
Advanced Undergraduate Computing Students’ Perception of
Software Quality Teaching: a Survey in the Brazilian Paraná

State
Guilherme N. Ferrari1, Thais S. Nepomuceno1, Claudia H. Santana1,

Carlos D. Luz1, Gislaine C. Leal1, Aline M. M. M. Amaral1,
Renato Balancieri2, Edson OliveiraJr1

1State University of Maringá
Maringá – PR – Brazil

2State University of Paraná
Apucarana – PR – Brazil

{guinetoferrari, thais.nepomuceno1, chsantana}@gmail.com

carlos.danilo.luz@gmail.com, {gclleal, ammmamaral}@uem.br

renato.balancieri@unespar.edu.br, edson@din.uem.br

Abstract. Aspects of software quality (SQ), such as process and product metrics,
and assessment techniques, can be taught to computing students during their
undergraduate courses, however, there is no consensus on how. In Brazil, com-
puting courses are structured as the Brazilian Computer Society suggests, still,
researchers point out that there are few SQ subjects in these courses. This pa-
per aims to analyze the perception of SQ concepts by advanced undergraduate
students in the northwest of the Paraná state. We applied a survey and received
ninety-nine answers. Our results show that most SQ concepts are taught, but the
students feel they did not learn and are not able to apply them. We discuss and
suggest guidelines to improve the understanding of SQ concepts.

1. Introduction
Software quality management incorporates a set of activities to guide and control the
organization with a focus on processes, products, and services. Such management is
an essential factor for an organization to maintain a competitive position in the mar-
ket, in addition to ensuring business success, customer satisfaction, and product accep-
tance [Laporte et al. 2007, Jenkins 2007, Bourque et al. 2014]. The absence of Software
Quality (SQ) has impacting consequences, such as delays in the delivery of new appli-
cations, high maintenance and support costs for customers, and long learning curves.
[Jones and Bonsignour 2011].

For software users, quality is related to the usability and implementation of re-
quired functionalities. As for software developers, the most important quality issue is
that the software meets the specifications and provides services as previously contracted
[Tian 2005, Kokol 2022]. Therefore, quality is subjectively determined by those who
interact with the system, whether to solve their problems through software or are respon-
sible for designing, implementing, and testing the solutions, making judgments about the
quality of the product [Gillies 2011, Suali et al. 2019]. Therefore, the use of techniques
and tools that ensure and guarantee SQ is essential [Page 2008, Chren et al. 2022].



An important piece of graduates has their first contact with the job market in ar-
eas that require SQ knowledge, such as testing and maintenance. Usually, they are not
deeply involved in undergraduate programs which offer educational content on how to
build high-quality software or how to integrate quality activities during the software devel-
opment process [Hilburn and Towhidnejad 2002, Garousi et al. 2019]. In addition, there
is no consensus on how to educate future software engineers on topics of SQ and software
improvement [Dingsøyr et al. 2000, Kappelman et al. 2016].

As SQ is becoming increasingly important, both because of educational re-
quirements and the industry, it should be at the center of the undergraduate curricu-
lum of courses that teach software development. Thus, students are introduced to
a variety of SQ activities, enabling them to develop technical knowledge and skills
[Hilburn and Towhidnejad 2002, Richardson et al. 2011].

According to [Bettin et al. 2022], there is a low number of specific courses on SQ
in undergraduate computing courses, as well as differences between the topics covered in
the program and what is expected for the graduates’ profile. They claim what is taught
is not enough for students to have a proper view of SQ, which might imply a deficit of
skills in the software development industry. Thus, investigating such claims is an existing
demand in the area.

In this context, this paper is aimed at carrying out an exploratory analysis of the
perception of undergraduate Computing students in relation to the knowledge acquired in
SQ courses.

The analysis was based on nine knowledge axes defined by the Brazilian Comput-
ing Society (SBC) in its educational References for Undergraduate Computing Courses.
To fulfill this objective, a survey was carried out with 99 students from the last two years
of different undergraduate Computing courses from higher education institutions, public
or private, in the state of Paraná, southern Brazil.

