Evaluating Database Self-Tuning Strategies
in a Common Extensible Framework

Rafael Pereira de Oliveira', Sergio Lifschitz', Marcos Kalinowski', Marx Viana®,
Carlos Lucena', Marcos Antonio Vaz Salles”

!Pontifical Catholic University of Rio de Janeiro (PUC-Rio)
2University of Copenhagen

Abstract. Database automatic tuning tools are an essential class of database
applications for database administrators (DBAs) and researchers. These self-
management systems involve recurring and ubiquitous tasks, such as data ex-
traction for workload acquisition and more specific features that depend on
the tuning strategy, such as the specification of tuning action types and heuris-
tics. Given the variety of approaches and implementations, it would be de-
sirable to evaluate existing database self-tuning strategies, particularly recent
and new heuristics, in a standard testbed. In this paper, we propose a reuse-
oriented framework approach towards assessing and comparing automatic re-
lational database tuning strategies. We employ our framework to instantiate
three customized automated database tuning tools extended from our framework
kernel, employing strategies using combinations of different tuning actions (in-
dexes, partial indexes, and materialized views) for various RDBMSs. Finally,
we evaluate the effectiveness of these tools using a known database benchmark.
Our results show that the framework enabled instantiating useful self-tuning
tools for these multiple RDBMSs with low effort by just extending well-defined
framework hot-spots. Additionally, the instantiated tools provided significant
improvements in execution cost of a query workload generated from benchmark
query templates. Our framework is made available as an open-source and exten-
sible testbed for the database research community, thus facilitating the further
evaluation of database self-tuning strategies.

1. Introduction

While we may find many different self-tuning tools already available to run, externally
coupled or integrated within RDBMSs, there is a need for evaluating the effectiveness
and efficiency of alternative self-tuning strategies across systems. Either we might want
to check for existing features that are mandatory for a given application, or we would
like to characterize the pros and cons of implemented heuristics when compared with
new ones proposed in the literature. Ultimately, we wish to evaluate which self-tuning
strategies bring the best-expected results for RDBMS performance in different contexts.

Specific tuning tasks have automatic support in some RDBMSs, but not in oth-
ers. For example, it is possible to tune database parameters to server hardware with
PostgreSQL automatically [PGTune 2019]. Still, it is hard to find tools for automating
a variety of physical database design tasks (e.g., creating materialized views or partial
indices). It is infeasible for the DBA to, promptly, test and evaluate all possible physical
design tuning actions for a given workload, as even index selection is NP-hard [Piatetsky-

97

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)



98

Shapiro 1983]. Nevertheless, tools to aid in this task exist for other RDBMSs [Bruno
2012].

Software reuse is one of the significant goals of software engineering re-
search [Frakes and Kang 2005]. It aims to reduce development and maintenance efforts
and, at the same time, improve software quality due to the use of already designed soft-
ware units, implemented, validated, and tested [Peters and Pedrycz 2000] [Sommerville
2011]. We observe that automatic database tuning tools share a core of common tasks,
even though they might suggest different tuning action types. All self-tuning systems rely
on basic tasks such as workload capture, data extraction, SQL parsing, or DBMS catalog
access. Hence, this research area could take advantage of software reuse. However, reuse
opportunities to support the comparison and evaluation of database self-tuning tools have
not yet been systematically explored.

Aiming at taking a step towards bridging this gap, this paper describes how we
may instantiate a reuse-oriented framework to support the evaluation of self-tuning tools
for relational database systems. This framework reduces the effort of building a special-
ized database application by identifying a typical common architecture and enabling cus-
tomization through well-defined framework hot-spots that may implement specific tuning
strategies.

In pursuit of this aim, this paper makes the following contributions:

1. A suggested list of reuse-oriented requirements for database self-tuning tools,
where we discuss possible modeling options and justify our choices;

2. A component-based architecture of a framework to create self-tuning applications
for relational databases with its corresponding open-source implementation;

3. Three customized automatic database tuning tools extended from our framework
kernel, employing strategies using combinations of different tuning actions (in-
dexes, partial indexes, and materialized views) for different RDBMSs;

4. An evaluation of how effective our self-tuning tools are and how much they can
reduce the execution cost of a query workload derived from a well-known bench-
mark.

