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Abstract. Ordinances are documents issued by federal institutions that contain, among others, information re-
garding their staff. These documents are accessible through public repositories that usually do not allow any filter or
advanced search on documents’ contents. This paper extends ACERPI (an approach to collect documents, extract
information and resolve entities from institutional ordinances), which identifies the people mentioned in ordinances
from institutions to help users find the documents of interest. ACERPI-Block focuses on the Entity Resolution step of
the approach, developing blocking strategies that allow scalability to hundreds of thousands of records being resolved.
Experiments show a reduction of 93.3% in the number of comparisons of similarity between records if compared to the
solution without blocking, with no decrease in efficacy.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous; I.7 [Document and Text Processing]: Miscellaneous

Keywords: Entity Resolution, Blocking

1. INTRODUCTION

Brazilian federal institutions publish documents named Ordinances to disseminate changes in their
employees’ positions, such as function substitutions, requests for leave, retirement, and vacation.
Ordinances are official documents issued by organs of the institutions that implement the resolutions
contained therein. Today, due to Law no. 12.527 [Brasil 2011], which formalizes the disclosure
of information that may be of public interest produced by federal institutions, the publication of
the Ordinances by the institutions occurs publicly, allowing anyone to consult them. Access to this
information is often given by making the PDF files of the documents available in individual repositories
of each institution or even of different campuses within the institutions. However, with little or no
filtering for advanced searches on their content, these document repositories do not allow fast (or even
feasible) search for specific employees or types of documents.

Web Scraping techniques have been used to discover and extract files from repositories. This allows
fast overcoming of common scraping problems, such as server-side requests’ restrictions. Named Entity
Recognition (NER) is applied to identify names in the documents’ texts. For this, transfer learning is
used to re-train a neural network to the Ordinances domain. Entity Resolution (ER) techniques are
then used for matching identified names to real-world people, experimenting with different matching
criteria. ACERPI (abordagem para a coleta de documentos, extração de informação e resolução
de entidades em portarias institucionais; a translation for an approach to collect documents,
extract information and resolve entities from institutional ordinances) [Schmitz et al. 2021]
allows the user, then, to search a database using information extracted from the documents, such as
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the employees mentioned, their identification numbers, the publication date of the Ordinances, and
the Ordinances’ identification numbers.

This paper presents ACERPI-Block, an extension of ACERPI [Schmitz et al. 2021] which focuses
on experimenting and evaluating Entity Resolution strategies, such as a different matching function
and blocking techniques, in order to improve the ER step of the original approach. Experiments with
actual data from the Federal University of Rio Grande do Sul demonstrate the solutions’ efficacy, with
a reduction of 93.3% of record comparisons.

Related approaches include Orion [Manica et al. 2017], which identifies entity-pages for data acqui-
sition; [Dozier et al. 2010], where Dozier et al. apply different NER techniques, as well as ER in a set
of legal documents from the United States of America; and ACERPI [Schmitz et al. 2021], the orig-
inal approach from which ACERPI-Block started from. ACERPI-Block provides a flexible approach
for Brazilian ordinances’ collection, information extraction, and entity resolution while leveraging
blocking techniques in the last step and providing structured data for analysis as a result.

This paper is structured as follows. Section 2 reviews related work. Our proposed ACERPI approach
is described in Section 3. Section 4 discusses the experimental results, while Section 5 concludes the
paper.

2. RELATED WORK

Four approaches are related to ACERPI-Block, proposed in this paper. The original ACERPI and
other three gathered through empirical research. The first one is the Orion approach [Manica et al.
2017], which aims to discover and extract real entities and attribute values from entity pages. An
entity page is a web page that publishes data describing an entity of a given type [Blanco et al. 2008].
Unlike the ACERPI-Block approach, where Natural Language Processing (NLP) is used to identify
names in unstructured text, the Orion approach leverages the structure of the discovered entity pages
DOM trees [World Wide Web Consortium ].

In [van Dalen-Oskam et al. 2014], the authors adapted an available NER software to create a Named
Entity tagger for Dutch fiction. They also applied Entity Resolution techniques to link the identified
Named Entities to Wikipedia entries. They generated a Web Application that provides free-text
searching, searching and metadata filtering, and visualization of search results. In ACERPI-Block,
queries are available only via database clients, and the creation of a GUI is planned for future work.

Dozier et al. [Dozier et al. 2010] described NER methods using lookup techniques, context rules,
and statistical models. They also described techniques employed in resolving entities, such as block-
ing, features for matching functions, and supervised and semi-supervised learning for the matching
function. Furthermore, some techniques were used to extract and resolve entities in legal documents
from the United States of America, such as jurisprudence cases, depositions, defenses, and other trial
documents. The ER technique employed, as opposed to the one used in ACERPI-Block, aims at the
association of each entity found to an entry in an authority file. In ACERPI-Block, ER occurs by
grouping entities with similar names and contexts.

The initial approach, ACERPI [Schmitz et al. 2021], proposed a flexible pipeline to discover, obtain,
convert and structure files, extract information, and solve entities from institutional Ordinances.
This was achieved through the composition of more straightforward techniques in data collection,
information extraction, and entity resolution. ACERPI-Block leverages the plug-in capabilities of
ACERPI to explore the entity resolution step deeply and exclusively, leveraging different blocking
techniques and a second matching function.
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3. ACERPI-BLOCK

This section describes ACERPI-Block, an approach that, by using techniques for file discovery, re-
trieval, conversion, structuring, information extraction, and ER, generates a database of records and
entities which allows searching professional information of public institutions staff in a categorized,
filtered, and clustered manner.