Our results provide an understanding of the perception of the undergraduate stu-
dents regarding their knowledge of SQ acquired during the course, and how they per-
ceive themselves regarding their capability in applying what was learned. This way, we
can contribute to the discussions of the curricula on computing courses, highlighting the
knowledge axes that should be improved in order to improve the learning for future prac-
titioners.

This paper is organized as follows: Section 2 provides essential concepts on the
teaching of software quality and the SBC educational references; Section 3 presents the
methodology of our study; Section 4 presents general and research question-based data
analysis; Section 5 discusses the obtained results; and Section 6 presents the conclusion
and directions for future work.

2. Background
To contextualize the research, we will present in this session the fundamental concepts of
teaching software quality and the SBC’s Software Quality Formation Reference.

2.1. Teaching of Software Quality
Specific subjects in the computing courses are intrinsically challenging for the teaching
process. Students complain about excessive theoretical content, with a high-volume de-



mand and short deadlines. On the other side, teachers report issues regarding the short
time to teach a large quantity of content and a lack of integration between other sub-
jects. Added to the subject’s challenges, the teachers also face diversity in the level of
knowledge of students [Lemos et al. 2019].

The teaching of Software Engineering (SE) is present in most of the computing
undergraduate courses in Brazil and is considered of great importance to developing qual-
ified professionals. These professionals can contribute to the SQ, as well as contribute to
solving traditional issues in the software industry [Gibbs 1994, Prikladnicki et al. 2009].

According to [Moser et al. 2021], computing undergraduate courses provide stu-
dents with theoretical and practical knowledge to prepare them for professional exercise.
However, certain processes are often not properly addressed during software teaching,
as is the case with SQ, which is often overlooked by the students who do not see it as
a priority. However, according to [Gupta and Goel 2019], once the students are exposed
to the software industry and its demands, they must acquire this previously neglected
knowledge.

SQ has always been present in the curricula of computing undergraduate courses,
often with its concepts showing upon different subjects or in one specific subject in the
course dedicated to this topic [Chren et al. 2022, Hilburn and Towhidnejad 2002]. Re-
searchers mention that SQ should be approached since the beginning of the students’ grad-
uation to integrate the fundamental concepts as early as possible [Scatalon et al. 2017,
Gomes et al. 2021].

SQ teaching should provide knowledge that allows the student to implement, mea-
sure, assess, and improve the software product throughout its entire life cycle. SQ is a vast
knowledge area, its teaching should follow a structured approach, making the student ex-
perience close to the software industry reality [Suryn 2003].

2.2. SBC’s Software Quality Formation Reference
SBC is a scientific society that brings together Brazilian students, teachers, researchers,
and professionals in the area of Computing and Informatics from all over the country.
One of its functions is to define national scientific and technological politics. Its goal is to
elaborate and provide the reference for the curriculum building of the computing courses
in Brazil, aiming at contributing to the formation of computing professionals with social
responsibilities [Ribeiro et al. 2019, Zorzo et al. 2017].

At the end of 2016, SBC provided the document entitled “Formation Reference for
Computing Undergraduate Courses” (RF-CC-2017), where they presented the references
for the formation of undergraduate courses in the area of computing, such as Computer
Science, Informatics, Computing Engineering, Information Systems, and other technical
degrees. These references are a result of the contribution between the SBC associates from
different universities and are material that is used as a consultation for the preparation
of these courses’ curricula and should be aligned to other national curricula guidelines
[Zorzo et al. 2017].

For the Software Engineering course, the SBC (RF-CC-2017) specifies an ex-
pected knowledge related to SQ, demanding: ”The student should be able to produce
high-quality software that conforms to its requirements and satisfies user needs. The
achievement of SQ involves models and techniques of the software product and process



quality”.

