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Abstract. Visual analytics solutions have been growing in popularity in recent years, not only for showing final
results but also for assisting in interactive analysis and decision-making. Analysis of a large amount of data requires
flexible exploration and visualizations. However, queries that span geographical regions over time slices are expensive to
compute, which turns it challenging to accomplish interactive speeds for huge data sets. Such systems require efficient
data availability, so that response time does not interfere with the user’s ability to observe and analyze. Simultaneously,
researches in the database domain have proposed solutions that can be used to support visualization systems. This
article presents a comparative study of data management approaches to support interactive visualizations. The chosen
data management solutions are (i) Apache Drill (a Polystore system), (ii) Apache Spark (a big data framework), (iii)
Elasticsearch (a search engine), (iv) MonetDB (a column-oriented DBMS), and (v) PostgreSQL (a relational DBMS). To
evaluate the performance of each solution, we selected a list of spatiotemporal queries among multiple queries submitted
by users in a visual analytics system for rainfall data analysis named TEMPO. The results of this study show that Apache
Spark and MonetDB present the best performance for the selected queries.

Categories and Subject Descriptors: H.2.5 [Database Management]: Heterogeneous Databases; H.2.0 [Database
Management]: General

Keywords: Interactive Vis, Database Evaluation

1. INTRODUCTION

With the emergency and popularity of the Data Science domain over the last years, the use of vi-
sualization (henceforth named only as Vis) techniques has gained a lot of attention [Schmidt 2020].
Although data science involves multiple disciplines such as Data Management [Ponchateau 2018],
Optimization [Ribeiro 2012], Machine Learning [Bilokon 2022; Ghojogh 2021], and domain-specific
areas [Ocaña et al. 2015; de Oliveira et al. 2012; Blanco et al. 2020; de Oliveira et al. 2013], the
Vis area plays a key role as it supports understanding and analyzing input data, query results, and
machine learning models. In many cases, this process of visual exploration and analysis requires the
use of interactive Vis [Lins et al. 2013; Munzner 2014a], i.e., a type of Vis that is capable of reacting
“immediately” to a given action performed by the user in the system (e.g., a temporal filter or the
selection of an area in space). More precisely, to implement interactive Vis approaches, data must be
accessed, filtered, and aggregated in an efficient way to produce a new visual representation with as
little latency as possible, ideally below 0.5 seconds [Liu and Heer 2014a].

In this context, one of the challenges of building interactive Vis is that filters and aggregations
commonly involve developing programs or queries over space and time. The spatial data involved in
these operations consist of collections of points, lines, regions, rectangles, etc. [Samet 1990b; 1990a],
and can be used to represent more complex structures such as neighborhoods and cities. Thus, in
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order to perform such queries in an efficient way, many Vis systems use specialized approaches such
as Nano Cubes [Lins et al. 2013], and DBMS extensions such as PostGIS [Strobl 2017] to represent
and query spatiotemporal data. These approaches have already shown their effectiveness to reduce
latency in queries, but they present some disadvantages. In the case of Nano Cubes, data in their finest
grain may be unavailable and there may be an exponential storage cost in relation to the number of
attributes. On the other hand, many users detect performance issues in PostGIS when working with
geospatial data at a large scale [Sevim et al. 2021]. PostGIS is not designed to support interactive
Vis mechanisms that consume volumous and detailed geospatial data, and the queries take too long
to return results, which is not desired. Along with such approaches, approximate query processing
techniques can also be applied to reduce the time-to-query [Zimbrao and de Souza 1998].

Although the aforementioned data management solutions (i.e., PostGIS and Nano Cubes) have
been successfully used in many Vis projects, the Database community has been developing a series of
domain/problem agnostic solutions for data management in recent years that can be applied in the
Vis context, especially in interactive Vis. Such solutions range from NoSQL DBMSs (e.g., MonetDB
[Boncz et al. 2006], MongoDB [Makris et al. 2021]) to Polystore systems [Kranas et al. 2021] and
large-scale data analysis frameworks such as Apache Spark (with Spark SQL) [Zaharia et al. 2016],
in addition to well-known RDBMSs like PostgreSQL. Although the aforementioned solutions are not
designed to support interactive Vis systems, they have been shown to be increasingly efficient and can
be used in many contexts, replacing domain-specific solutions such as Nano Cubes. However, it is far
from trivial to identify the suitable solution for a specific interactive Vis application since the data
management approaches present different data models, in-memory processing mechanisms, etc.