Figure 1 illustrates the data flow from its source to storage and post-processing. ACERPI-Block
takes as input a set of documents’ repositories. As output, a database is generated with structured
information of the mentioned employees, details of the Ordinances, and their metadata. The collection
step1 includes discovering and retrieving the files, converting them to text, identifying the Ordinances
published in the given document, and structuring into XML files. The information extraction step uses
Named Entity Recognition [Nadeau and Sekine 2007] and Transfer Learning techniques to identify
references to an employee and the related metadata and store them in a standard format. Finally,
Entity Resolution techniques [Christophides et al. 2020] are used to relate the identified references
to the corresponding real-world personnel and generate the final database. The final database, non-
relational and document-oriented (MongoDB), can be used to obtain information about an employee,
the ordinances that mention them, and the metadata extracted.
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Fig. 1. Data flow overview in ACERPI-Block

One example is the UFRGS repository2 that contains, among other documents, Ordinance 10403
from 11/13/2017, illustrated in Figure 2. This Ordinance indicates a temporary employee replacement
and refers to the employees Renata de Matos Galante and Carla Maria dal Sasso Freitas.

3.1 Collection

This section presents the strategy to discover, retrieve, convert, and parse the documents into an
intermediate, structured format (XML). The initial data, PDF files of the Ordinances, are downloaded
from the repositories of the Institutions. The method for File Discovery and Retrieval is based on
Web Scraping techniques. However, one or more techniques may be used according to the repository
structure and restrictions. Here, we adopted the inference of a navigation pattern [Lage et al. 2004]
that, through a regular expression, generalizes the relevant URLs of the repository for automating the
retrieval at a later stage.

After discovering and retrieving the PDF files and before starting the extraction step, the Struc-
turing sub-step occurs. The structuring goal is to transform the data from its original format (PDF)
to an intermediate format with the content of the individual ordinances. Structuring is achieved in
two phases: conversion from PDF to text files and interpretation of the content of the files to one or
multiple Ordinances.

1Developed in partnership with Serigne K. Mbaye and published in his Bachelor Thesis “Developing and Evaluating an
Ordinances’ Retrieval tool”.
2Available at https://www1.ufrgs.br/sistemas/sde/gerencia-documentos/index.php/publico/consultar/. Last ac-
cess in 06/26/2022.
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ORDINANCE Nº             10403                  of  11/13/2017

SETTLES

VÂNIA CRISTINA SANTOS PEREIRA
Dean

MAURICIO VIEGAS DA SILVA:28624653053
Date: 2018.07.23 08:18:44 -03'00'

To appoint, temporarily, under Law No. 8.112, of December 11, 1990, as amended by Law No. 9.527, of 
December 10, 1997, the occupant of the position of PROFESSOR OF HIGHER EDUCATION, from the staff 
of this University, RENATA DE MATOS GALANTE (Siape: 1488770 ), to replace CARLA MARIA DAL SASSO 
FREITAS (Siape: 0351477 ), Director of the Institute of Informatics, Code CD-3, during her leave from the 
country, in the period from 11/14/2017 to 11/15/2017, with the consequent payment of benefits for 2 days.

THE DEAN OF PEOPLE MANAGEMENT FROM THE FEDERAL UNIVERSITY OF RIO GRANDE DO SUL, 
in the use of her powers granted by Ordinance No. 8117, of October 10, 2016, and according to the Request 
for Leave No. 32907,

Fig. 2. Ordinance number 10403 of 11/13/2017, issued by the Central Administration of the Federal University of Rio
Grande do Sul

First, the conversion of the PDF file to text format is performed. This is achieved by using Apache
PDFBox 3, a PDF file manipulation library. Then, in the second phase, the text files’ interpretation is
performed, extracting the multiple Ordinances that may be contained in each file and their metadata
into the intermediate format.

The intermediate format, in XML, has a root element called “document”, which has as attributes
the unique identifier of the document, the name of the original PDF file, and the file’s location in the
Institution’s repository. A document can have an arbitrary number of children, called “ordinance”. The
Ordinance corresponds to each Ordinance that the original PDF document has, holding its number
and date as attributes. The pure textual contents referring only and exclusively to the Ordinance
identified by the number and date previously extracted are stored within the ordinances elements.
Listing 1 shows an example of a structured XML file. The data extraction is performed through
regular expressions that capture the character ranges that make up the patterns describing the format
of an ordinance, its number, and publication date, respectively.

Listing 1. Intermediate structure parsed from the document displayed in Figure 2
1 <document id="47048" f i l ename=" 47048. pdf " l o c a t i o n=" h t tp s : //www1. u f r g s . br/ s i s t emas / sde /

gerenc ia−documentos/ index . php/ pub l i co /ExibirPDF?documento=47048">
2 <ordinance nr="10403" date="11/13/2017">
3 ORDINANCE No 10403 o f 11/13/2017
4 THE DEAN OF PEOPLE MANAGEMENT FROM THE FEDERAL UNIVERSITY [ . . . ]
5 SETTLES
6 To appoint , temporar i ly , [ . . . ] the occupant o f the po s i t i o n o f PROFESSOR OF

HIGHER EDUCATION, from the s t a f f
7 o f t h i s Univers i ty , RENATA DE MATOS GALANTE ( S i ape : 1488770 ) , to r ep l a c e CARLA

MARIA DAL SASSO
8 FREITAS ( S i ape : 0351477 ) , D i r e c to r o f the I n s t i t u t e o f In f o rmat i c s [ . . . ]
9 VANIA CRISTINA SANTOS PEREIRA

10 Dean
11 </ordinance>
12 </document>

3Available at https://pdfbox.apache.org/. Last access in 06/26/2022.
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3.2 Extraction

This section discusses the techniques used to recognize the names of the employees in the Ordinances
and the structure chosen to store this relationship.