From this specification, the SBC defines nine axes of knowledge for SQ, which
are competencies and skills that are expected of the graduates [Zorzo et al. 2017]. These
are:

• QA = Quality Attributes: to understand what are the software product quality
attributes and their utility;

• PM = Software Product Metrics: To apply software product quality measurements
tools;

• AT = Product Assessment Techniques: to apply product assessment techniques;
• RS = Review Techniques and Static Analysis: To apply techniques and procedures

of validation and verification (static and dynamic);
• MP = Product Quality Models and Standards: To understand the software product

quality models and standards;
• MC = Process Quality Models and Standards: To understand the software process

quality models and standards;
• SC = Quality Standardization and Certification: to understand the quality stan-

dardization and certification processes;
• CM = Process Metrics: to apply process metrics;
• ST = Software Testing: to apply software testing.

3. Methodology
This section presents the methodology adopted for this study.

3.1. Aim and Research Questions
This paper consists of a characterization of the perception of SQ knowledge of undergrad-
uate students in computing courses, such as Computer Science, Informatics, Production
Engineering, Systems Analysis and Development, and Software Engineering. For this, the
following research question was elaborated: “What is the perception of undergraduate
advanced computing students in relation to their acquired Software Quality skills?”.

3.2. Audience
The audience of our study is students enrolled in the last two years of undergraduate
computing courses from universities in the state of Paraná. Our focus on the last two years
of the course is because the first years students may not yet have attended disciplines on
SQ.

3.3. Sampling
The data collection was done through the application of an online survey - following the
guidelines by [Linåker et al. 2015] - developed on Google Forms. Participation in the
survey was optional and anonymous.

The survey was made available for thirty days and sent by email to the undergrad-
uate courses coordinators to be sent to their students. In the end, we collected ninety-nine
answers to the survey.

3.4. Design
We decided to perform exploratory research because our aim is to understand the percep-
tion of the students regarding SQ concepts.



3.5. Instrument and Evaluation
The structure of the survey is divided into two main sections. The first is a characterization
of the participant and its undergraduate course, in which we collect data on the name and
duration of the course, the semester in which the student is enrolled, if the university is
public or private, the city it is located, and if the respondent has any experience in software
development. The universities were not identified because our focus is not to compare
the teaching capacities among the institutions, but rather on their students’ perception of
knowledge.

The second section focuses on the students’ perceptions regarding their knowledge
and skills on SQ concepts, more specifically the competencies for the SQ knowledge
defined by SBC, as we explained previously and discussed by [Bettin et al. 2022].

For each competency, there is a short description of its concepts, followed by three
quantitative questions to be answered by a five-point Likert scale [Likert 1932], which
aims to verify the level of agreement of the individual with a proposition that expresses
something ranging from “totally disagree” to “totally agree” in relation to the SQ. Table
1 presents these questions.

Once we built the survey, it was validated by two professors who specialized in the
SQ subject. We applied a pilot version of the survey on a sample of six invited students to
refine the instrument and to eliminate any doubts that might arise during the application.
The time required for students to answer the survey was an average of seven minutes, as
initially foreseen in the pilot version.

3.6. Data Sharing
All data from our research is available at https://doi.org/10.5281/zenodo.
7429490.

4. Data Analysis
As we discussed before, the participants of our survey answered six questions aiming at
characterizing them, and twenty-seven questions about their skills regarding the nine SQ
competencies as presented in Table 1. This subsection is divided into two parts, one for
the characterization of the participant and one for illustrating the specific answers of each
of the competencies.

4.1. Demographics
Table 2 presents the quantitative and percentage distribution of responses regarding the
first six questions characterizing the participants.

The majority of participants are in Software Engineering (32.32%) and Computer
Science (20.20%) courses. Most participants are from private institutions (60.61%) and
77.78% of respondents are from Maringá. About 23.23% of the total do not have any
experience in software development, while almost half of the participants have about 1 to
3 years of experience.

4.2. Software Quality Competencies
In this section, we present the distribution of the scores given by the participants to each of
the competencies. Figure 1 presents the bar graphs for each competency and their scores
according to the scale we used. Following, we are going to discuss each graph.



Table 1. Questions regarding the knowledge axis competencies
Competency Questions

AXIS 1 - QA

QA1 - My course contemplates or addresses concepts of software qual-
ity attributes.
QA2 - I learned about concepts of software quality attributes.
QA3 - I feel able to apply aspects of software quality attributes.