In this article, we present a comparative study of several data management approaches to support
interactive Vis queries. The idea is to analyze in which scenarios a specific solution is more recom-
mended for a Vis system. In addition, we focus on off-the-shelf data management approaches, i.e.,
domain-specific data management approaches are not evaluated. As benchmark, we chose a series
of queries to support interactive Vis submitted by users to a rainfall analysis tool called TEMPO (sis-
Tema dE Monitoramento PluviométricO in Portuguese, or Rainfall Monitoring System in English)
[Nascimento et al. 2021], during the interactive Vis sessions. TEMPO allows for the user to submit
spatio-temporal queries to analyze the behavior of rainfall in the city of Niterói. The system can
access rainfall data measured at multiple rainfall stations over 13 years (more details in Section 4.1).
It is worth mentioning that although the results presented in this article are based on data and
queries provided by TEMPO, the evaluated data management solutions were not designed for this tool
specifically.

This article is an extension of a conference paper published in the Proceedings of the 2021 Brazilian
Symposium on Databases (SBBD) [Nascimento et al. 2021]. In this extended version, we enriched
the comparative study with more data management approaches (e.g., ElasticSearch [Kononenko et al.
2014]) and added eight more queries to the benchmark. We have also improved the background and
the related work. The remainder of this article is structured in five sections besides this introduction.
Section 2 presents the interactive Vis and Spatio-Temporal query patterns considered in this article.
Section 3 discusses related work. Section 3 discusses the case study. Section 5 explains the technologies
used in the comparative study. Section 6 presents the comparative study and discusses the results.
Finally, Section 7 concludes this article and points out future work.

2. SPATIO-TEMPORAL QUERY PATTERNS FOR INTERACTIVE VIS

Visual data exploration and analysis systems have been successfully used to study ill-posed problems
(i.e., problems for which one cannot find solutions using purely computational techniques) or to
investigate issues that require judgment and/or expertise of a domain expert [Munzner 2014b]. There
are Vis systems successfully used in several areas such as healthcare [Caban and Gotz 2015; Verma
2022], safety [Hochstetler et al. 2016], mobility [Wang et al. 2021], education [Ciesielska et al. 2021],
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and urban management [Zheng et al. 2016]. One of the fundamental requirements of these systems
is that they are able to achieve interactive response times. Liu and Heer [2014b] state that latencies
greater than 0.5 seconds (500ms) already interfere with the ability of the user to observe, generalize and
construct hypotheses during the visual exploration of data. Therefore, one of the common requirements
for all Interactive Vis systems is to achieve a time-to-query (the time elapsed from the time the user
submits the query to the time he receives the response) of less than 0.5 seconds whenever possible. The
big challenge is that such queries in Vis systems commonly involve multiple joins (including spatial
joins), aggregations, and searches in space and time, which makes queries complex.

Doraiswamy and Freire [2020] describe a set of common spatiotemporal analytical queries that can
be used to define a series of patterns. Their analysis is built on top of the classification proposed by
Eldawy and Mokbel [2017]. In this article, the classification is inspired in the work of Doraiswamy
and Freire [2020], and the query patterns are categorized into four classes: (C1) Selection, (C2) Join,
(C3) Aggregate, and (C4) Nearest Neighbor. Following we detail each pattern. It is worth noticing
that Doraiswamy and Freire [2020] consider only points and polygonal datasets, which is the same
scenario found in the case study presented in Section 6. Selection class queries are those in which
points and polygons are selected according to a specific selection predicate. This type of query can
also return a time series based on a spatial selection (e.g., return the rainfall time series in a period
of time of selected rainfall stations) and is presented in Fig. 1(b). Let us consider Dp a set of
data points (in the context of this article, a set of rainfall stations in a city). Let us also consider
{(x1, y1), (x2, y2), ..., (xn, yn)} the coordinates of each data point (crosses in Fig. 1(a)). A Selection
query could be expressed as the following SQL-like syntax: SELECT * FROM DP WHERE Ai θ value;
where Ai is an attribute of each data point, θ ∈ {=, <,≤, >,≥, ̸=}, value ∈ Di, and Di is the domain
Ai. Join queries are those in which joins are needed, whether between polygons or between polygons
and points, e.g., to find out which rainfall stations (points) are at a given area on the map (polygon).
This type of query is presented in Fig. 1 (c). Let us consider Dp a set of data points and DY as a
polygon dataset. A Join query could be expressed as the following SQL-like syntax: SELECT * FROM
DP ,DY WHERE DP .Location INSIDE DY .Geometry;

