
Using Metamodel Composition to Unify User Story and Use
Case Metamodels

Larissa Mangolim Amaral1, Anarosa Alves Franco Brandão1, Fábio Levy Siqueira1

1Escola Politécnica – Universidade de São Paulo (USP)
São Paulo – SP – Brazil

{larissa.mangolim.amaral,anarosa.brandao,levy.siqueira}@usp.br

Abstract. Requirements languages are often defined as metamodels for the stan-
dardization of a system’s requirements specification. The unification of these
metamodels benefits general analysis and interoperability between requirements
models. Even tough some authors already discuss systematic composition ap-
proaches, this application for requirements languages’ metamodels is still little
explored. Therefore, we applied non-domain-specific composition frameworks
to create a unified metamodel for User Story and Use Case diagram by as-
sessing common points in related work. This application enabled reducing the
subjectivity of the requirements languages composition process but still strongly
depended on human curation.

1. Introduction
One of the first activities executed in a software project is speaking to stakeholders in order
to understand their requirements, i.e., needs, and associated constraints and conditions for
the system [IEEE 2017]. The requirements are then documented to establish a contract as
a specification of what has to be fulfilled by the system [IEEE 1990], usually expressed
in requirements languages.

Requirements languages determine a set of constructs and verification protocols
that are used to shape requirements documentation [IEEE 2017]. There is a wide range of
different requirements languages that vary in their aspects and purposes, like expressive-
ness, visualization, and formality. Formal languages are composed of a syntactical and
a semantic definition, the latter being responsible for defining the domain of information
supported by the language and for mapping the meaning of expressions validated by the
former [Harel and Rumpe 2003]. These definitions for requirements languages are often
expressed by taking advantage of metamodeling techniques [Amaral et al. 2022], if not
by their original authors, by later authors.

Every model is fundamentally focused on a specific purpose [Bézivin 2005], which
justifies the existence of multiple requirements languages - or even versions of the same
language - for different perspectives, contexts, or domains. The unification of require-
ments languages metamodels is approached by some authors, each of them indicating
various benefits coming from the unification result and the consequent interoperability
of metamodels. Saidi et al. (2013), who proposed a metamodel unifying the semantics
of i*, CREWS, and PREview from different requirements approaches (goals, scenarios,
and points of view, respectively), focus on the benefit of the translation of information
between models written in different languages. Patricio et al. (2011), who unified i* and
KAOS requirements languages, indicate that the creation of tools that interoperate with



both popular and unpopular notations disseminates the usage of the unpopular one among
industry practitioners. Rauh, Golubski and Queins (2017) emphasize two other benefits:
(1) the identification of inconsistencies and redundancy in system specifications; and (2)
the creation of more complete specifications through the identification of missing infor-
mation in models.

Although there are some studies that propose a unified metamodel for require-
ments languages, the majority of them do not use a generic iterative method for this
composition — one such as those examined by Abouzahra et al. (2020) that could be
systematically used to unify other metamodels. In general, their unification process is
composed by the analysis and abstraction of each term that appears in the languages’ def-
inition and the identification of any correspondence between them [Kaindl and Wagner
2009, Patricio et al. 2011], always focused on the languages being unified or on a spe-
cific domain. Rauh, Golubski and Queins (2017) connected the main concepts from use
case description and UML diagrams through their relations to system services, which is
a service-specific strategy. Saidi et al. (2013) apply an extension of the Lesk algorithm
that calculates the distance between concepts’ synonyms using definitions from the lex-
ical database WordNet, which characterizes one of the common heuristics used for the
matching operation.

Our research question is related to the evidenced gap for a composition method
in the context of requirements languages, and how their matching is usually subjectively
done: Does the application of existing non-domain-specific model composition methods
for the unification of multiple requirements languages metamodels reduce process sub-
jectivity? In addressing this question, we select a method assessed by Abouzahra et al.
(2020) and apply the selected heuristics to two existing requirements languages’ meta-
models: User Story (US) and Use Case diagram. We were able to create an unification of
these metamodels and discuss the process execution and results. In the future, we hope to
develop a unified metamodel that takes into account a variety of requirements languages.

This paper is organized as follows. In Section 2, we define the strategies for each
step of the requirements metamodels’ composition. In Section 3 we apply a combina-
tion of existing composition methods in an example, unifying two existing requirements
languages’ metamodels. In Section 4 we discuss how the method was carried out and
its the results, and the identified limitations of our study. Finally, Section 5 presents the
conclusions and future work directions.