AXIS 2 - PM

PM1 - My course contemplates or addresses the software product met-
rics.
PM2 - I learned about concepts of software product metrics.
PM3 - I feel able to apply software product metrics.

AXIS 3 - AT

AT1 - My course contemplates or addresses product assessment tech-
niques.
AT2 - I learned about product assessment techniques.
AT3 - I feel able to apply product assessment techniques.

AXIS 4 - RS

RS1 - My course contemplates or addresses review techniques and static
analysis.
RS2 - I learned about aspects of review techniques and static analysis.
RS3 - I feel able to apply review techniques and static analysis.

AXIS 5 - MP

MP1 - My course contemplates or addresses product quality models and
standards.
MP2 - I learned about product quality models and standards.
MP3 - I feel able to apply product quality models and standards.

AXIS 6 - MC

MC1 - My course contemplates or addresses process quality models and
standards.
MC2 - I learned about process quality models and standards.
MC3 - I feel able to apply process quality models and standards.

AXIS 7 - SC

SC1 - My course contemplates or addresses quality standardization and
certification.
SC2 - I learned about aspects of quality standardization and certification.
SC3 - I feel able to apply quality standardization and certification.

AXIS 8 - CM
CM1 - My course contemplates or addresses the process metrics.
CM2 - I learned about process metrics.
CM3 - I feel able to apply process metrics.

AXIS 9 - ST
ST1 - My course contemplates or addresses software testing.
ST2 - I learned about software testing.
ST3 - I feel able to apply software testing.

QA = Quality Attributes, PM = Software Product Metrics, AT = Product Assessment Techniques
RS = Review Techniques and Static Analysis, MP = Product Quality Models and Standards
MC = Process Quality Models and Standards, SC = Quality Standardization and Certification
CM = Process Metrics, ST = Software Testing

QA - Quality Attributes
Approximately 76.7% of the participants are positive that the content is seen dur-

ing the undergraduate course. The majority, about 75.7%, considered having learned the
content, but even so, a significant portion, 34.4% feels neutral about being able to apply
SQ attributes. The results can be seen in graph (a) of Figure 1.

PM - Software Product Metrics



Table 2. Characterization of the participants of the survey
Participant Characteristic Count Percentage
Course
Software Engineering 32 32.32%
Computer Science 20 20.20%
Analysis and System Development 18 18.18%
Informatics 10 10.10%
Industrial Engineering with an Emphasis in Software 8 8.08%
Information Systems 7 7.07%
Computer Engineering 3 3.03%
Major in Computing 1 1.01%
Institution
Public 39 39.39%
Private 60 60.61%
City of the Institution
Maringá 77 77.78%
Apucarana 12 12.12%
Campo Mourão 8 8.08%
Londrina 1 1.01%
Jandaia do Sul 1 1.01%
Software Development Experience
No experience 23 23.23%
Less than 1 year of experience 20 20.20%
Between 1 and 3 years of experience 47 47.47%
Between 3 and 6 years of experience 9 9.09%
More than 6 years of experience 0 0.00%

We can visualize in graph (b) of Figure 1 that the majority of the participants,
about 63.3%, are positive that they have seen the content of this competency, 57.5% agree
they have learned it, however, about 65.6%, are neutral or negative about feeling able to
apply software product metrics.

AT - Product Assessment Techniques
About 54.5% are positive that the content is seen. About 45.4% consider that they

have learned it, but only 22.2% feel able to use product assessment techniques. These
results can be seen in graph (c) of Figure 1.

RS - Review Techniques and Static Analysis
56.5% of the participants are positive about having seen the content. About 34.3%

felt neutral regarding having learned, hence, just 26.2% feel able to apply review tech-
niques and static analysis. These results can be seen in graph (d) of Figure 1.

MP - Product Quality Models and Standards
In graph (e) of Figure 1 about 72.1%, are positive about having seen the content.

About 56.7% are positive about learning it. Even so, the majority of the answers regarding
being able to apply the knowledge remained neutral.