Based on our results, we conclude that the framework enabled instantiating useful
self-tuning tools employing different strategies, which significantly reduced query execu-
tion costs on different RDBMSs, with low effort. Hence, we believe that it can serve as a
valuable common and extensible testbed for further evolving self-tuning strategies.

The remainder of this paper is organized as follows. Section 2 presents concepts
about software reuse and database tuning. In Section 3, we propose a list of reuse-oriented
requirements for database self-tuning tools. We discuss possible modeling options and
justify our choices. The section also puts forward our software framework to support
building database self-tuning tools. Section 4 depicts the evaluation process and ex-
perimental results for database self-tuning tools built using our framework. Section 5
describes the related work and discusses database self-tuning tools. Finally, Section 6
brings our concluding remarks.

2. Background

Software reuse is the use of existing software or software knowledge to develop new
software. Reusable assets can be either reusable software or software knowledge. It aims

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)



Rafael Pereira de Oliveira et al. .

at reducing development and maintenance costs and improving software quality due to the
use of already designed, implemented, validated and tested software units [Sommerville
2011]. Reusable software components are self-contained, clearly identifiable artifacts
that describe or perform specific functions and have clear interfaces, appropriate docu-
mentation, and a defined reuse status [Sametinger 1997]. Components are ideally known
as software pieces that can be reused in many software systems [Alvaro and Garcia 2007].

A framework is a reusable application that can be specialized to produce custom
applications. Frameworks aim at reusing software units divided according to the require-
ments of the final software [Fayad et al. 1999]. Typical characteristics of software frame-
works include a reusable, semi-complete application that can be specialized to produce
custom applications or can act as an application generator directly related to a specific
domain [Fayad and Schmidt 1997]. The points of the flexibility of a framework are called
hot-spots, which are typically abstract classes or methods that must be implemented. If
one wants to generate an application based on a framework, it is necessary to implement
a specific code for each hot-spot. Some features of the framework are not mutable and
constitute the framework kernel, also called frozen-spots.

Database tuning is the process of making a database application run faster. This
usually means higher throughput, and it may also mean lower response time for some ap-
plications [Shasha and Bonnet 2002]. The process of database tuning is an activity where
the Database Administrator (DBA) monitors the database, plans possible tuning actions,
evaluates and executes them on the database system, and, again, monitors the database to
observe the impact on the workload. Self-tuning tools automate this process by delegat-
ing steps performed by the DBA to autonomic mechanisms able to follow algorithms and
heuristics to monitor and execute tuning actions.

Performance is the main optimization goal of the tuning activity. The literature
considers different optimization goals, such as availability, fault tolerance, and resource
consumption. In this paper, we present a framework to support developing self-tuning
tools that can target any of these optimization opportunities.

Several reasons motivate database self-tuning systems: (i) the increasing com-
plexity of multi-tenant monolithic applications and services; (ii) the growing complexity
of RDBMS administration and tuning, which provides hundreds of tuning knobs; (iii)
the high cost of ownership for RDBMS-based solutions, where hiring experts in system
tuning and management is dominant [Chaudhuri and Weikum 2005].

There are many tuning action types defined in the literature. In this work, we
focus on the manipulation of three access structures that may bring better performance
for database systems: indexes, partial indexes, and materialized views. We will explore
the action of creating these structures with a closer look into multiple RDBMSs, exploring
our reuse-oriented framework approach.

3. Requirements and Framework Architecture Overview

There is a comprehensive amount of literature surrounding automatic tuning tools for
database systems. They involve cost models, algorithms and heuristics, strategies on how
to collect and use the database workload, and so on. Due to the different features of
these tools, we present requirements for automatic tuning tools that are adherent to our
reuse-oriented approach and benchmarking framework.