Aggregate queries (Fig. 1(d)) are the ones that commonly require a “group by” over a Selection or
a Join, e.g., to discover the average rainfall over the last two months of a given area of the map. An
Aggregate over a Selection can be represented as the following SQL-like syntax: SELECT aggregf FROM
DP WHERE Ai θ value; where aggregf ∈ {COUNT,MIN,MAX,AVG,SUM}, Ai is an atribute of each data
point, θ ∈ {=, <,≤, >,≥, ̸=}, value ∈ Di, and Di is the domain Ai. An Aggregate over a Join can be
represented as the following SQL-like syntax: SELECT aggregf FROM DP ,DY WHERE DP .Location
INSIDE DY .Geometry; where aggregf ∈ {COUNT,MIN,MAX,AVG,SUM}, Dp a set of data points and
DY as a polygon dataset. Finally, Nearest Neighbor queries returns a set of the k points in space
closer to another specified point according to some criterion, e.g., given a specific coordinate, find the
k closest rainfall stations. An Nearest Neighbor query can be represented as the following SQL-like
syntax: SELECT * FROM DP WHERE DP .Location ∈ KNN(X,K); where X is the query point and K
defines the number of neighbors that are returned.

(C1) (C2) (C3) (C4)

Fig. 1: (C1) Selection Query (C2) Join Query (C3) Aggregate Query (C4) K Nearest Neighbor Query

Journal of Information and Data Management, Vol. 13, No. 3, September 2022.



Beyond Click-and-View: a Comparative Study of Data Management Approaches for Interactive Visualization · 381

3. RELATED WORK

Comparing the performance of DBMSs and data management solutions with specific goals is a well-
known task in the database community. In fact, there are many benchmarks that can be used to
evaluate existing and new DBMSs, e.g., TPC [Poess and Nambiar 2019] (which is specialized in TPC-
C for OLTP applications, TPC-H [Poess 2019b] for OLAP applications, TPCx-HS [Magdon-Ismail
2019] for Big Data applications, TPC-DS [Poess 2019a] for decision support applications, TPC-E for
OLTP applications, TPC-DI for Data Integration, TPCx-V for virtualized databases) SPEC [Bays and
Lange 2012], etc. However, benchmarks such as SPEC and TPC are not designed for evaluating data
management solutions for interactive Vis as they do not consider database queries generated through
user interactions. Recently, some efforts are being made to generate benchmarks for interactive Vis
[Battle et al. 2020]. Although the benchmark proposed by Battle et al. [2020] represents a step
forward, they focus on comparing relational databases. The work of Makris et al. [2021] also compares
two different DBMSs for spatiotemporal applications, but they considered only two types of DBMSs
(relational and document-oriented) and does not consider queries generated through user interactions.
Eichmann et al. [2020] propose a benchmark called IDEBench to evaluate interactive Vis systems. The
authors propose a series of synthetic queries to be executed on the column-oriented DBMS MonetDB.

Other approaches focus on providing structures for performing queries for interactive Vis in an
efficient way. Many of these structures are specialized for supporting this type of Vis, as Nano
Cubes [Lins et al. 2013]. Nano Cubes are in-memory structures that can be used to generate known
visualizations such as heat maps, histograms, and parallel coordinate plots. The advantage of Nano
Cubes compared to traditional Data Cubes is that they can store up to billions of data points without
using disk, while Data Cubes [Battle et al. 2016] can manage a much smaller dataset without using the
disk. However, such structures must be reconstructed for each collection of attributes and aggregation
types required by the application (e.g., SUM, AVG, etc.), which can be laborious. Furthermore, as
the data are already pre-aggregated in memory, any query that requires access to the finer grain
data can not be performed. Finally, the size of the structure grows exponentially according to the
number of attributes considered. Differently from Lins et al. [2013] and Battle et al. [2016] which
opted for specialized in-memory structures to support interactive Vis systems, the work of Jiang et
al. [2018] proposes that such systems use RDBMS as a data management approach. In the Jiang et
al. paper, the authors analyze the response time of spatiotemporal queries in PostgreSQL RDBMS.
In the current article, in turn, we compare the performance of five data management approaches to
support interactive Vis. Each data management approach represents one type of data management
(e.g., relational, columnar, etc.) in order to analyze the pros and cons of each type. This comparison
with five different data management solutions is not found in previous works.