MC - Process Quality Models and Standards



Figure 1. Scores given to the nine software quality competencies

Most participants stated that they had seen the content. Similarly, about 35.4%
agreed, and 24.2% strongly agreed about learning it. However, when it comes to feeling
able to use it, the response that most prevailed was neutral, about 36.4%, as can be seen
in graph (f) of Figure 1.

SC - Quality Standardization and Certification
30.3% totally agreed and 21.2% both agreed and were neutral about having seen

the content. Around 29.3%, remained neutral about having learned it, as shown in graph
(g) of Figure 1. Almost half of the participants, about 45.4%, do not feel able to apply
this knowledge, while about 32.3% remained neutral.

CM - Process Metrics
About 43.5% totally agreed that the content was seen. About 36.4% and 26.3%

agreed and totally agreed, respectively, about having learned it. As seen in graph (h) of
Figure 1, 34.3% agreed that they feel able to apply the knowledge, while 32% partially or
totally disagreed.

ST - Software Testing



In graph (i) of Figure 1 about 78.8% are positive about having seen it. About
41.4% agreed to have learned the content. However, only 12.1% feel totally able to apply
it, while about 20% disagree with the affirmation, and 24% remained neutral.

5. Discussion of Results
According to the data analysis, for each knowledge axis, few students disagreed about
having seen the content during their courses.

The Software Testing axis draws our attention due to its level of agreement being
higher than 50% of the participants regarding having seen its content. This may have
happened due to its content being frequently approached during Software Engineering
subjects.

About the data presented in Table 2 regarding the characterization of the partici-
pants, we can focus on the level of software development experience to further discuss our
findings. We did not specify the type of experience asked, thus we can consider software
development in different contexts, such as professional activities or even development
from study or research.

We can check that about 23.2% do not have any experience with software devel-
opment. While around 76.77% of the participants have some level of experience. Of the
ninety-nine participants, none said having more than six years of experience in software
development.

Aiming at better understanding how this difference in the experience level can
influence the student perception, the survey answers were grouped according to the level
of experience to be analyzed. Thus, we can calculate the average of the scores given by
the students to the twenty-seven questions regarding the nine competencies.

Figure 2 presents three radar charts, one for each question that repeats along the
survey. The axes of the chart represent the nine competencies and its scale follows the
Likert scale used in our survey. The plotted data on the chart are the average score given
by the students grouped by their level of experience, creating four overlapping polygons.

By comparing the three charts in Figure 2 we can see that the level of agreement
decreases across the three questions. This can indicate that even though the students agree
that the content was seen during their course, they disagree regarding having learned it
and feeling able to apply this knowledge. This shows a problem that goes beyond the
curriculum structure of the computing courses, it points out that these contents need to be
understood and absorbed by the students.

In chart (b) we can see that the green line, representing the higher level of experi-
ence, often has higher average scores on competencies like PM, AT, RS, MP, and ST, and,
on the other competencies, has lower scores than the other levels of experience. In the
SC competence, for example, green and blue lines, representing the two highest levels of
experience, is lower than the others, while the red one, which represents no experience,
has the highest scores.

Similarly, in chart (c), the green line showed the highest scores on competencies
like ST, MP, PM, and QA, while the yellow line, which represents students with less than
one year of experience, has the lowest average values.

We can discuss that these high average scores from the more experienced stu-



Figure 2. Average scores of the questions according to experience level

dents to competencies like PM, AT, RS, MP, and ST, could indicate that having experi-
ence with development practices can contribute to learning. While competencies like SC,
where higher experience had lower scores than the rest, can indicate that the practice was
different than what was learned or was not enough for them to feel able to apply their
knowledge, something that has not yet happened to students with little to no experience.

Therefore, competencies like QA, PM, AT, RS, MP, and ST showed better per-
formance among experienced students. These competencies can be enhanced when the
student is practicing software development. While the SC competency showed opposite
results, which can signify that what was taught is different or outdated from what is ap-
plied in the practice.