99

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)



100 -

Non-intrusive approach: There are self-tuning tools that change the RDBMS source
code to generate and evaluate tuning actions. They have the advantage of making more
efficient predictions about tuning actions effectiveness. On the other hand, this intrusive
approach depends on the availability of the RDBMS source code. Even in an open-source
RDBMS, the tuning tools need to be revised with each new software release. All this
makes maintenance costly. Non-intrusive methods for the creation and evaluation of tun-
ing actions can provide more reuse opportunities, and decrease the maintenance cost. Fur-
thermore, decoupling the tool is necessary to use the same self-tuning tool for multiple
RDBMS:s.

Online workload analysis: Database tuning tools use two main approaches: In the offline
method, the DBA identifies and collects parts of the workload that are representative
and provides them as input to the tuning tool. Alternatively, in the online approach, a
tuning tool automatically tracks the RDBMS and evaluates which tuning actions should
be executed for the current workload [Chen et al. 2010]. We chose the online strategy
as a requirement by the automatic feature desired in a self-tuning application. The online
approach presents two potential features which can be employed from a reuse perspective:
(1) automating of the workload collection, a costly task, leaving the DBA free to perform
other activities and save time; and (i1) allowing the tool to adapt the physical design of the
database according to workload trends and possible seasonal variations.

Handling different RDBMSs: Aiming at large-scale reuse, we consider that the frame-
work should be able to deploy self-tuning tools that can handle different RDBMSs. We
propose multiple cost models for each self-tuning tool. The main idea is to create and
evaluate tuning actions in a specific manner with different cost models for each RDBMS.

Canonical cost model: In order to allow working with multiple RDBMSs, we decided
to create and use an external and independent canonical cost model. It has the following
advantages: (1) It can be customized by both hardware setup and RDBMS brand; (ii) The
tools are independent of RDBMS versions; and (ii1) it can be applied to any open-source
RDBMS, as well as to proprietary RDBMS. Another point that supports our decision to
use canonical cost models is to be able to adjust costs for different hardware setups.

Inclusion of new tuning action types: Many proposals for tuning actions types can be
found in the literature: creating and maintaining access structures such as indexes and
materialized views, logical and physical database partitioning, query rewriting, adjusting
RDBMS parameters and others [Bruno 2012] [Shasha and Bonnet 2002], [Chaudhuri and
Narasayya 2007]. It is not feasible to model all these tuning actions, and new strategies
may appear. Thus, the inclusion of new self-tuning action types becomes a relevant re-
quirement. In fact, to develop a framework that allows further integration of new tuning
action strategies with a low-impact on the proposed architecture represents an opportunity.

Inclusion of new tuning heuristics: For a tool to propose a tuning action (e.g., query
rewriting), it usually needs to perform two general steps: (i) generate alternative tuning
actions and (ii) evaluate the effectiveness and efficiency of these proposed actions. There
are a significant number of heuristics developed for both steps (i) and (ii). Following the
same argument for allowing inclusion of new tuning action types, we decided to also en-
able the inclusion of new heuristics for both steps. The self-tuning tools developed using
our framework will be able to execute those heuristics independently and concurrently.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)



Rafael Pereira de Oliveira et al. e 101

KERNEL ASSETS
Executor Predictor Extractor Observer RDBMS
i A =
Tuning Action uning Action Workload DB Catalog ¢ Connection
Execution Generation Analysis Reader Drive
B ™y
¢ Tuning Action & Workload info Workload
Evaluation normalization Capture

,

Figure 1. Database Self-Tuning Tool Framework Components.

As a result, the heuristics can be ranked according to their effectiveness and efficiency,
helping the DBA to choose the best tuning strategy for different scenarios.

