patterns in 24 works, organizing
them as orchestration, aggregation, event management, availability, communication, and
authorization.

In [Soldani et al. 2018], the authors chose 51 industrial studies and analyzed
them to distill the hardships and rewards of designing, implementing, and managing
microservices due to their review. It also revealed that the industry’s grasp of the benefits
and drawbacks of microservices is reasonably advanced, implying that academia has a lot
to learn from the industry on the subject. Valdivia et al. sought to expand knowledge
on the design of microservices-based systems by presenting a multivocal systematic
literature evaluation for microservices-related patterns, linking them together with quality
attributes and metrics identified in academia and industrial research [Valdivia et al. 2020].

In summary, our research differs in that it examines architectural patterns to
characterize them in terms of microservices from the perspective of professionals,
development businesses, or independent researchers who have worked on the subject in
the context of real projects.

4. Methodology

Grey literature refers to informal literature commonly published in blogs and web
sites. Normally, grey literature is collected by using regular search engines, such as
Google. Moreover, grey literature comprises of unpublished studies or doctoral theses,
conference sessions, book chapters, government and agency reports, as well as blog
entries, white papers and video presentations [Calderón et al. 2018]. Garousi, Felderer,
and Mäntylä [Garousi et al. 2019] emphasize that software development professionals
produce relevant and scaled Grey Literature, usually disregarded by academic research
and that it is essential to read this literature in order to gather practical knowledge. This
section presents how this review was conducted.



4.1. Research Question

The research objective is defined using part of the model GQM (Goal-Question-Metric)
[Mashiko and Basili 1997, Van Solingen et al. 2002]: Analyze architectural patterns;
with the purpose of characterising, with respect to microservices; from the point of
view of professionals, development companies or independent researchers who have
experience on the subject in the context of real projects. For this study, four research
questions are established, as depicted in Table 1.

Table 1. Research Questions

Research Question Description

RQ1

What is the profile of the publications on standards related
to Microservices Architecture? This research question intends
to find out (i) the number of publications on Microservices
Architecture per year, (ii) the distribution by subjects of the
papers, and (iii) the distribution of papers on scientific bases.

RQ2

What types of results were obtained, and what types of validation
were adopted in the article? The intention is to identify,
using Shaw [Shaw 2003] as a basis, and explain the articles’
contributions to the knowledge of Software Engineering.

RQ3

What are the software architecture patterns/styles adopted on
microservices projects? The intention is to identify which
architectural patterns are adopted for the development of
microservices.

RQ4

Which methods are adopted and used for operationalizing the
architecture of microservices? The aim is to identify the methods
and technologies used for the continuous delivery and operation
of microservices.

4.2. Search sources

According to Garousi, Felderer, and Mäntylä [Garousi et al. 2019], the search sources of
grey literature are generally classified into three levels:

• Level 1: Self-level of decision control and credibility - books, magazines, reports
from government and reputable organisations in the field.

• Level 2: Medium level of decision control and credibility - annual reports, new
articles, presentations, videos, and sites such as StackOverflow.

• Level 3: Low level of decision control and credibility - blogs, tweets, pages from
social networks.

We formulated the string ”(architecture OR design) AND (microservice OR
”micro-service” OR microservices OR ”micro-services”) AND (pattern OR style)” to
identify and select search sources as listed below, regarding only Level 2 sources:

• Website of Martin Fowler1 (level 2). Selected by the author’s credibility, who was
one of the disseminators of the concept of microservices.

1https://martinfowler.com/



• DZone2 website articles (level 2): created in 1997, the site has diverse content
in the form of articles to discuss software development, considered one of the
largest communities on the subject, and the submission of works performed by
professionals and quality reviewed by the DZone team.

• Medium.com3 Articles (level 2): appeared in 2012, and described as a blogging
platform, or as described, a platform of things that matter, maintained by the
company Obvious. Medium.com has diverse content, being highly accessed,
mainly because it has a recommendation system.

• NewRelic4 Blog (level 2) created in 2008 brings articles about what is new on
software development, usually linked to services offered by the company.

• OpenSource5 (level 2) is a portal maintained by RedHat created in 2010 with
articles on various topics, with more than two million readers in 2020.