The first sub-step consists of extracting from the content of the Ordinances the names of the
employees mentioned using Named Entity Recognition. For this, the natural language processing
library Spacy [Explosion.ai 2021a], and a pre-trained model adapted for the Ordinances domain are
used. The starting model is pt_core_news_sm4, trained from a news database in Portuguese and
convolutional neural networks. With the pt_core_news_sm model as a base, data annotation of the
Institutions’ Ordinances is performed using the Prodigy tool [Explosion.ai 2021b], which provides a
Web Application that enables annotation of Named Entities using suggestions provided by the base
model. After data annotation, it is necessary to retrain the base model to better interpret the files
from the Ordinances domain. This stage is fundamental for improving the recognition of named
entities in data with patterns previously unknown by the generic model. This is done again through
Prodigy. Given the final model and the ordinance content, the NER output will be the identified
Named Entities.

In addition to the name of the employees, context information is extracted from the Or-
dinances. The SIAPE registration numbers (when present) are extracted via regular expres-
sions. This data corresponds to a unique identification number of the employee, which is
used in the ER stage. In Ordinances, these numbers usually accompany the name of the
employee, mention the term SIAPE and can be extracted from regular expressions such as
[S|s][I|i][A|a][P|p][E|e][ˆ0-9.]{1,3}([0-9]{6,8}). If the employee’s SIAPE registration
number is not precisely identified in the 120 characters following the last character of the employee’s
name, a list is stored for the employee containing all the registration numbers found in the Ordinance
under analysis. This alternative proves useful when names of public servants are mentioned in a list,
followed by another list with the respective SIAPE identifiers.

For the PDF file in Figure 2, the output of the extraction stage includes the names of the employees,
RENATA DE MATOS GALANTE, CARLA MARIA DAL SASSO FREITAS, and VANIA CRISTINA
SANTOS PEREIRA. Their associated SIAPE number, 1488770 for Renata de Matos Galante, 0351477
for Carla Maria Dal Sasso Freitas and both values 1488770 and 0351477 for server Vânia Cristina
Santos Pereira. Besides, the association of these data with ordinance 10403 of 13 November 2017 is
performed.

Listing 2. Record created for Renata de Matos
Galante

1 {
2 "id": 131072,
3 "name": "RENATA DE MATOS GALANTE",
4 "siape": ["1488770"],
5 "document":
6 {"name": "47048"}
7 }

Listing 3. Record created for Carla Maria Dal
Sasso Freitas

1 {
2 "id": 131073,
3 "name": "MARIA DAL SASSO FREITAS",
4 "siape": ["0351477"],
5 "document":
6 {"name": "47048"}
7 }

After NER, Record Storage occurs. In ACERPI, a main document structure named record was
defined, which concentrates the information of a person identified in an ordinance. This database
document has, respectively: (i) a unique identifier of the record; (ii) the name of the individual server
identified in the NER step; (iii) A list of SIAPEs identified in ordinances related to the employee.
This list is populated when it is not possible to identify a specific number for the server, and all the

4Available at https://spacy.io/models/pt\#pt\_core\_news\_sm. Last access in 03/15/2021.

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.



260 · C. Schmitz et al

values identified in the document where the respective name was found are inserted into the list; (iv)
the identifier of the ordinance from which this record was found. Three records are created when
analyzing the document in Listing 1. The record with identifier 131072 indicated in Listing 2 of the
employee Renata de Matos Galante, the record with identifier 131073 indicated in Listing 3 of the
employee Carla Maria Dal Sasso Freitas and a third record in the same basis for the Dean Vânia
Cristina Santos Pereira.

3.3 Entity Resolution

Given the records, entity resolution is performed. This step involves identifying which records refer
to the same entities in the real world (i.e., which documents refer to the same staff member, reflecting
ordinances in which he/she was directly involved). For example, the records from Listings 2 and 4
both refer to the Professor Renata de Matos Galante. At the end of the ER step, it is expected
that the two records are grouped in the cluster that refers to the real-world entity Renata de Matos
Galante, from the Institute of Informatics of the Federal University of Rio Grande do Sul.

ER in the ACERPI-Block approach is performed by grouping the records using Similarity Based
Comparison. The ER algorithm receives as input the set of records identified from the Ordinances
and tries to match each record to any existent group. If no matching occurs, a new group is created
containing the record. This loop occurs until all records are grouped, and the output consists of the
identified clusters.

The match function is the central part of the algorithm since it defines whether the new record is or
is not part of a cluster (i.e., it measures how similar the new record and the records already belonging
to a cluster are). It can be simple, as a direct comparison of the named entities of the records, or
complex, using methods that compare substrings of the named entities and records’ metadata. The
ACERPI-Block approach uses a technique that also analyses the context for entity resolution, which in
the case of ordinances occurs through the SIAPE identification number. When unique and identical,
the SIAPE implies references to the same real-world entity. If the SIAPE numbers are not unique
and identical, the comparison of the named entities is performed by cleaning the records’ names
and comparing them directly. The cleaning procedure consists of characters undercapitalization and
trimming. Thus, the records in Listings 2 and 3 would not be grouped because although both have
only one SIAPE registration number associated, they differ. On the other hand, the records on listings
2 and 4 would be grouped because they have only one SIAPE registration number each, and they are
identical.

The clusters resulting from ER proceed to Entity Storage. An entity is generated for each cluster,
representing a real-world entity. Each entity has a reference to the identifiers of the records that
compose it and a set of names and SIAPE registration numbers found in the records to reduce the
computational cost of ER. For the records of Listings 2 and 4, after the step of solving entities, the
entity of Listing 5 is generated.