4. BENCHMARK: QUERIES TO SUPPORT INTERACTIVE VIS

In order to evaluate the several data management solutions for interactive Vis, we selected as
benchmark several queries submitted during an interactive Vis session. These queries are submitted
to data management approaches by the tool named TEMPO [Nascimento et al. 2021], whose goal is to
capture multi-source rainfall data with different granularities and integrate them into a single database
to allow for interactive visual analysis. TEMPO was designed and developed in the context of the project
Niterói Organizada e Segura: o Estudo do Impacto das Chuvas”, carried out in partnership with Civil
Defense Bureau of the City of Niterói in the context of the Applied Projects Development Program
(PDPA). Thus, TEMPO provides the rainfall data and queries that are used in the analysis to compare
the performance of each approach selected in this article. Following, we provide more details regarding
TEMPO and the interactive Vis queries.

Studies related to climate have become increasingly important in the last decade, mainly due to the
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increase in the number of extreme climate events (e.g., tsunamis, floods, droughts, etc.) in multiple
regions of the Earth, including Brazil [Mizutori and Guha-Sapir 2020]. In particular, in large urban
centers, the impact of climate events can be severe. Due to the unordered growth, urban centers do
not have many areas covered by vegetation, which makes the flow of rainwater go quickly to places
such as rivers, which may not have the adequate flow capacity for the volume of water received, thus
causing overflow and floods [Thorndahl and Willems 2008]. This way, monitoring the rainfall (that
can cause such floods) is a top priority.

To allow for such monitoring, a set of rainfall stations (sensor-based data acquisition systems that
provide the rainfall value in a given area) are installed in many cities throughout the country. TEMPO
accesses data provided by such stations to provide interactive analysis features. Besides gathering and
storing the raw data (e.g., CSV, JSON, etc.), TEMPO performs the necessary data transformations (e.g.,
granularity adjustment, addresses and location standardization, aggregations, etc) and generates a
single staging table with the formatted data (in a staging area). From this table, the data are loaded
into a Data Warehouse (DW) [Kimball and Ross 2002] named DW-TEMPO. In its original version,
the DW-TEMPO was implemented following the ROLAP model (Relational OLAP) using PostgreSQL
RDBMS.

The schema of DW-TEMPO is presented in Fig. 2. This schema follows the star schema and has one fact
table and four dimension tables. The fact table Fact_Rainfall contains the attributes rainfall_index
(quantity of interest for analysis), idDim_Source (PK,FK), idDim_Time (PK,FK), idDim_Locality
(PK,FK) and idDim_Station (PK,FK), where all foreign keys reference the associated dimension ta-
bles. The Dim_Locality dimension represents the locations where the rainfall stations are located
(where measurements were taken), e.g., cities, specific addresses, etc. The dimension Dim_Source
represents the data provenance [Freire et al. 2008], i.e., from which source these data were obtained.
The Dim_Time dimension represents the possible time intervals for querying. Finally, the dimen-
sion Dim_Station represents the rainfall stations that were considered for analysis. Due to space
constraints we do not present the complete schema of DW-TEMPO, but additional information can be
obtained from Nascimento et al. [2021]. The dump file containing the data used in this article can be
obtained at https://osf.io/pa2zn/.

Fig. 2: The Schema of DW TEMPO - adapted from [Nascimento et al. 2021]

Following, some statistics of the DW are presented. Table I presents the total number of tuples
per DW table. The DW contains rainfall data collected from 2013 to 2019. The time resolution
depends on the source of data. The data downloaded from CEMADEN is captured every hour (when
it is not raining) and every 10 minutes (if it is raining) while in Alerta Rio data are captured every
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15 minutes. Since TEMPO gathers data from CEMADEN (which is a federal organization), the DW
stores rainfall data from several Brazilian cities. However, the visual analyses performed by users
in TEMPO are focused on the city of Niterói. Fig. 3 presents the number of tuples in the fact table
per rainfall station in the city of Niterói (×1,000). By collecting metadata from user interactions in
TEMPO, we identified a series of frequent database queries. In Table II we present 14 frequent queries
that are used in the comparative study presented in this article. Each query presented in Table II is
classified following the classes defined and discussed in Section 2. It is worth noticing that although
there are many other queries submitted during users’ analyses, we selected these 14 because they are
heterogeneous and cover most of the aforementioned classes.