• InfoQ6 (level 2) is a portal that focuses on helping progressive software
development teams with diverse materials such as articles, interviews, and books,
and content in several languages including English, Japanese, Chinese, Portuguese
and French.

4.3. Criteria for Selecting Publications and Stopping the Search

For the selection of items in the search sources, Garousi, Felderer, and Mäntylä
[Garousi et al. 2019] suggest that criteria for inclusion and exclusion of these items have
to be applied, safeguarding the systematisation of choice. Thus, we defined the criteria
presented in Table 2.

Table 2. Selection Criteria

ID Inclusion Criteria
IC01 The article proposes guidelines or patterns according to developers’

general experience
ID Exclusion Criteria

EC01 Duplicated material
EC02 Material presenting only a brief summary
EC03 Material is not written in English
EC04 Material that does not deal with microservices standards

4.4. Process of Work Selection and Data Extraction

The material selection process was systematized in three stages:

1. execution of the search;
2. first filter; and
3. second filter. Then, the search was performed in the sources that were selected.

2https://dzone.com
3https://medium.com/
4https://blog.newrelic.com/
5https://opensource.com/
6https://www.infoq.com/



In the first filter, the titles and abstracts of the works found were read. For the
videos, the title and descriptions were read, and the inclusion and exclusion criteria were
applied. In the second filter, the studies were read in total, and the videos included in the
first filter were watched in full. Again, the inclusion and exclusion criteria were applied.
Thus, the items whose content did not meet the selection criteria were excluded, justifying
the decision.

The execution of the search took place in May 2021, and there was no restriction
on the time interval of publication. After execution of the search and application of the
first filter, 156 items were returned. Next, following the application of the second filter,
125 items were selected, originating from six sources, as described in Table 3. The papers
are distributed between years 2014 and 2021, as depicted in Figure 1. Furthermore, the
trend of articles is appreciated in Figure 2.

Figure 1. Distribution of works per year

Following the completion of selection of the second filter, the extraction of data
was performed. The study was conducted by eight researchers (P1 to P8). The search
strategy was developed as follows: Researcher P1 and P2 did a test search, identifying the
number of papers and preparing a spreadsheet with the total volume of one hundred and
fifty-six papers. Then, it was distributed to researchers P1 to P5 to read and identify the
papers that would be part of the study. Then it was rotated; that is, P1 validated the results
of P2, P2 of P3 and so on. Finally, P6 made a general validation. For data extraction,
the papers were divided among researchers P1 to P5, and the extraction is validated by
P6. Finally, researchers P7 and P8 performed the validation together, and all researchers
performed the analysis of results.

Table 3. Distribution of works per year

Source Total of works Selected Disclosures
Medium 18 15 3
Martin Fowler 9 9 0
DZone 44 44 0
New Relic 3 1 2
Open Source 32 10 22
InfoQ 50 46 4
Total 156 125 31

Data extraction is one of the main phases of conducting a literature review,
including a grey literature review. It is from the data collected that one can answer the



research questions. Thus, for this purpose, a detailed reading of each collected item was
conducted to identify, categorise and analyze the following items to answer the research
questions.

Figure 2. Distribution of works per year

5. Results

In response to RQ1, we have a total of 125 selected papers. The year 2018 was the peak
of published papers, as depicted in Figure 2. One point to be monitored in the coming
years is that in 2020 there was a drop. However, given that it was a year with drastic
changes due to the COVID-19 pandemic, it will be necessary to monitor in the coming
years if the theme stabilises, if it will still expand or if it is decreasing.

Figure 3. Distribution of works per Theme



Regarding the distribution concerning the work themes, four areas were identified:
Architecture, DevOps, Cloud and Java, highlighting the theme of software architecture
with 78% of the works, as depicted in Figure 3. About the scientific bases, out of the six
bases, all had selected papers, highlighting the bases InfoQ and DZone (Figure 4).

Figure 4. Distribution of works per Source

Figure 5. Type of work result

Regarding RQ2, first, we sought to understand if the papers published as grey
literature had results. At this point, 41.6% had results. That is, they were not only
theoretical papers, as depicted in Figure 5. Also, based on [Shaw 2002], of the papers
that present any result, the results are validated, being that the same result can be validated
in more than one way. The type of validation that stood out the most was the example,
followed by statement - Figure 6.