Listing 4. Another record created for the em-
ployee Renata de Matos Galante

1 {
2 "id": 4630,
3 "name": "RENATA DE MATOS GALANTE",
4 "siape": ["1488770"],
5 "document":
6 {"name": "50216"}
7 }

Listing 5. Entity generated from entity reso-
lution of the records from Listings 2 and 4

1 {
2 "records": [47048, 50216],
3 "names": ["RENATA DE MATOS GALANTE

"],
4 "siapes": ["1488770"]
5 }
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4. EXPERIMENTAL EVALUATION

This section describes three experiments: (1) establishment of ground truth metrics for the current
implementation, to be used for comparison in the other experiments; (2) evaluation of letter-based
blocking techniques in references’ names to improve entity resolution performance; and (3) evaluation
of combined letter and size-based blocking techniques in references’ names in order to improve entity
resolution performance. It also highlights the main aspects of the evaluation algorithm developed for
the experiments.

4.1 Data Source

DOCS-UFRGS, comprised of public documents from the Federal University of Rio Grande do Sul.
This source consists of extracted documents, mostly Ordinances, from the University’s repository.
The data was collected until March 3, 2020, with a total storage of 7.99Gb and 44865 PDF files. From
these files, 194 thousand records were generated as the output of the Extraction step from experiments
developed in ACERPI [Schmitz et al. 2021], which is the starting point for the following experiments.

During the experiments, two data sets are mentioned. One is called full data set and the other is
called test data set. The test data set consists of 613 records for which the real-world entities they
refer to are known, i.e., the groupings that are to be generated are known. These are references to the
Institute of Informatics’ professors. The test data set is a subset of the full data set. It is important
to note that the real-world entities are not known for all these records, only for the ones from the test
data set. All efficacy metrics for the full data set are based on the hits and misses of the elements in
the test subset groupings.

4.2 Environment

All experiments were developed in Google Cloud Platform machines n2-standard-4 model with 4 CPUs
on Intel Cascade Lake architectures, 16 GB of memory, local SSD, and 10 Gbps internet bandwidth.
The machines were configured with Linux Debian 10 and ran MongoDB Community Server, the
extension for Python cProfile5 for collecting data about function calls, and the Linux time package6

for collecting runtime and CPU utilization data.

4.3 Methodology

The methodology applied to the experiments is the following:

(1) Run the entity resolution algorithm once with the test data set with the cProfile extension disabled.
The purpose of this run is only to collect efficacy metrics on the application of the algorithm to
a small data set.

(2) Run the entity resolution algorithm once on the complete data set with the cProfile extension
enabled to collect function-level runtime data and the number of calls for each executed function.

(3) Run the entity resolution algorithm ten times on the full dataset, this time with the cProfile
extension disabled to prevent the overhead of this extension from influencing the algorithm’s
runtime.

The execution with the cProfile extension enabled happens only once because the purpose of using
this extension is to collect the number of comparisons performed in each experiment and analyze the
points in the code that use most of the algorithm’s execution time. Since the data set used is the

5Available at https://docs.python.org/3/library/profile.html. Last access in 02/12/2022.
6Available at https://man7.org/linux/man-pages/man1/time.1.html. Last access in 02/12/2022.
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same in every run, and the algorithm is deterministic, the program always performs the same number
of comparisons and therefore does not need to be run multiple times with the extension enabled.

The analysis of the execution time and CPU utilization of each version of the algorithm is based
on the metrics collected by the Linux time utility in all ten runs with the complete data set and with
the cProfile extension disabled.

4.4 Metrics

The metrics chosen to evaluate Entity Resolution are based on the pairwise comparison, where each
pair indicates a relationship between entities (to refer to the same entity in the real world). The
metrics used for this experiment were: (i) precision, the percentage of identified pairs that actually
refer to the same entity in the real world; (ii) recall, the percentage of all pairs referring to the same
entity that were correctly identified; and (iii) F1-Score. In addition, the variables were defined as (i)
true positives, the pairs that actually refer to the same entity in the real world; (ii) false positives,
the pairs that were identified as references to the same entity, but are not; and (iii) false negatives,
the pairs that were not identified as references to the same entity, but are.

Algorithm 1 is used for evaluating the results of the entity resolution algorithm. Unlike the eval-
uation algorithm used in ACERPI [Schmitz et al. 2021], Algorithm 1 uses sets, and the binomial
coefficient formula to calculate correct and incorrect pairs efficiently and with no need to generate all
pairs for the gold set and the entity being evaluated.

Algorithm 1: Algorithm for Entity Resolution efficacy evaluation
Input : gold standard, existing records in gold standard, groupings
Output: true positives, false positives, false negatives

1 gold_std ← gold standard ;
2 gold_records ← existing records in gold standard ;
3 entities ← groupings;

4 true_positives ← 0;
5 false_positives ← 0;
6 false_negatives ← 0;

7 for each entity e in entities do
8 assessable_entity ← e ∩ gold_std;

9 for each entity gold_entity em gold_std do
10 true_members ← gold_records ∩ assessable_entity;
11 assessable_entity ← assessable_entity - true_members;

12 true_positives ← true_positives + binomial_coefficient(size(true_members), 2);

13 false_positives ← false_positives + size(true_members) · size(assessable_entity);
14 end
15 end

16 possible_true_positives ← 0;
17 for each entity gold_entity in gold_std do
18 possible_true_positives ← possible_true_positives + binomial_coefficient(size(gold_entity), 2);
19 end
20 false_negatives ← possible_true_positives - true_positives;

21 return true_positives, false_positives, false_negatives;
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4.5 Experiment 1 - Entity Resolution without blocking

To evaluate the effectiveness of the blocking techniques, it was first necessary to evaluate the entity
resolution algorithm without applying any blocking techniques. In this experiment, the ER algorithm’s
performance using two techniques for string comparison is analyzed: exact match and Jaro-Winkler.
The threshold used for Jaro-Winkler was 0.9, which has been previously experimented with and defined
as optimal in ACERPI-Link [Eich 2021], although the data sets used not being identical.