Table I: Total Number of Tuples per Table

Table Number of Tuples

Fact_Rainfall 18,291,812
Dim_Time 201,576
Dim_Locality 675
Dim_Station 472
Dim_Source 2
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Fig. 3: Number of Tuples per Rainfall Station

Queries Q1, Q2, and Q3 are C1-type queries. Q1 aims at exploring Selection based on a date.
Queries Q2 and Q3 explore Selection based on the rainfall index. The difference between queries Q2
and Q3 is their selectivity. Q2 returns fewer rows than Q3, thereby it requires less CPU and I/O.
Queries Q4, Q5, and Q6 are C4-type queries. Q4 returns data from all stations within a 10 km radius
of a specific point in space. Q5 and Q6 also return data from all stations within a 10 km radius of a
point in space, but they filter data based on the rainfall index and date, respectively. Query Q7 also
returns data from all stations within a 10 km radius, but filters based on a time interval. Q8 selects
the most recent rainfall index stored for the nearest station of a specific point in space. Q9 and Q10
are also nearest neighbor queries, and the difference between these queries is their K value. While
Q9 returns data associated with the 10 nearest stations, Q10 returns data associated with 20 nearest
stations. Q11 combines the characteristics of a Nearest Neighbor query and a Aggregation query since
it considers the 10 nearest stations but also calculates the average rainfall index. Q12, Q13, and Q14
are Join queries. In these three queries, we consider the Inga region in the city of Niterói (Fig.4).
Q12 returns all rainfall time series of rainfall stations within the polygon. Q13 and Q14 also return
all rainfall time series of rainfall stations within the polygon but they filter data based on a date and
rainfall index, respectively. All the 14 queries were executed in each data management approach that
is explained in the next section.
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Table II: Database queries generated through user interactions in TEMPO

Query Description Class # Tuples

Q1 Returns the complete rainfall time series for all the rainfall sta-
tions in the year of 2018 C1 2.211.196

Q2
Returns the complete rainfall time series for all rainfall stations
where the rainfall index is higher than 25.00 (i.e., outliers) C1 5.457

Q3 Returns the complete rainfall time series where the rainfall index
is higher than 1.50 C1 281.924

Q4 Returns the rainfall time series for the nearest stations within a
10 km radius of a point in space C4 688.653

Q5
Returns the rainfall time series for the nearest stations within a
10 km radius of a point in space where the rainfall index is higher
than 5.00

C1,C4 2.646

Q6
Returns the rainfall time series for the nearest stations within a
10 km radius of a point in space in 04/08/2017 C1,C4 408

Q7
Returns the time series of precipitation for the nearest stations
within a 10 km radius of a point in space where date is between
11/15/2018 and 11/30/2018

C1, C4 5.105

Q8 Returns the most recent stored rainfall index for the nearest rain-
fall station of a specific point in space C1, C3, C4 1

Q9 Returns the rainfall index for the 10 nearest stations from a spe-
cific point in space C1, C4 10

Q10 Returns the rainfall index for the 20 nearest stations from a spe-
cific point in space C1, C4 20

Q11 Returns the average of the rainfall index for the 10 nearest sta-
tions from a specific point in space C3, C4 10

Q12 Returns the rainfall time series for all rainfall stations inside the
polygon associated to the Ingá region in Niterói C1, C2 46.928

Q13
Returns the rainfall time series for the stations which are inside
the polygon associated to the Ingá region in Niterói and the date
is between 01/01/2019 and 06/30/2019

C1, C2 4.303

Q14
Returns the rainfall time series for all stations which are inside
the polygon associated to the Ingá region in Niterói where the
rainfall index is equal or higher than 2.00

C1, C2 536

Fig. 4: The region of Ingá in the city of Niterói

5. TECHNOLOGY OVERVIEW

In order to evaluate the performance of each query presented in Table II, five different data man-
agement approaches are chosen, each one with unique characteristics. The idea is to explore the
heterogeneity of the solutions regarding the adopted data model, query processing mechanisms, in-
memory processing, etc. This way, we have defined five categories of data management approaches
that can support interactive Vis queries: (i) Relational databases, (ii) Column-oriented databases,
(iii) Big Data frameworks, (iv) Polystore systems and (v) Search engines. For each category we have
chosen a system that is representative following the classification provided by Olivera et al. [2021].
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Following we present the list of selected approaches with a brief explanation about them. We have
chosen (i) a relational DBMS - PostgreSQL, (ii) a column-oriented DBMS - MonetDB, (iii) a big
data framework - Apache Spark, (iv) a polystore system - Apache Drill and (v) a search engine -
Elasticsearch.