Our framework architecture is focused on large-scale reuse to produce relational
database self-tuning tools. It was designed to be able to keep track of workload changes
to update the database configuration automatically or semi-automatically. Furthermore,
we have designed mechanisms to include: (i) multiple RDBMSs, (i1) new tuning action
types, and (iii) new heuristics for tuning actions, enabling their proper evaluation. The
main benefits of developing a component-based framework originate from the modular-
ity, reusability, and extensibility features [Fayad et al. 1999]. Hence, our framework
explores these characteristics to satisfy those relevant requirements. Figure 1 shows the
main components of our domain framework.

There are five components: RDBMS, Observer, Extractor, Predictor, Executor.

* The RDBMS component is responsible for encapsulating all specifications re-
lated to communication between the RDBMS and the framework. It has a hot-
spot called Connection Drive that contains the implementation to connect and run
queries over the database.

* The Observer component is responsible for capturing the database workload and
statistics from the catalog. It has two frozen-spots: the DB Catalog Reader and
Workload Capture. The Workload Capture runs continuously and has the purpose
of monitoring and capturing the executed SQL commands and their execution
plans (workload). The Catalog Reader frozen-spot gets the database statistics
catalog and provides information about the database schema.

* The Extractor component fetches information from the captured workload that
tuning heuristics use to propose and evaluate tuning actions. The Workload Anal-
ysis is a hot-spot that gives independence to instances of the framework for work-
load data mining.

* The Predictor component generates tuning actions based on the captured work-
load and each modeled self-tuning tool. It also analyzes these actions and defines
which ones will bring the most significant benefit. The Tuning Action Generation
hot-spot generates tuning actions using algorithms defined in the literature and im-
plemented in the component. The Predictor also has the Tuning Action Evaluation
hot-spot that identifies the subset of tuning actions that maximize the benefits and
respects the computational resource limits.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)



102

* Finally, the Executor Component is responsible for executing tuning actions that
were considered useful for the workload by the Predictor component. The tuning
actions can be performed when the DBA considers it appropriate, e.g. when the
system is idle.

Further details about our framework specification are available at
https://github.com/BioBD/tap. Due to space constraints, we further focus this re-
search work on the framework’s application, the evaluation of its efficacy, and the
presentation of practical results considering actual RDBMSs.

4. Framework Instantiation and Self-Tuning Strategy Evaluation

Our proposal involves using our software framework to support the development and
evaluation of customized self-tuning strategies for relational databases. Therefore, we
conducted the following two steps:

1. We instantiated self-tuning tools employing different tuning actions and for dif-
ferent RDBMSs to (a) evaluate the feasibility of using the framework for such
purpose and (b) use this experience as a basis to discuss the effort; and

2. We tested these tools in terms of their effectiveness on different RDBMSs to ob-
serve whether they would be useful (e.g., reduce query workload cost).

4.1. The framework instantiation

There are two main ways to extend our framework, namely to include new tuning action
types and to support new RDBMSs:

Tools for different database tuning action types - we extended our framework
using three self-tuning tools for distinct access structures:

1. Materialized views (MVs): The suggested M Vs are inferred from statistical anal-
yses of the workload and the information about the database schema. Due to the
characteristics of MVs, this tool is suitable for workloads that have analytical
queries because, typically, MVs are considered good alternatives to SQL com-
mands that have aggregations and summarizations [Shasha and Bonnet 2002]. The
MV selection strategy used in this work is proposed and described in [Agrawal
et al. 2006]

2. Indexes: Index selection is considered one of the most important actions of the
database tuning task, and it can bring significant benefit to the performance of
database management systems [Bonnet and Shasha 2009]. This benefit occurs by
reducing the number of pages that need to be copied from the disk to the main
memory during an SQL command execution. The index selection strategy used
here is proposed by Monteiro in [Monteiro 2008].

3. Partial indexes: This tuning action uses a similar access structure as the previous
one for indexes. These two types, when combined, can bring significant benefits to
the execution of the workload. The index and partial index tools are complemen-
tary to each other, favoring their concurrent execution, and the gain in performance
can be greater than when the strategies are executed independently [Stonebraker
1989]. The partial index strategy used here is proposed and described in [Fuentes
et al. 2018].