To visualize even better the difference of scores given to the three questions for
each group of the level of experience, we built Figure 3, which presents four radar charts
for the four categories of experience levels. In this case, the data plotted creates three
polygons for the three asked questions for each of the nine competencies.

Comparing the three charts, we can notice how the lines representing the scores
for each question behave. Figure 3 shows that the lines are more spaced in the first charts
and this distance between them is reduced along the charts. It is possible to notice that the
more experience in software development the student has, the more they can affirm they
have learned what was seen during the course.



Figure 3. Graphs for the averages for each of the respondent’s experience levels

Also, in some competencies, such as MP and TS, experienced students can af-
firm that they feel able to apply the knowledge almost on the same level that they affirm
that they have seen and learned about it during their course. Thus, the experience with
software development can contribute to the student’s perception regarding their level of
understanding and capacity in applying the knowledge of the competencies in SQ.

Another point that we can discuss is regarding the high number of neutral answers
to the survey. Some examples are shown in the previous section, like graph (c) of Fig-
ure 1, where around 40% of the participants remained neutral regarding knowing how
to apply product assessment techniques, or in graph (g) of Figure 1, where both the an-
swers to “learnt” and “able to use” were mostly neutral to the Quality Standardization and
Certification competency.

Aiming at analyzing the answers on the extreme ends of the scale, we built Table
3, presenting the percentage of answers regarding each knowledge axis not considering
the option “neutral”. The answers “agree” and “totally agree” were grouped, as well as
“disagree” and “totally disagree”. Thus, it is possible to summarize the student’s percep-
tions into positive or negative values.

Regarding having their content addressed during the course, the axis with the most
positive scores were QA (93.08%), MC (87.95%), and MP (85.55%). While the ones with
the most negative scores were SC (34.62%), AT (33.33%), and RS (29.11%).

Regarding having learned its content, the QA showed the better positive score
(88.23%), followed by MC (84.29%), and, third, CM and ST tied (78.48%). On the
other hand, the ones with the most negative score was SC (41.43%), RS (40%), and AT
(39.18%).



Table 3. Participants answers for each axis not considering the “neutral” option

Axis Seen Learnt Able to Use
Disagree Agree Disagree Agree Disagree Agree

1 - QA 6.92% 93.08% 11.77% 88.23% 44.61% 55.38%
2 - PM 21.25% 78.75% 29.63% 70.37% 44.61% 47.88%
3 - AT 33.33% 66.67% 39.18% 60.82% 62.71% 37.29%
4 - RS 29.11% 70.89% 40.00% 60.00% 64.86% 35.14%
5 - MP 14.45% 85.55% 21.91% 78.09% 48.52% 51.48%
6 - MC 12.05% 87.95% 15.71% 84.29% 42.86% 57.14%
7 - SC 34.62% 65.38% 41.43% 58.57% 67.16% 32.84%
8 - CM 14.61% 85.39% 21.52% 78.48% 42.10% 57.90%
9 - ST 16.13% 83.87% 21.52% 78.48% 46.67% 53.33%

Lastly, regarding being able to apply the knowledge, the higher positive score was
seen in CM (57.90%), followed by MC (57.14%), and QA (55.38%). While the axis with
the lowest scores were SC (67.16%), RS (64.86%), and AT (62.71%).

The majority agreed that the content was seen during the course. However, ac-
cording to [Richardson et al. 2011], the presence of a topic in a curriculum does not pro-
vide any guidance on how it should be taught. Therefore, we created three guidelines to
help and improve the teaching of SQ, allowing students to understand the concepts and
also develop the social and emotional skills - soft skills - that are desired in the software
industry.

G.1: Integrate the content of the Software Quality competencies.

We noticed a difference between students with little experience in software de-
velopment to those with some years of practice. We believe that aiming at relating what
is taught in the classroom to what is applied during software development practices can
help students who do not yet have experience also acquire adequate knowledge about
these concepts. Also, all the contents of the SQ axis could be addressed together, since
one complements the other.

G.2: Promote learning through practice based on case studies, problems, experiences, and
real or fictional projects.