Apache Drill is an open-source distributed system for big data querying. Apache Drill is designed to
handle up to petabytes of data spread across a large number of servers [Hausenblas and Nadeau 2013].
Some of the key features of Apache Drill are (i) Low latency queries, which means that a simple query
returns the result in a few milliseconds; (ii) Ability to access multiple data sources in a single query,
such as Hive tables, JSON files and file systems (local or distributed); and (iii) it works with Business
Intelligence tools, which allows for direct integration with specialized visualization tools [Drill 2022].
Apache Drill is considered a Polystore system [Kranas et al. 2021] since it can query multiple DBMSs
that follow multiple data models.

Apache Spark is a big data framework that can execute tasks on very large datasets and is also able
to distribute data processing tasks across multiple computers. Spark improves the performance of
applications by performing in-memory data movement (in contrast with Apache Hadoop where oper-
ations are disk to disk) and automatically exploiting parallelism. One of the key advantages of Spark
in comparison to other big data frameworks is its in-memory structures such as Resilient Distributed
Dataset (RDD) [Zaharia et al. 2012] and DataFrames [Armbrust et al. 2016], which essentially are
in-memory collections of partitioned data instances that can be processed in parallel. While RDDs are
sets of objects representing data, DataFrames are distributed collections of data with named columns,
i.e., DataFrames act as tables in relational databases (e.g., PostgreSQL, Oracle, etc.). It has an op-
timization technique called Adaptive Query Execution (AQE), which is based on runtime statistics
to estimate the most effective query execution strategy [Spark 2021a]. Spark can read different data
formats such as JSON, CSV and ORC files, Hive tables, etc. [Spark 2021b].

Elasticsearch is part of the Elastic Stack, or ELK stack. This stack is composed of Elasticsearch,
Logstash, and Kibana tools. Elasticsearch is responsible for indexing, searching, and analyzing
datasets. Logstash is responsible for collecting and aggregating data to be indexed by Elasticsearch.
Finally, Kibana offers ways to perform visualization and exploration of the data [Elastic 2021b]. Elas-
ticsearch supports different types of data and provides an index for each type. These indexes are
optimized to ensure efficient and fast searches. An index is a collection of documents in JSON format
and a document is a collection of fields represented as key-value pairs. Each field in the document is
indexed using a data structure optimized for its specific data type, and this makes turn the queries
so efficient [Elastic 2021a]. Elasticsearch supports structured queries, such as those performed using
SQL, and full-text queries, in which a search is performed using a string (a set of letters and other
characters) in all documents and the result is returned by relevance [Elastic 2021c].

MonetDB is an open-source column-oriented DBMS largely used for workloads that involve a wide
collection of data in different industries, such as health care, telecommunications, and others [Idreos
et al. 2012]. Initially, it was designed for data warehouse applications, which are widely used to provide
decision-making support [Idreos et al. 2012]. MonetDB is built to support distributed processing
aiming at reducing the response time for complex queries [MonetDB 2021]. It also supports SQL
and provides a modern and scalable solution without requiring considerable hardware investments
[MonetDB 2021]. In terms of indexes, although the user can define an index using SQL commands,
MonetDB does not create a physical secondary index as defined in the SQL command. It decides
which column search accelerator to create, persist and use during SQL query execution. MonetDB
supports two types of indexes: Imprints and Ordered Index. Such indexes can be associated with a
single column and only numerical attributes can be indexed.

PostgreSQL is a well-known open-source DBMS that follows the relational model and uses SQL
combined with features that store and scale complex data workloads [PostgreSQL 2022b]. There
are many extensions available to use in PostgreSQL, including PostGIS, which is a spatial database
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extension for PostgreSQL. PostGIS adds support for geographic objects and enables functions that can
be easily interpreted and performed by SQL [PostGIS 2021]. PostgreSQL has proved to be scalable
in terms of both the amount of data it can handle and the number of concurrent users [PostgreSQL
2022b]. The index types provided by PostgreSQL are B-tree, hash, GiST, SP-GiST, GIN, and BRIN
[PostgreSQL 2022a]. Although PostgreSQL has the GiST index, which is useful in indexing geometric
data types [PostgreSQL 2022a], the one used in this work is B-tree, since the other data management
approaches do not have indexes similar to GiST.