4.5.1 Results. Table I shows the runtime metrics, in seconds, of the two versions of the algorithm.
It demonstrates that the Jaro-Winkler strings comparison algorithm harms execution time, which was
expected. Despite having all other aspects of the algorithm in common, using Jaro-Winkler causes the
program to take, on average, 5.88 times longer to execute. Table II shows the most relevant metrics
collected by the cProfile extension, number of name comparisons and the total time each version spent
performing these comparisons.

Table I. Runtime metrics - Entity Resolution without blocking
Runtime Metric Exact Match Jaro-Winkler
Average 7585.8s 44571.1s
Maximum 7838.0s 46720.0s
Minimum 7386.0s 43402.0s
Standard Deviation 164.5s 1154.1s

Table II. Number of Comparisons - Entity Resolution without blocking
Metric Exact Match Jaro-Winkler
Comparisons 1,259,040,135 1,439,499,577
Time spent in comparison operations 3553s 60720s
Total time 12866s 69348s

Table III shows the CPU usage related metrics of the ER algorithm’s process using both strings
comparison algorithms. The ER program uses only one thread and does not implement any parallelism.
This means that every time it queries the database, it waits for the response before resuming execution,
causing several idle moments to occur.

Table III. CPU Utilization - Entity Resolution without blocking
CPU Usage Metric Exact Match Jaro-Winkler
Average 79.5% 96.5%
Maximum 80.0% 97.0%
Minimum 79.0% 95.0%
Standard Deviation 0.5% 0.7%

Tables IV and V describe the efficacy metrics for each version of the algorithm and for the full and
test datasets. Table IV shows the results when using the Jaro-Winkler algorithm, whose assumption
is a tradeoff between time and efficacy. The efficacy of the result generated by the algorithm using
Jaro-Winkler for name comparison is better than using an exact match. This is because the Jaro-
Winkler algorithm can group elements even when they have small differences in their names, which an
exact match cannot. For the test data set, this increases the number of True Positives and decreases
the number of False Negatives without increasing the number of False Positives.

The results in Table IV show the strengths of using the Jaro-Winkler algorithm for entity resolution.
Nevertheless, these results were generated from a data set that does not contain many references
and therefore had less opportunity for incorrect groupings. Therefore, for better analysis and a more
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Table IV. Efficacy Metrics - Entity Resolution without blocking - Test Data Set
Metric Exact Match Jaro-Winkler
Precision 100.00% 100.00%
Recall 82.38% 94.33%
F1 90.34% 97.08%

realistic scenario for evaluation, the algorithm was also run for the complete data set, and its respective
efficacy was analyzed. Table V describes the efficacy of the results for each algorithm using the full
data set.

Table V. Efficacy Metrics - Entity Resolution without blocking - Full Data Set
Metric Exact Match Jaro-Winkler
Precision 100.00% 99.82%
Recall 82.38% 64.53%
F1 90.34% 78.39%

In Table V, a result that is considered unexpected can be seen. The efficacy of the exact match is
higher than the one from the match using Jaro-Winkler on all metrics. What occurred here is that
the same aspect that made Jaro-Winkler produce excellent results in a small set is responsible for a
drop in efficacy when a larger data set is used. By looking at the algorithm’s results using an exact
comparison of strings in both cases, it can be seen that the exact comparison remained immune to
the increase in the number of references due to the rigidity of its comparison.

4.6 Experiment 2 - Applying letter-based blocking techniques

In this experiment, blocking techniques are applied to the algorithms used in Experiment 1 and analyze
the effect these techniques have on runtime, number of comparisons, CPU utilization, and efficacy of
the result.

Two different blocking techniques are applied:

—Blocking by name initials: when querying the database for entities to compare against a given
element. Only entities whose first name in the name list begins with any of the element’s name
initials are considered, regardless of whether it is upper or lower case.

—Blocking by the first letter of name when querying the database for entities to compare
against a given element. Only entities whose first name in the name list begins with the same
letter, regardless of whether it is upper or lower case, as the element name are considered.

4.6.1 Results. Table VI presents the results of the runtime metric for the entity resolution al-
gorithm using an exact match of strings and Jaro-Winkler. This metric is collected by the time
application. It is based on the runtime of ten executions of the program, with the cProfile extension
disabled and with the full dataset. From these runtime metrics, it is possible to see a reduction in
runtime by using blocking to filter the comparison entities. It can also be seen that although both
versions of the algorithm had a reduction in their average execution time, the one using Jaro-Winkler
for string comparison had a greater reduction in execution time than the version using exact string
matching. The version using Jaro-Winkler had a reduction of 79.2% between the non-blocking ver-
sion and the version with blocking based on the first letter of the name, and of 90.3% between the
non-blocking version and the version with blocking based on the initials of the name. In contrast,
these reductions were 66.8% and 75.2% in the versions using exact match.