2. Metamodel Composition

Abouzahra et al. (2020) did a systematic review of studies that propose frameworks and
tools for model composition. They vary mainly in their strategies defined by their pur-
poses, but they mostly converge on a structure based on four steps, which are presented
in Figure 1. The first step is the matching operation, that produces a matching model
by searching for equivalences between elements from two input models. The matching
model contains the links between the input models and can be used for automatic process-
ing depending on how formally it is defined [Abouzahra et al. 2020] - for example, Del
Fabro and Valduriez (2007) and Di Ruscio et al. (2012) use weaving models for that. The
second step is a composition operation that uses the matching model together with the
input models to produce the resulting composed model. Boronat et al. (2007), Kolovos



et al. (2006) and Anwar et al. (2013) also have a step for conflict resolution between
elements that considered equivalent but with structural differences that conflict, and there
must be a defined strategy for determining which structure will be retained in the resulting
metamodel - for example, Boronat et al. (2007) choose one input model whose structure
will be prioritized. Another step that is considered is a revision and manual update of in-
consistent links by a domain specialist. Considering the partial or complete automation of
the previous steps, this revision can help reduce the loss of information from the adopted
heuristics. In Figure 1, revision and conflict resolution were considered to be executed
together as the designer would analyse the resulted matching model.

Figure 1. Model composition flow - adapted from Anwar et al. (2013). The dif-
ferent models’ elements are represented by boxes with identification num-
bers, their relationships being the arrows between them. The steps inputs
and outputs are indicated by the blue arrows.

Anwar et al. (2013) and Del Fabro and Valduriez (2007) are the model-related
works best ranked by Abouzahra et al. (2020). Del Fabro and Valduriez (2007) propose
a very complete set of heuristics for calculating matching elements between two input
metamodels and building a weaving model as the matching model. Nevertheless, their
composition operation bypasses the unified metamodel and uses the matching model to
directly generate a transformation for merging two models that each conform to their
respective input metamodel - meaning their process actually aims at a composed model
instead of a composed metamodel like we intend to have.

3. Composing Requirements Metamodels

A challenge for the systematic model composition we intend to apply is that require-
ments metamodels usually contemplate abstract concepts whose semantics are not always
completely clear. In this paper we merge two requirements metamodels: a metamodel
of the unification of UML diagrams (class, use case, activity, and state machine dia-
grams) [Rauh et al. 2017] (M1) and a user story (US) metamodel [Wautelet et al. 2014]
(M2). The choice of which requirements languages to unify considered the most popular
languages among Software Engineering (SWE) researchers [Amaral et al. 2022]. The
metamodels’ elements are shown in Figure 2. The choice of what metamodel to use con-
sidered only that the metamodel should not be domain-specific, since our intention for



future work is to apply this method for the unification of other non-domain-specific re-
quirements languages. M1 was a strong candidate because it addresses many of the most
common requirements languages and is already a work of language unification, therefore
it could bring more insight to the analysis of possible problems during the composition
process. Similarly, M2 is an extended version of an US metamodel. M1 was restricted to
restricted to the metaclasses that compose the Use Case diagram, which contemplates the
metamodel’s static structure partition and the state-related concepts.

3.1. Composition Method Used
To compose the metamodels, we used steps from different metamodel composition meth-
ods. The matching operation was based on Del Fabro and Valduriez (2007), which
consists of: (1) applying a cartesian product between every element from each input meta-
model; (2) calculating elements’ similarity using predefined heuristics; and (3) filtering
links below the determined threshold. For that, we used the AMW tool1 itself, SimMet-
rics API2 and the JAWJAW API3 - which is a wrapper for WS4J (WordNet Similarity
for Java). We did manual revision and conflict resolution altogether, choosing the links
and structures that made more sense in requirements context. This stage contemplates Del
Fabro and Valduriez (2007)’s link rewriting step, when it is possible to transform simple
links of equivalence into non-obvious links like inheritance and nesting that are more di-
rectly related to the application scenario. The authors do not define an explicit strategy
for either of these steps, leading to a more customizable analysis. Anwar et al. (2013)
suggest that conflict resolution and the definition of more complex relationships may be
done manually by a designer in some cases. For the composition operation, we used
Anwar et al. (2013)’s out-target merging strategy, which keeps input models unchanged,
computes elements’ links from the matching model, and translates every element that has
no correspondence links into the resulting new metamodel. Merging is a composition
strategy that considers that all the information from the input models will be present in
the composed metamodel, ideally with no duplication [Abouzahra et al. 2020]. Table 1
summarizes strategies for each step of the execution.