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)



Rafael Pereira de Oliveira et al. * 103

These tools were initially developed to perform automatic tuning using an indi-
vidual cost model for the PostgreSQL. RDBMS, supporting its SQL specificities.

Tools for different RDBMSs - Once we tested the extensions for tuning ac-
tions, the resulting tools were extended (based on the framework’s hot-spots) to two other
closed-source commercial RDBMSs. In the following, we refer to them as “DBMS X”
and “DBMS Y. This extension is significant because details about the SQL execution
plan are specific for each RDBMS, and they are used by the cost models to predict the
quality (or lack thereof) of tuning actions. Different execution plans necessitate different
information extraction functions.

For all extensions performed, this validation helped us to refine the framework’s
model iteratively. Besides the evaluation, it helped us both validate and justify the hot-
spots and move some other functions to the framework’s core.

4.2. Experimental evaluation using the instantiated tools

Our framework helps researchers to develop self-tuning tools that can carry out database
tuning actions automatically according to their specifics using the chosen RDBMS. Nev-
ertheless, are these tools useful?

Due to space constraints, it is not feasible to present a complete evaluation for
each strategy on each RDBMS or to provide in-depth discussions on the tuning strate-
gies. Instead, we selected different tuning strategies and different RDBMSs to evaluate
self-tuning tools derived from our framework in different scenarios. The strategy for§
the PostgreSQL tuning tool used indexes, partial indexes, and MVs. The strategy for the
DBMS X tuning tool used indexes and MVs. Finally, the strategy for the DBMS Y tuning
tool used only indexes. It was not possible to evaluate all three strategies in the commer-
cial RDBMSs because they either lack support for partial indexes or constrain the query
expressions that can be used in materialized views.

We tested our instantiated tools using the benchmark TPC-H [Transaction Pro-
cessing Performance Council (TPC) 2018], which is one of the most frequently used
database benchmarks for analytical workloads.

For what follows, we used PostgreSQL 10 and recent versions of the commer-
cial RDBMSs. The machine configuration included an Intel 17 3.40GHz CPU, 16GB of
RAM, and 2TB of HDD. We tested our tools using all the 22 TPC-H query templates on a
database with a size of 10GB. For each query template, we instantiated 30 distinct varia-
tions. Therefore, our workload had 660 queries. In this context, each query has a distinct
execution cost, i.e., queries created based on the same template have different restrictive
attributes in the where clause.

Figure 2(a) shows the cost reduction to randomly execute the 660 queries. Given
that different RDBMSs have different query cost units, we present the reduction per-
centage of each RDBMS considering its own cost units when compared to executing the
workload on that RDBMS without any tuning actions.

It is possible to see (Figure 2(a)) that in all scenarios, the self-tuning tools pro-
duced significant cost reductions. The tuning strategies employed for the commercial
(and more robust) RDBMSs, reduced the original costs up to 3/4. The strategy used for
the open-source RDBMS PostgreSQL, achieved an improvement of more than 95%. We

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)



104 -«

believe that this huge improvement for PostgreSQL was due to the combined use of MVs,
indexes and partial indexes. In order to further explain these improvements, it is necessary
to describe a bit the TPC-H query costs.

The query execution costs for instances from the same template manage to have
the same order of magnitude (e.g., all instances of Q1 have almost the same cost). There-
fore, the most critical differences occur between the group of queries: firstly, Q17 and
Q20, and secondly, the other queries (Figure 2(b)). We can see that the queries based on
templates Q17 and Q20 correspond to 99% of the workload execution cost, while the sum
of the costs of all other queries represents only 1%.

Figure 3 shows that our three self-tuning tools improved most of the queries of the
workload. Regarding the low cost queries, the results are good for most of them, though
some queries exhibited only small cost reductions.

However, huge performance improvements were obtained when improving the
most expensive queries of the TPC-H benchmark: Q17 and Q20 (Figure 3). The impres-
sive cost reduction obtained by the PostgreSQL tuning tool may be explained by the use
of materialized views, indexes, and partial indexes together to answer these queries. Ma-
terialized views are data structures that precompute query answers to use them later. The
answer was just ready on the materialized view structures when the RDBMS executed a
query based on templates Q17 or Q20.