In response to RQ3, an article may contain more than one pattern or style of
architecture. The highlight is for the Pattern style with 40 works. However, 49 do not



Figure 6. Type of validation

Figure 7. Distribution of Pattern per Source

present styles or patterns of architecture - Figure 7. As for the design patterns employed
in microservices works, 23 patterns were identified - Figure 8 - but we can highlight the
Proxy pattern with ten works.

InfoQ, Dzone and Medium are the bases that aggregate the most in Design Patterns
- Figure 9. As a result, we obtained a set of patterns adopted in microservices architecture
and presented them in Table 4 and Table 5.

In response to RQ4, of the one hundred and twenty-five papers selected for this
article, nine deal with DevOps as a way to operationalize microservices. In addition,
another eight deal with this operationalization in the cloud. It was also identified that
three methodologies appear only once in the works: BDD, Pragmatic Microservices and
Twelve-Factor app. The latter focuses on the delivery of software as services.

To support the operationalization, we identified one hundred and fifty tools.
However, we described in Figure 10 those that were mentioned in at least two works. One
highlight is Kubernetes with twenty-two occurrences, Docker and AWS with fourteen and
Spring with 12. At this point, we can notice that the two items with the most significant
highlights are related to the application infrastructure.

6. Discussion
The bibliography that deals with microservices bring some patterns starting in 2014, and
since then added new works, highlighting the year 2018 with 48 new works. In total, we
obtained 125 works dealing with DevOps, Architecture, Cloud and the Java programming
language.

Another critical point is that, despite being grey literature, 42% of the papers
presented some results. That is, it was not only an explanation article. In addition, from



Table 4. Patterns Catalogue.

Pattern Description

Proxy

A proxy is a Structural design pattern intended to provide
a substitute or placeholder for another object. Thus, the
proxy controls access to the original object, allowing one
to execute something before or after the request arrives at
the original object. It has been adopted to control access to
external microservices in this context.

SAGA
Thus, the proxy controls access to the original object,
allowing one to execute something before or after the
request arrives at the original object.

Low Coupling
It has been adopted to control access to external
microservices in this context.

Strangler

The Strangler pattern focuses on application migration and
consists of two types of services, where one implements
already existed as monolithic, without new features.
Subsequently, a second service implements new resources,
thus generating value for the business by adopting the
microservice without stopping the existing service.

Bulkhead
The Bulkhead pattern aims at fault tolerance, so the
elements must be isolated in containers so that, if one fails,
the others keep working.

Sidecar

Sidecar Pattern works together with the main container,
with the actual application in a symbiotic way, acting as
a single component, used as a reverse proxy, monitoring
service, and observability and ambassador.

API Gateway
The API Gateway pattern creates a single entry point for all
clients handling the requests.

Aggregator

Microservices should be independent, autonomous, and
small. The Aggregator Pattern focuses on receiving
customer requests xecutes requests to several microservices
and combines the results to answer the initial request.

Gateway Routing
The Routing Gateway acts as a request router, i.e., a single
point for clients to make their requests, and this route to the
microservices.

Chained Microservice
The Chained Microservice Pattern produces a single,
consolidated response to a request, even if it depends on
several microservices.



Table 5. Patterns Catalogue (II).

Pattern Description

Branch

The Branch Pattern is a set of other Aggregator and Chain
design
patterns that allows the simultaneous processing of several
requests
and generation of responses from two or more
microservices

Client-Side Up Composition

The Client-Side Up Composition allows the independent
development of user interface components responsible for
a region of the page/screen for a specific service. In this
way, it is possible to generate independence in developing
screens and working with the composition of user interface
components.

Service Discovery

The API Gateway consulted the Service Discovery pattern,
which is responsible for discovering the available services.
It usually works with the Service Registry pattern, which is
responsible for registering the available services.

Circuit Breaker

The Circuit Breaker Pattern avoids cascading catastrophes
when a service generates an error. The idea is that the call
is packaged with a Circuit Breaker function that monitors
failure. Once it reaches a certain threshold, the function
stops, and new calls start to return errors without the
protected call being performed, thus avoiding a problem.