By developing activities that relate what is taught to what is practiced in the soft-
ware industry, we hope that the student can develop leadership, good communication
skills, and strategic thinking, among other skills desired.

G.3: Review the content of the curriculum of the computing undergraduate courses regard-
ing SQ.

It is necessary to guarantee that what is offered in the curriculum of undergrad-
uate courses is updated, following the orientations of the Ministry of Education and the
guidelines of SBC.



5.1. Validity Evaluation

Some limitations and threats to validity regard the application of the survey. We noticed
a low volume of participation by universities and students. This may have happened due
to the limited time that the questionnaire was available. We understand that the number
of participants can influence the results, however, we had to work with these values due
to a limited time for the research. Hence, we suggest a replication with a larger sample of
students. Moreover, there were a lot of neutral answers, which may indicate uncertainty
in how to respond or fear of giving an opinion. We suggest the use of a scale with an
even value of answers, which can contribute to reducing this neutrality and mitigating the
threat.

6. Conclusion

Our paper presents the results acquired through an exploratory analysis of the perception
of undergraduate students of computing courses in the universities of Paraná regarding
the knowledge of SQ competencies.

Our results allowed us to understand that, even when the students are presented
with the content of the SQ competencies, they often still say that did not learn it and
do not feel able of applying it. This condition could be a reflection of the teaching
method during the undergraduate course. Thus, the present study fills a gap discussed
by [Bettin et al. 2022] and identifies the need to check whether the content defined in the
course curriculum is actually being addressed.

Thinking about this issue, we created some guidelines to improve the teaching of
SQ in universities, aiming to support a better understanding of these concepts so that the
students can develop the skills and capabilities expected in industry practitioners.

With our paper, one is able to analyze how these competencies of SQ, defined by
SBC, are being approached and how learning of them is being perceived by advanced
undergraduate students. We hope to point to viable paths to improve the teaching and
development of the students, and to provide capable professionals for the market.

For future work, we believe that the results could benefit from a larger sample
of students, which could allow a deeper and more insightful analysis of the difference
between the perception of understanding for each experience level. Also, we believe that
this work can be expanded with more detailed questions regarding the students’ perception
of learning, elaborating even further for each subject on what are the topics that they feel
positive about having learned, narrowing in order to identify the most critical lessons for
the competencies.

We also suggest (i) the application of this research to universities of other states
in Brazil; (ii) developing research about the method of teaching SQ beyond the student
perception; and (iii) analyzing the graduated student regarding their skills acquired during
the course.

Acknowledgements

Edson OliveiraJr thanks CNPq/Brazil (Grant #311503/2022-5). Authors thank
CAPES/PROAP/Brazil, support Grant #88881.753469/2022-01.



References

Bettin, G., Herculani, J., Shigenaga, M., Leal, G., Balancieri, R., OliveiraJr, E., Colanzi,
T., and Amaral, A. (2022). Teaching of software quality in public higher-level univer-
sities of paraná-brasil: an exploratory study. In Proceedings of the 30th Workshop on
Computing Education, pages 286–297, Porto Alegre, RS, Brasil. SBC. in Portuguese.

Bourque, P., Fairley, R. E., and Society, I. C. (2014). Guide to the Software Engineer-
ing Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer Society Press,
Washington, DC, USA, 3rd edition.

Chren, S., Macák, M., Rossi, B., and Buhnova, B. (2022). Evaluating code improvements
in software quality course projects. In Proceedings of the International Conference on
Evaluation and Assessment in Software Engineering 2022, EASE ’22, page 160–169,
New York, NY, USA. Association for Computing Machinery.

Dingsøyr, T., Jaccheri, M. L., and Wang, A. I. (2000). Teaching software process im-
provement through a case study. Computer Applications in Engineering Education,
8(3-4):229–234.

Garousi, V., Giray, G., Tuzun, E., Catal, C., and Felderer, M. (2019). Closing the gap be-
tween software engineering education and industrial needs. IEEE software, 37(2):68–
77.

Gibbs, W. W. (1994). Software’s chronic crisis. Scientific american, 271(3):86–95.

Gillies, A. (2011). Software quality: theory and management. Lulu. com.