This difference does not come from the number of comparisons, as it can be seen in Table VII
that the number of comparisons has been reduced similarly between the two versions. The number
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Table VI. Runtime Metrics - Letter-based blocking - Matching Function Variations
Runtime Metric No Blocking Initials First Letter

Exact Match
Average 7585.8s 2520.0s 1882.0s
Maximum 7838.0s 2563.0s 1976.0s
Minimum 7386.0s 2458.0s 1742.0s
Standard Deviation 164.5s 32.0s 86.0s

Jaro-Winkler
Average 44571.1s 9265.0s 4330.8s
Maximum 46720.0s 10190.0s 4353.0s
Minimum 43402.0s 8935.0s 4300.0s
Standard Deviation 1154.1s 430.8s 20.8s

of comparisons in the version using the Jaro-Winkler algorithm was reduced by 81.2% with the
application of initials-based blocking and 93.3% with the application of first-letter-based blocking,
while the version using exact comparison of strings had a reduction of 82% and 93.3%. The number
of comparisons was reduced almost identically in both versions, so this was not the factor leading to
the difference in the reduction in average execution time.

Table VII. Comparisons’ Metrics - Letter-based Blocking - Full Data Set - Matching Function Variations
Metric No Blocking Initials First Letter

Exact Match
Comparisons 1,259,040,135 226,749,153 84,487,924
Comparisons’ Runtime 3553s 665s 248s
Total Runtime 12866s 3450s 2425s

Jaro-Winkler
Comparisons 1,439,499,577 261,655,437 96,432,691
Comparisons’ Runtime 60720s 11553s 4077s
Total Runtime 69348s 14474s 6113s

Table VII also pinpoint metrics that help understand the cause of the disparity in the average time
reductions for each version, such as execution time spent on comparisons and total execution time.
For example, without blocking, the Jaro-Winkler version of the entity resolution algorithm spends
about 87.5% of its runtime performing comparisons between references and entities. In contrast,
the version that uses an exact match of strings spends only 27.6% of its runtime on making these
comparisons. This means that, assuming all other program instructions remain the same, halving
the number of comparisons for the Jaro-Winkler version would reduce the total execution time by
43.75%, while the same reduction in the number of comparisons would reduce the total execution
time for the version that uses exact match by only 13.8%.

This difference is a consequence of the high cost of the string comparison operation using the Jaro-
Winkler algorithm. The execution time of the database queries is almost constant because nearly
identical queries are being made for both algorithms. This means that the increase in comparison
time caused by using the Jaro-Winkler algorithm causes a change in the distribution of the work
generated by this program between the program itself and the database.

Using the data in Table VIII it is possible to see another consequence of the change in workload
distribution. The program’s CPU utilization represents the percentage of its execution time spent run-
ning the program and not waiting for responses from other processes. The higher the CPU utilization,
the higher the percentage of time spent running the program. It can be seen in Table VIII that the
version of the program that uses Jaro-Winkler spends a much higher percentage of its total execution
time executing the algorithm’s operations than the version that uses exact string comparison.
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Table VIII. CPU Usage - Letter-based Blocking - Full Data Set - Matching Function Variations
CPU Usage No Blocking Initials First Letter

Exact Match
Average 79.5% 54.2% 37.9%
Maximum 80.0% 55.0% 39.0%
Minimum 79.0% 54.0% 37.0%
Standard Deviation 0.5% 0.4% 0.9%

Jaro-Winkler
Average 96.5% 90.1% 75.0%
Maximum 97.0% 87.0% 75.0%
Minimum 95.0% 54.0% 75.0%
Standard Deviation 0.7% 1.4% 0.0%

It is also necessary to take into account the efficacy metrics, described in Table IX. Increasing the
efficiency of the entity resolution algorithm would be of little value if it required reducing its efficacy to
do so. The first two scenarios demonstrate a positive environment for the applied blocking techniques.
For both versions of the code, there was no change in efficacy when applied to the test data set. This
could lead to the conclusion that these techniques can be considered filtering techniques since there is
no drop in efficacy at all, which would indicate that all the comparisons that were not done would not
generate a match anyway. Nevertheless, it is important to remember that the test data set has few
instances, and it is possible to have missed instances of clustering by applying any of the techniques
explored on a larger data set. For the version of the program that uses exact string matching, there
was no change in the efficacy of the result. A more in-depth and detailed analysis of the effects of the
blocking techniques described in this paper would require a more comprehensive test dataset.

Table IX. Efficacy Metrics - Letter-based Blocking - Matching Function and Data Set Variations
Metric No Blocking Initials First Letter

Exact Match - Test Data Set
Precision 100.00% 100.00% 100.00%
Recall 82.38% 82.38% 82.38%
F1 90.34% 90.34% 90.34%

Jaro-Winkler - Test Data Set
Precision 100.00% 100.00% 100.00%
Recall 94.33% 94.33% 94.33%
F1 97.08% 97.08% 97.08%

Exact Match - Full Data Set
Precision 100.00% 100.00% 100.00%
Recall 82.38% 82.38% 82.38%
F1 90.34% 90.34% 90.34%

Jaro-Winkler - Full Data Set
Precision 99.82% 100.00% 99.87%
Recall 64.53% 66.84% 66.81%
F1 78.39% 80.13% 80.06%

The last scenario from Table IX holds the most exciting results on the effect of applying blocking
techniques. In general, in an entity resolution algorithm, it is expected that the addition of blocking
techniques will harm the efficacy of the result. In the case of the algorithm presented here, the opposite
is observed. The implementation of the blocking techniques has a positive effect on all the efficacy
metrics. This is due to the comparison using Jaro-Winkler, which uses very permissive parameters to
group the references. This means that this version of the code is very susceptible to being misled by
noise. Moreover, when blocking is applied, a noise filter is also created that helps the algorithm avoid
false clustering, improving the efficacy of the result. It is also important to remember that defining the
minimum distance between two names to be clustered was done before having an evaluation algorithm
capable of evaluating the result of applying the algorithms to the complete data set.
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4.7 Experiment 3 - Applying letter-based and length-based blocking techniques

In this experiment, the blocking techniques based on the name size of the reference being analyzed
are explored, combined with the blocking techniques explored in Section 4.6. For this experiment, the
following blocking techniques were used:

—Unbounded represents the results when no blocking by reference name size is applied.
—33% to 300% represents the results of applying blocking in which only entities whose first name

in the name list has size greater than 33% and less than 300% of the reference name size.
—50% to 200% represents the results of applying a blocking where only the entities whose first name

in the list of names has size greater than 50% and less than 200% of the size of the reference
name.