Blu-Green Deployment

The Blu-Green Deployment pattern is a model for
application deployment. The goal is to gradually transfer
user traffic from an existing version to a new version; when
both are running in the production environment, the old
version is blue, while the new one is green. Thus, traffic
is transferred from blue to green, and when completed, it
can be removed from production or kept for reversion.

High Cohesion

High Cohesion is a Grasp Pattern and is usually linked to
low coupling, aiming to keep objects focused, manageable
and understandable. The term cohesion is used, in this
context, to indicate the degree to which a microservice or
class has single and well-focused responsibility.

State
The State is a GOF behavioral pattern that allows an object
to change behavior when its internal state changes.

Singleton
Singleton is a creative GoF pattern that aims to ensure that a
class has only one instance while providing a global access
point.



Figure 8. Distribution of Pattern

Figure 9. Distribution of Design Pattern per Source

these articles, we obtained some validations about the result, especially the validation
by example, assertion and experience. In terms of patterns or styles of architecture, the
highlight is the pattern of layers, and InfoQ and Dzone have more works that present
these patterns. When it comes to Design Patterns, we obtained 23 patterns with at least
one reference. Based on this, we prepared a table with the patterns refer.

6.1. Threats to Validity

According to Zhou, Xin et al. zhou2016map, we should address several aspects regarding
the validity of a systematic review, the main ones being constructed, internal, external and
conclusion validity.

6.1.1. Construct Validity

The results may not address the research questions related to the topic. To mitigate this
threat, a pilot was conducted to validate the protocol and search chain to minimise this
threat. All selection was conducted by one researcher and validated by another researcher,
making it as broad as possible. Thus, the researchers searched independently, checking
whether the results were related to the research questions and exchanging their results for
validation.



Figure 10. Tools for operationalizing microservices

6.1.2. Internal Validity

Threats to validity include those related to the protocol and the process of selecting papers.
Thus, for both tasks, a double validation was performed. After the protocol was defined,
a series of searches were tested before the search string was defined. In case of doubts
about whether a paper should be selected, all researchers discussed the paper’s suitability
to the topic. The same occurred with the selection.

6.1.3. External Validity

This information cannot be generalised because no significant number of papers address
architecture patterns applied to microservices. Thus, it was possible to identify other
papers suitable for the context of patterns and/or microservices, but no references were
made to them. The search chain was designed to reach as many documents as possible to



mitigate this threat, allowing the work to become a catalogue of patterns. However, it is
well known that the software industry uses microservices in essential projects and that all
this knowledge may not be published as papers. Therefore, although the grey literature
brings a vast body of knowledge about microservices, many practices are not published.

7. Conclusions

It is noted that, beyond the academy, microservices have been receiving attention from
professionals, with the main focus being: independence and lightness. This study sought
to understand how the gaps left by the academy have been treated, in terms of standards for
microservices, by the industry. We observed that the selected studies started publishing in
2014, with an apse in 2018 and a considerable reduction of works on the subject between
2020 and 2021. This can be attributed to the problems arising from COVID19; however,
we would need more data and time for such a statement. It is, at this point, only an
empirical finding, requiring a follow-up in the coming years on the subject.

Several mappings and systematic reviews have been published in this field, as
presented in the related papers; however, unlike the studies presented, this paper sought
to characterize architectural patterns and relationships of results and methods, but from
an industry perspective, through grey literature. Thus, for this study, we followed a
systematic and rigorous protocol, based on Garousi [Garousi et al. 2019], obtaining 125
studies and sought, based on these, to produce a view of the state of the practice on
patterns/architecture styles adopted in practice with microservices.

As a result, it was possible to present a catalog of patterns currently adopted
by professionals who develop using microservices architecture, highlighting the Proxy
pattern, part of GOF, and the SAGA pattern used in the communication and linking of data
for services. Consequently, we identified the main tools that allow the operationalization
of microservices, highlighting Kubernetes, followed by Docker and AWS, demonstrating
that the operationalization in containers with cloud load distribution has focused on the
works presented.