Gomes, P. H., Garcia, R. E., Eler, D. M., Correia, R. C., and Junior, C. O. (2021). Software
quality as a subsidy for teaching programming. In 2021 IEEE Frontiers in Education
Conference (FIE), pages 1–9.

Gupta, R. and Goel, S. (2019). Infusing software quality concepts in computer science
engineering courses. 2019 Twelfth International Conference on Contemporary Com-
puting (IC3), pages 1–7.

Hilburn, Y. and Towhidnejad, M. (2002). Software quality across the curriculum. In 32nd
Annual Frontiers in Education, volume 3, pages S1G–S1G. IEEE.

Jenkins, M. (2007). Experience in teaching software quality management at the graduate
level. In 2007 Annual Conference & Exposition, pages 12–711.

Jones, C. and Bonsignour, O. (2011). The economics of software quality. Addison-Wesley
Professional.

Kappelman, L., Jones, M. C., Johnson, V., McLean, E. R., and Boonme, K. (2016).
Skills for success at different stages of an it professional’s career. Commun. ACM,
59(8):64–70.

Kokol, P. (2022). Software quality: How much does it matter? Electronics, 11(16).



Laporte, C. Y., April, A., and Bencherif, K. (2007). Teaching software quality assurance
in an undergraduate software engineering program. Software Quality Professional,
9(3):4.

Lemos, W., Cunha, J., and Saraiva, J. (2019). Teaching software engineering in an in-
formation systems course: An analysis of problems and solutions in the perspective of
teachers and students. In Proceedings of the 27th Workshop on Computing Education,
pages 305–318, Porto Alegre, RS, Brasil. SBC. in Portuguese.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology.

Linåker, J., Sulaman, S., Höst, M., and de Mello, R. (2015). Guidelines for conducting
surveys in software engineering. Technical Report 1.1, Lund University, Sweden.

Moser, G., Vallon, R., Bernhart, M., and Grechenig, T. (2021). Teaching software quality
assurance with gamification and continuous feedback techniques. In 2021 IEEE Global
Engineering Education Conference (EDUCON), pages 505–509.

Page, T. (2008). Ensuring software quality in engineering environments. i-Manager’s
Journal on Software Engineering, 2(4):1.

Prikladnicki, R., Albuquerque, A. B., von Wangenheim, C. G., and Cabral, R. (2009).
Teaching software engineering: challenges, teaching strategies and lessons learned. In
Software Engineering Education Forum, pages 1–8. in Portuguese.

Ribeiro, K., Azevedo, J., Maciel, C., and Bim, S. (2019). A gender analysis based on data
from brazilian computer society. In Proceedings of the 13th Women in Information
Technology, pages 159–163, Porto Alegre, RS, Brasil. SBC. in Portuguese.

Richardson, I., Reid, L., Seidman, S. B., Pattinson, B., and Delaney, Y. (2011). Educating
software engineers of the future: Software quality research through problem-based
learning. In 2011 24th IEEE-CS Conference on Software Engineering Education and
Training (CSEE&T), pages 91–100. IEEE.

Scatalon, L. P., Barbosa, E. F., and Garcia, R. E. (2017). Challenges to integrate software
testing into introductory programming courses. In 2017 IEEE Frontiers in Education
Conference (FIE), pages 1–9.

Suali, A., Fauzi, S., Nasir, M., Sobri, W., and Raharjana, I. (2019). Software quality
measurement in software engineering project: A systematic literature review. Journal
of Theoretical and Applied Information Technology, 97(3):918–929.

Suryn, W. (2003). Thoughts on teaching software quality engineering. In Proceedings of
8th Annual INSPIRE Conference.

Tian, J. (2005). Software quality engineering: testing, quality assurance, and quantifiable
improvement. John Wiley & Sons.

Zorzo, A., Nunes, D., Matos, E., Steinmacher, I., Leite, J., Araujo, R., Correia, R., and
Martins, S. (2017). References for Formation of Computing Undergraduate Courses.
Brazilian Computing Society (SBC). in Portuguese.