6. EVALUATING DATA MANAGEMENT SOLUTIONS FOR INTERACTIVE VIS

This section presents the configurations used to execute the experiments and discusses the results
achieved. The central idea of this section is to compare the performance of each data management
approach for each of the 14 queries presented in Section 3. First, in this section, we briefly describe
the environment setup. Then we describe the experiment setup. After that, we present and discuss
the results.

6.1 Environment Setup

For the experiments executed in the context of this article, we have deployed each data management
approach (i.e., PostgreSQL, MonetDB, Spark, Drill and Elasticsearch) on top of the Amazon AWS
environment. Amazon AWS is one of the most popular cloud providers, and many scientific and
commercial applications have been deployed on it. Amazon AWS provides several different types of
Virtual Machines (VMs) for scientists to deploy and use. Each one of them has unique characteristics
(CPU, RAM, and storage). There are several types of VMs, such as a1.medium (1 vCPU, 2 GiB
RAM), c6g.2xlarge (8 vCPU, 16 GiB RAM), r4.2xlarge (8 vCPUs, 64 GiB RAM), and d2.4xlarge (16
vCPUs, 122 GiB RAM). In the experiments presented in this article, we have considered just Amazon’s
m5dn.2xlarge type. We have chosen an M5-type VM since these instances support a balance of
computing, memory, and networking resources for different types of workloads. This includes medium
and large databases. m5dn.2xlarge has 8 vCPUs, 16 GiB RAM, 110 GB disk, and is powered with
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz (2), and CentOS Linux 7 (Core) Operating
System. According to Amazon, all VMs were instantiated in the US East—N. Virginia location and
follow the pricing rules of that locality.

6.2 Experiment Setup

The experiments were performed in the five data management approaches mentioned in the Section
5 using the following versions: Apache Drill version 1.19.0, Apache Spark version 3.2.0, Elasticsearch
version 7.15.1, MonetDB version 11.41.11, and PostgreSQL version 9.2.24. Especially in Apache Spark,
we transformed the DataFrame into a Resilient Distributed Dataset (RDD), which is a partitioned
set of elements that can be processed in parallel by Spark [Spark 2022]. This transformation to
an RDD allows for using the method RDD.ZipWithIndex to create the index. After creating the
index we converted the RDD into a DataFrame again. The indexes are defined on the attributes
time_day, time_month and time_year in Dim_Time, on the attributes locality_lat, locality_long
and locality_city in Dim_Locality, and on attributes that are foreign keys. Each query presented in
Table II was executed 21 times, and the first execution is not considered in the evaluation. The data
used in the experiments presented in this article can be downloaded at https://osf.io/pa2zn/.

6.3 Results Discussion

Table III presents the average query processing time (i.e., x), the standard deviation (i.e., σ) and
the variance (i.e., V̂ ) of each query depicted in Table II (the first execution time of each query is not
considered for calculating the average processing time). One can note that Apache Spark presents the
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Table III: Performance of Queries Q1 to Q14 (msec)
Query Apache Drill Apache Spark ElasticSearch MonetDB PostgreSQL

x x x x x

Q1 21664,2 36,1 37244,85 342,15 11158,35
Q2 6371,3 39,1 488,45 21,5 1292,5
Q3 7845,55 40,8 23909,5 66,4 2629,85
Q4 11638,2 49,2 68089,55 2278,7 5347,3
Q5 5989,95 70,75 280,55 37,05 1286,8
Q6 5831,15 43,7 64,0 26,2 1144
Q7 5964,9 71,65 417,05 150,15 1334,6
Q8 6478,5 32,7 489,3 239,15 2002,9
Q9 6228,65 70,4 490,6 239,5 2001,1
Q10 6167,25 40,55 491,15 239,9 2010,25
Q11 7465,0 125,25 250,12 253,8 25529,95
Q12 8766,5 86,85 3923,5 828,85 1540,8
Q13 43625,85 63,25 368,4 7201,85 1381
Q14 7281,2 47,8 54,4 760,55 2410,1