In future work, we plan to extend our work as a multivocal literature review,
considering formal literature. Furthermore, as part of our ongoing research, we want
to apply a survey to gather data on the technologies used by practitioners to develop
microservices from scratch or by migrating a legacy system. We want to learn more
about the most popular tools, how people use them, and how they are integrated. With
this knowledge, we may describe an implementation technique that supports academic or
professional projects that call for a quick, secure, and dependable agile infrastructure.

References

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2015). Migrating to cloud-native
architectures using microservices: an experience report. In European Conference on
Service-Oriented and Cloud Computing, pages 201–215. Springer.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2016). Migrating to Cloud-Native
Architectures Using Microservices: An Experience Report. In Communications in
Computer and Information Science, pages 201–215. Springer International Publishing.



Calderón, A., Ruiz, M., and O’Connor, R. V. (2018). A multivocal literature review
on serious games for software process standards education. Computer Standards &
Interfaces, 57:36–48.

Christoforou, A., Garriga, M., Andreou, A. S., and Baresi, L. (2017). Supporting the
Decision of Migrating to Microservices Through Multi-Layer Fuzzy Cognitive Maps.
In Service-Oriented Computing, pages 471–480. Springer International Publishing.

Debois, P. (2008). Agile infrastructure and operations: how infra-gile are you? In Agile
2008 Conference, pages 202–207. IEEE.

Garousi, V., Felderer, M., and Mäntylä, M. V. (2019). Guidelines for including
grey literature and conducting multivocal literature reviews in software engineering.
Information and Software Technology, 106:101–121.

Ghofrani, J. and Lübke, D. (2018). Challenges of microservices architecture: A survey
on the state of the practice. ZEUS, 2018:1–8.

ISO (2011). ISO/IEC/IEEE 42010:2011 Systems and Software Engineering —
Architecture Description.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic literature
reviews in software engineering.

Mashiko, Y. and Basili, V. R. (1997). Using the gqm paradigm to investigate influential
factors for software process improvement. Journal of Systems and Software, 36(1):17–
32.

Pahl, C., Brogi, A., Soldani, J., and Jamshidi, P. (2017). Cloud container technologies: a
state-of-the-art review. IEEE Transactions on Cloud Computing, 7(3):677–692.

Pahl, C., Jamshidi, P., and Zimmermann, O. (2020). Microservices and containers.
Software Engineering 2020.

Ribeiro, F. G. C., Rettberg, A., Pereira, C. E., Steinmetz, C., and Soares, M. S. (2018).
An Approach to Formalization of Architectural Viewpoints Design in Real-Time and
Embedded Domain. In 21st IEEE International Symposium on Real-Time Distributed
Computing, ISORC 2018, Singapore, Singapore, May 29-31, 2018, pages 59–66. IEEE
Computer Society.

Shaw, M. (2002). What makes good research in software engineering? International
Journal on Software Tools for Technology Transfer, 4(1):1–7.

Shaw, M. (2003). Writing good software engineering research papers. In 25th
International Conference on Software Engineering, 2003. Proceedings., pages 726–
736. IEEE.

Sievi-Korte, O., Richardson, I., and Beecham, S. (2019). Software Architecture Design in
Global Software Development: An Empirical Study. Journal of Systems and Software,
158:110400.

Soldani, J., Tamburri, D. A., and Van Den Heuvel, W.-J. (2018). The pains and gains of
microservices: A systematic grey literature review. Journal of Systems and Software,
146:215–232.



Taibi, D., El Ioini, N., Pahl, C., and Niederkofler, J. R. S. (2020). Patterns for serverless
functions (function-as-a-service): A multivocal literature review.

Taibi, D., Lenarduzzi, V., and Pahl, C. (2018). Architectural patterns for microservices:
A systematic mapping study. In CLOSER, pages 221–232.

Valdivia, J. A., Lora-González, A., Limón, X., Cortes-Verdin, K., and Ocharán-
Hernández, J. O. (2020). Patterns related to microservice architecture: a multivocal
literature review. Programming and Computer Software, 46(8):594–608.

Van Solingen, R., Basili, V., Caldiera, G., and Rombach, H. D. (2002). Goal question
metric (gqm) approach. Encyclopedia of software engineering.

Yang, C., Liang, P., and Avgeriou, P. (2016). A Systematic Mapping Study on the
Combination of Software Architecture and Agile Development. Journal of Systems
and Software, 111:157–184.