—66% to 150% represents the results of applying blocking where only the entities whose first name
in the list of names has size more than 66% and less than 150% of the size of the reference
name.

4.8 Results

One can see a positive impact by analyzing the program execution times before and after the appli-
cation of blocking by the size of the reference name in Table X. One can also see in Table XI that
the behavior is consistent with what is expected. The more restrictive the blocking condition is, the
greater the reduction in average time. The same effect can also be seen in Section 4.6.1, where the
algorithm has a greater reduction in its runtime when it uses the Jaro-Winkler algorithm to perform
the name comparison.

Table X. Runtime Metrics - Full Data Set - Matching Function and Blocking Variations
Runtime Metric Unbounded 33% to 300% 50% to 200% 66% to 150%

Exact Match - First Letter
Average 1882.3s 1749.8s 1619.5s 1562.3s
Maximum 1976.4s 1764.0s 1629.2s 1571.7s
Minimum 1742.0s 1740.3s 1609.5s 1555.0s
Standard Deviation 86.0s 7.0s 6.3s 4.7s

Exact Match - Initials
Average 2519.6s 2431.0s 2188.5s 1916.7s
Maximum 2562.9s 2565.3s 2202.3s 1925.6s
Minimum 2458.4s 2325.0s 2178.0s 1910.2s
Standard Deviation 32.1s 101.4s 7.7s 5.9s

Jaro-Winker - First Letter
Average 4330.8s 3808.5s 3473.4s 2705.8s
Maximum 4353.0s 3859.0s 3563.1s 2753.5s
Minimum 4300.0s 3752.0s 3416.0s 2693.5s
Standard Deviation 20.8s 31.6s 50.6s 17.9s

Jaro-Winkler - Initials
Average 9264.6s 8929.4s 7948.3s 6333.6s
Maximum 10190.0s 9148.0s 8045.0s 6523.0s
Minimum 8935.0s 8732.0s 7797.0s 6263.0s
Standard Deviation 430.9s 149.6s 78.7s 74.5s

Table XIII, based on the results shown in Table XII, supports the finding that the biggest factor
for the difference in the impact of applying blocking by reference name size on total execution time
is the percentage of execution time that is spent performing comparisons. This happens because the
comparison reduction is relatively similar across all algorithm versions.

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.



268 · C. Schmitz et al

Table XI. Percentage reduction in average runtime
Version 33% to 300% 50% to 200% 66% to 150%
Exact Match - First Letter 7.04% 13.96% 17.00%
Exact Match - Initials 3.52% 13.14% 23.92%
Jaro-Winkler - First-Letter 12.06% 19.80% 37.52%
Jaro-Winkler - Initials 3.62% 14.21% 31.63%

Table XII. Number of Comparisons - Full Data Set - Matching Function and Blocking Variations
Metric Unbounded 33% to 300% 50% to 200% 66% to 150%

Exact Match - First-letter
Comparisons 84,487,924 78,058,713 64,007,610 43,958,753
Comparison’s Runtime 248.0s 227.5s 185.1s 127.4s
Total Time 2424.8s 2153.7s 1953.6s 1823.4s

Exact Match - Initials
Comparisons 226,749,153 210,091,823 179,150,783 130,962,611
Comparisons’ Runtime 664.6s 615.4s 517.8s 377.6s
Total Time 3449.7s 3445.4s 2987.5s 2524.2s

Jaro-Winkler - First-letter
Comparisons 96,432,691 90,408,057 72,704,794 48,783,963
Comparisons’ Runtime 4077.3s 3785.1s 3174.7s 2187.8s
Total Time 6112.8s 5534.1s 4930.1s 3655.2s

Jaro-Winkler - Initials
Comparisons 261,655,437 245,840,640 203,783,357 146,326,897
Comparisons’ Runtime 11553.2s 10751.7s 9313.9s 7007.6s
Total Time 14474.1s 13229.4s 11992.9s 9171.9s

Table XIII. Percentage reduction in number of comparisons
Version 33% to 300% 50% to 200% 66% to 150%
Exact Match - First-letter 7.61% 24.24% 47.97%
Exact Match - Initials 7.35% 20.99% 42.24%
Jaro-Winkler - First-letter 6.25% 24.61% 49.41%
Jaro-Winkler - Initials 6.04% 22.12% 44.08%

Table XIV shows that as the rules of blocking by reference name size get more restrictive, the
database becomes a bottleneck for the program. It can be seen that from applying blocking by
reference name size with bounds of 50% and 200% both versions of the algorithm that use exact
comparison spend more time waiting for a response from the database than running the program.
These versions have excellent potential for improving efficiency through parallel and asynchronous
computing, as they are well below optimal CPU utilization. From Table XV it can be seen that there
is a cost to applying blocking by the size of the reference name. The drop in efficacy is likely caused
by discarding comparisons that would generate clusters. This result is worse in terms of efficacy than
blocking based on the first letter of the entity’s first name.