Step Strategy

Matching operation Cartesian product; matching heuristics (Levenshtein distance for name
similarity, cardinality, type and conformance, Lesk (WordNet)); and
threshold filtering [Del Fabro and Valduriez 2007]

Revision Manual filtering and link rewriting [Del Fabro and Valduriez 2007]

Conflict Resolution Case by case analysis [Del Fabro and Valduriez 2007]

Composition Operation Out-target merging strategy and translation [Anwar et al. 2013]

Table 1. Strategies for each step of the composition method.

3.2. Matching Operation
First, both metamodels were represented on Ecore4 so they could be used as input for
the AMW tool. For an initial run of the matching operation, we executed the following

1Available at https://www.inf.ufpr.br/didonet/amw/
2Available at https://sourceforge.net/projects/simmetrics/
3Available at https://code.google.com/archive/p/jawjaw/
4Available at https://wiki.eclipse.org/Ecore Tools



methods with configured weights with the values suggested in the Match Configuration
Menu section of the AMW’s User Guide5: 0.7 for name similarity, 0.2 for cardinality, 0.1
for type and conformance, and 0.4 as threshold. This execution resulted in an empty-link
weaving model, shown in Figure 2. That makes sense since the elements had very little
name, type, and cardinality similarity. We also tried running the separate methods, and
neither one had a higher similarity than the determined threshold.

Figure 2. Weaving model after the automatic run of the model matching methods
from the AMW tool.

We then applied the Lesk method, which is another heuristic considered by Del
Fabro and Valduriez (2007), but not present in the AMW tool version we had access. For
that, we implemented a Java matcher using the JAWJAW API6. Since the authors of M2

detailed the history of elements that were unified to each metaclass, we also included this
history for the Lesk execution. The similarity score results were filtered with a threshold
value of 30, which seemed like a low enough value for us not to lose any meaningful links
but also high enough to filter irrelevant ones. The links shown in Figure 3 were inserted
manually into the weaving model in the AMW tool.

3.3. Revision and Conflict Resolution
We followed the matching operation with a revision of every link it produced. We kept
the equality link for Actor and Role because it had a very high similarity score since
Role had previously been unified with Actor in M2 so they would represent the same
concept.

Function, Service, System and State matched with a lot of elements,
probably due to the wideness of their meanings (even inside the requirements context).
As a result, equivalences to System were all ignored as none of the elements in M2 had
the same level of abstraction as System. Equivalences with State were discarded as
well, since M2 does not contemplate elements with a requirements’ dynamic component.
Function and Role link was rejected, because, even though their general meanings
might be similar, they relate to different objects (function refers to the service, and role
refers to the actor). Function and Task link was considered to make more sense and
was maintained, as both concepts are about a process that is executed by the system. We
considered the comparison between Service and Task, which had the highest simi-
larity scores. Looking at the semantics given by the authors of the metamodels for these

5Available at https://www.inf.ufpr.br/didonet/amw/userguide/index.html
6Available at https://github.com/uneluneravie/matching-metamodels



elements, both concepts are focused on achieving a goal: “a ‘Service’ can provide the ‘Ac-
tor’ a value by supporting to reach a goal of the ‘Actor”’ [Rauh et al. 2017, p. 2], and “a
task specifies a particular way of attaining a goal” [Yu et al. 2011, p. 57]. The main differ-
ence, which led us not to unify these concepts, was that the Service is a more complex
entity that supports the achievement of a goal through functionality definition, whereas
Task is a more direct means to this achievement. To make this relationship explicit, we
changed their equality link to a relationship between these ununified metaclasses.

Figure 3. Weaving model after manual insertion of links with similarity generated
by the Lesk (WordNet) heuristic.

Afterwards, in conflict resolution, we chose to keep M2’s properties for both uni-
fied metaclasses because M1 does not declare attributes for its elements. The only other
conflict happened when unifying Function and Task, since Function already de-
fined a relationship with Service and we had declared a special link between the latter
and Task. We therefore opted for keeping the original relationship and discarding the
new link. We also checked for consistency as there would be defined a relationship be-
tween Function and Actor, since it already existed with Task. The cardinality did
make sense, as the Actor can use many Services and each Service is defined by
Task, so one or more Actors could want many Tasks.

For the merging operation, we added NotFound links to track the elements in
both input models that had no match and would be translated to the composed metamodel.
We then resolved every link manually, resulting in the metamodel presented in Figure 4.