best performance for 11 of 14 queries, followed by MonetDB which presented the best performance
for 3 of 14 queries. To understand this behavior of Spark, it is necessary to understand how Spark
processes SQL queries. The SQL query is initially translated to an Abstract Syntax Tree (AST).
Optimization rules can be applied to these operations using Catalyst, the Spark optimizer. Each
expression of the generated (and eventually optimized) AST is transformed into an AST implemented
in Scala, and then this code is compiled to Java bytecode, which is sent to the Spark Executors (i.e.,
the processes that effectively process the query). When this code is available, Spark creates a logical
plan of RDDs. Spark transforms this logical plan into a physical execution plan consisting of stages
and parallel tasks. The physical plan can be executed in parallel in different Executors, consuming
partitions of the RDD. This way, Spark can benefit from parallelism, even in a single virtual machine
with multiple vCPUS, while the other approaches do not (although MonetDB has a version with
parallel support, this version is not used in the experiments presented in this article). It is also
important to highlight that DW-TEMPO has approximately 4.8 GB (the fact table contains 12,401,780
tuples) and fits almost entirely in memory. Thus, Spark can perform practically all the processing in
memory using Data Frames, which makes the execution more efficient compared to other approaches
that need to access the disk.

MonetDB presented the best processing times for queries Q2, Q5, and Q6. In addition, despite
it does not execute in parallel in our experiments, the processing times of queries Q1 to Q11 are
acceptable for interactive Vis (i.e., lower than 0.5 seconds). The advantage of MonetDB is not
only the faster reading, but it also benefits from its columnar database technology that only loads
into memory the attributes that are needed. The performance of MonetDB for queries Q12 to Q14
presented a non-negligible overhead due to multiple joins with the polygon that represents the Ingá
region. ElasticSearch also presented acceptable results for queries Q5 to Q11, Q13, and Q14, but the
performance of ElasticSearch for the query Q12 presented an overhead. In addition, in ElasticSearch,
large queries can consume too much memory during the parsing phase, in which case the Elasticsearch
SQL engine can also add an overhead.

Differently from Spark, MonetDB, and ElasticSearch, both Apache Drill and PostgreSQL presented
query processing times superior to 0.5 seconds for most queries. Even creating indexes whenever
possible, e.g., on the foreign keys of the fact table, on attributes that are used for selections (e.g.,
“year = 2018”), the processing times are longer than the expected 0.5 seconds. In the case of Apache
Drill, it has to interpret the submitted query into a distributed plan, send it to all the drillbit processes,
which then lookup the data sources, access the data using the connectors, execute the query, return
the results to the first node for aggregation, and then send the final output. Depending on the data
source, Drill may need to load all the data and filter it separately which adds additional overheads.
One option to reduce overheads is to use Parquet format instead of loading data from a CSV file.
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This way, Spark SQL and MonetDB turned out to be the recommended approaches for processing
queries in TEMPO. It is important to highlight that this result is justified since TEMPO typically submits
OLAP queries, and the data are not updated or deleted after loading (since TEMPO only loads data
captured by sensors). This OLAP scenario is beneficial for both MonetDB and Spark. Another
conclusion of the experiments is that Polystore systems such as Apache Drill are not suitable for
scenarios where the user has a medium/small dataset stored on a single machine. In this scenario,
most existing relational databases will present a better performance than Drill. As next steps, we
plan to evaluate other approaches such as BigDAWG [Duggan et al. 2015] and DuckDB [Raasveldt
and Mühleisen 2019], in addition to evaluating parallel processing in distributed environments.

7. CONCLUSIONS AND FUTURE WORK

Many applications in the Data Science field are based on Vis techniques. In many cases, these
applications require the use of interactive Vis, which traditionally sets a limit of 0.5 seconds as the
maximum response time to actions in the interactive application. This response time should encompass
data access, filtering, and aggregation. Although there are specific techniques and data structures to
support such visualizations, the data management approaches proposed in recent years can be used
to support Vis systems without much effort. In this article, we present a comparative study of
data management approaches aiming to support interactive Vis. We compared the performance of
known solutions such as PostgreSQL, MonetDB, ElasticSearch, and Spark SQL to process multiple
spatiotemporal queries of the TEMPO tool to visualize rainfall data. From the 14 queries, Spark SQL and
MonetDB are the data management approaches that presented the best performance, being capable
of processing most queries in less than 0.5 seconds. One of the advantages of Spark SQL is that it
performs in-memory processing, taking advantage of Spark’s Data Frames structure. MonetDB is
also able to process most of the queries in less than 0.5 seconds but presented a performance loss on
queries involving spatial joins. Future work includes evaluating new approaches, including Polystore
systems such as BigDAWG and in-memory solutions such as DuckDB.
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