From Table XVI it can be observed that, as seen in Section 4.6.1, applying more restrictive blocking
causes an increase in the F1 measure for the algorithms using Jaro-Winkler. This is due to the fact
that the calibration of the distance thresholds used in the Jaro-Winkler algorithm that generates a
cluster is too lax, and the blocking techniques act as noise reduction, which prevents many of the
erroneous clusters that the algorithm would generate. The result for the algorithm that uses an exact
string match is the same as seen for the test data set. This is because the algorithm using exact string
comparison is much more restrictive and, therefore, much more resistant to noise.

Two failure scenarios were observed during the experiment. The first one is where similar names
exist for different entities, and ACERPI-Block cannot differ. This happens, for example, for Felipe
Caron and Felipe Gaskin Cardon. The mismatch happens due to the permissive parameter for the
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Table XIV. CPU Usage - Full Data Set - Matching Function and Blocking Variations
CPU Usage Unbounded 33% to 300% 50% to 200% 66% to 150%

Exact Match - First-letter
Average 37.9% 35.0% 33.0% 28.0%
Maximum 39.0% 35.0% 33.0% 28.0%
Minimum 37.0% 35.0% 33.0% 28.0%
Standard Deviation 0.9% 0.0% 0.0% 0%

Exact Match - Initials
Average 54.2% 51.4% 49.1% 44.0%
Maximum 55.0% 52.0% 50.0% 44.0%
Minimum 54.0% 50.0% 49.0% 44.0%
Standard Deviation 0.4% 0.7% 0.3% 0.0%

Jaro-Winkler - First-letter
Average 75.0% 74.3% 69.9% 65.1%
Maximum 75.0% 75.0% 70.0% 66.0%
Minimum 75.0% 74.0% 69.0% 65.0%
Standard Deviation 0.0% 0.5% 0.3% 0.3%

Jaro-Winkler - Initials
Average 90.0% 87.6% 85.5% 82.1%
Maximum 91.0% 88.0% 86.0% 83.0%
Minimum 87.0% 87.0% 85.0% 82.0%
Standard Deviation 1.4% 0.5% 0.5% 0.3%

Table XV. Efficacy Metrics - Test Data Set - Matching Function and Blocking Variations
Metric Unbounded 33% to 300% 50% to 200% 66% to 150%

Exact Match - First-letter
Precision 100.00% 100.00% 100.00% 100.00%
Recall 82.38% 82.37% 80.89% 80.89%
F1 90.34% 90.33% 89.44% 89.44%

Exact Match - Initials
Precision 100.00% 100.00% 100.00% 100.00%
Recall 82.38% 82.37% 80.89% 80.89%
F1 90.34% 90.33% 89.44% 89.44%

Jaro-Winkler - First-letter
Precision 100.00% 100.00% 100.00% 100.00%
Recall 94.33% 94.32% 92.31% 87.28%
F1 97.08% 97.08% 96.00% 93.21%

Jaro-Winkler - Initials
Precision 100.00% 100.00% 100.00% 100.00%
Recall 94.33% 94.32% 92.31% 87.28%
F1 97.08% 97.08% 96.00% 93.21%

Jaro-Winkler algorithm. It could be solved by either making it more restrictive or using more data,
such as the entities’ department, in the ER step. The second failure case is related to mistakenly
identified entity names during the NER step. For example, it is hard to appropriately match entities
such as NAIRA MARIA BALZARETTI RENATA JENISCH BARBOSA TANIRA, as it refers to at
least two different employees, Naira Maria Balzaretti and Renata Jenisch Barbosa.

5. CONCLUSION

In this paper, an extension for ACERPI [Schmitz et al. 2021], an approach for processing Ordi-
nances from federal institutions, was presented, which leverages the initial work’s flexibility to explore
improvements in the entity resolution step. The effectiveness of our approach was proven through
experiments on a real data source with over 40 thousand files and thousands of employees men-
tioned. Results demonstrated the efficacy of the approach, with an improvement of more than 93%
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Table XVI. Efficacy Metrics - Full Data Set - Matching Function and Blocking Variations
Metric Unbounded 33% to 300% 50% to 200% 66% to 150%

Exact Match - First-letter
Precision 100.00% 100.00% 100.00% 100.00%
Recall 82.38% 82.37% 80.89% 80.89%
F1 90.34% 90.33% 89.44% 89.44%

Exact Match - Initials
Precision 100.00% 100.00% 100.00% 100.00%
Recall 82.38% 82.37% 80.89% 80.89%
F1 90.34% 90.33% 89.44% 89.44%

Jaro-Winkler - First-letter
Precision 99.87% 99.87% 100.00% 100.00%
Recall 66.81% 65.66% 68.26% 76.35%
F1 80.06% 79.23% 81.14% 86.59%

Jaro-Winkler - Initials
Precision 100.00% 100.00% 100.00% 100.00%
Recall 66.84% 65.69% 68.26% 76.35%
F1 80.13% 79.29% 81.14% 86.59%

in comparison numbers in the entity resolution process. The main contribution of this paper is the
experimentation and evaluation of two different blocking techniques, based on the letters included in
the names of the records and their sizes, as well as the implementation of the Jaro-Winkler similarity
measure as a matching function.

For future work, we intend (i) the exploration of parallel and distributed programming to enable
faster processing of the ER step in ACERPI-Block; (ii) a graphic interface for advanced search regard-
ing staff and Ordinances; (iii) the classification of the content of the Ordinances into known categories;
(iv) and the experimentation of various thresholds for the Jaro-Winkler matching function.
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