4. Discussion
Regarding the composition execution process, it was easier to identify conflicts while
composing the final metamodel, raising suspicion that the automation of these steps would



Figure 4. Resulting composed metamodel. Metaclasses from M1 are in green,
from M2 are in red, and the ones that were a unification of concepts from
both models are in yellow.

possibly lead to information loss or inconsistency. Another noteworthy aspect is that the
history tracked from M2 assisted in the recovery of concepts’ meanings and links that
could have been lost. It would be interesting that in future iterations on the integration of
new models, the previous matching models were considered as concepts’ history.

Addressing our research question, application of heuristics (especially the Lesk
algorithm) removed subjectivity for the matching operation. The matching model also
facilitates composition automation and tracking. Even tough, the results we obtained in
every step of the process, considering the final metamodel, showed that the requirements
domain contains multiple words with wide meaning that are present in a diversity of
domains, like actor and role, or even worse, service and system. The fact that composition
heuristics do not consider the semantics of these concepts applied to the specific domain
endangers the precision of the results and demands more manual revision. Link types are
also not able to capture the domain complexity and they too need human intervention to
be able to express the proper meaning of relationships other than equality.

5. Conclusion

In this paper, we present an application of general-purpose composition methods for meta-
models in the requirements domain and assess its results. We were able to build a com-
posed metamodel for US and UML (from a requirements engineering viewpoint) with
cautious manual filtering of the automatically-generated matching links.

The most evident threat to our study is that the application is still inherently de-
pendent on the characteristics of the metamodels being composed; thus, the conclusion
validity of our evaluation example is biased on these metamodel selection choices. For
example, M2 lacked any class attributes, making matching and conflict resolution easier.
Also, the input models did not have many concepts in common that were matched - that
was probably due to their being from different viewpoints (goal and service-oriented).
In future work, we intend to systematize these choices to delineate the characteristics of
the metamodels that are a better fit for the composition. Another threat is that WordNet
does not work well with composed words, which we had to some extent. The matching



heuristics could be improved to better consider composed words and domain semantics.
The iterative application of the same methods to aggregate more metamodels, each with
its peculiarities, can bring new challenges to the composition process, which we expect to
do in a future study that aims at the unification of multiple requirements languages.

References
Abouzahra, A., Sabraoui, A., and Afdel, K. (2020). Model composition in Model Driven

Engineering: A systematic literature review. Information and Software Technology,
125:106316.

Amaral, L., Siqueira, F., and Brandão, A. (2022). A survey on requirements notations in
software engineering research. The 37th ACM/SIGAPP Symposium on Applied Com-
puting (SAC ’22).

Anwar, A., Benelallam, A., Nassar, M., and Coulette, B. (2013). A Graphical Specifica-
tion of Model Composition with Triple Graph Grammars. In Model-Based Methodolo-
gies for Pervasive and Embedded Software, volume 7706, pages 1–18. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Bézivin, J. (2005). On the unification power of models. Software and System Modeling,
4:171–188.

Del Fabro, M. D. and Valduriez, P. (2007). Semi-automatic model integration using
matching transformations and weaving models. In Proceedings of the 2007 ACM sym-
posium on Applied computing - SAC ’07, page 963, Seoul, Korea. ACM Press.

Harel, D. and Rumpe, B. (2003). Modeling Languages: Syntax, Semantics and all that
stuff. Technical report.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. pages
1–84. Conference Name: IEEE Std 610.12-1990.

IEEE (2017). ISO/IEC/IEEE International Standard - Systems and software engineering–
Vocabulary. Technical report, IEEE.

Kaindl, H. and Wagner, P. (2009). A Unification of the Essence of Goal-Oriented Require-
ments Engineering. In 2009 Fourth International Conference on Software Engineering
Advances, pages 45–50, Porto, Portugal. IEEE.

Patricio, P., Amaral, V., Araujo, J., and Monteiro, R. (2011). Towards a Unified Goal-
Oriented Language. In 2011 IEEE 35th Annual Computer Software and Applications
Conference, pages 596–601, Munich, Germany. IEEE.

Rauh, A., Golubski, W., and Queins, S. (2017). A Requirements Meta-Model to Inte-
grate Information for the Definition of System Services. In 2017 IEEE Symposium
on Service-Oriented System Engineering (SOSE), pages 96–101, San Francisco, CA,
USA. IEEE.

Wautelet, Y., Heng, S., Kolp, M., and Mirbel, I. (2014). Unifying and Extending User
Story Models. In Advanced Information Systems Engineering, volume 8484, pages
211–225. Springer International Publishing, Cham.

Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J., and Fickas, S. (2011). Social modeling
for requirements engineering.