It is worth mentioning that the creation of materialized views can have a high cost
as it computes all possible answers to a query template. The algorithms implemented in
our tool did not create materialized views for all query templates, but only for the top-k
most expensive queries. The discussion about these algorithms is out of scope here, but
they are well described in [Agrawal et al. 2006] [Shasha and Bonnet 2002] [Zhou et al.
2008] [Shirkova 2011] [Halevy 2001].

Overall, the experimental tests showed that the self-tuning tools instantiated
through our framework could produce effective and useful tuning results, employing dif-
ferent tuning strategies on different RDBMS. They could execute simultaneously and
improve a well-known database benchmark workload.

OTHERS

Q20 v
78%
Q17

Cost reduction (in %)

N 6? L P
Q Q3
Q
Q10 Q1
Qll
Q22
Q12 Q21
DBMS QlQ314 Q19
| I iosms xBBpewms I BrosterESQL Ui o1
(a) Workload cost reduction for different (b) TPC-H workload cost distribution on
DBMSs. PostgreSQL with 10GB database.
Figure 2

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)



Rafael Pereira de Oliveira et al. e 105

Average cost in % related to the original cost without tuning actions
!

Ql Q2 Q3 Q4 QS Q6 Q7 Q8 Q9 Q10Q11Q12Q13 Q14Q15 Q16Q17 Q18Q19Q20Q21 Q22
TPC-H Queries

Cost reduction (in %)
%

0

| Bnpevs xBlpBMS Y POSTGRESQL

Figure 3. Cost reduction by query template for different RDBMS

The main evidence found was that our reuse strategy did not restrict the capacity
of our self-tuning tools. Even shared features of the framework kernel maintained their
specific characteristics isolated and encapsulated. These results support the claim that our
framework represents a valuable contribution to the community, enabling researchers to
create and evaluate useful self-tuning tools employing different strategies with less effort
by employing a software reuse strategy.

5. Related Work

Database self-tuning tools are, by nature, intrinsically complex. There are many special-
ized and vendor-specific tools, such as for workload monitoring [Curino et al. 2011] [SQL
Server Profile 2017], and others that monitor and perform tuning actions in automatic or
semi-automatic ways [Aken et al. 2017].

Among the ones that perform automatic database tuning, tools can be specialized
in different types of tuning actions including indexes [Ameri 2016] [Tran et al. 2015], par-
tial indexes [Stonebraker 1989], materialized views [Halevy 2001] [Chirkova and Yang
2012] [Baralis et al. 1997] and RDBMS parameters [Duan et al. 2009]. They can also
perform more than one tuning action type on the same job [Ameri 2016] [Belknap et al.
2009] [Kimura et al. 2010] [de Oliveira et al. 2019] [Almeida et al. 2019]. Such tools
typically implement specific strategies, thus requiring significant software design and im-
plementation efforts. However, they offer no path towards reuse of these efforts nor a
systematized platform to compare tuning strategies.

The work of [Aken et al. 2017] presents a new strategy based on machine learning
models to test several knob configurations and propose them to DBAs. By the nature of
machine learning models, we can consider this work to exhibit some level of flexibility to
add new tuning action types. However, the authors do not discuss reuse and extensibility
of tuning strategies, since their primary goal is to find the best knob configuration. This
flexibility is more a consequence of the machine learning approach than the proposal of
their work.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)




106 -

Regarding self-tuning tools using multiple tuning action types, the work of Pavlo
et al. [Pavlo et al. 2017] presents a considerable number of distinct tuning action types
as indexes, materialized views, partitioning, knob configuration, query optimization and
features about database migration and resource elasticity. Still, their work concerns a new
self-driven database management system. Even though they present strategies to include
further tuning actions, they can not be used for other RDBMSs.

The work by Almeida et al. [de Oliveira et al. 2019] [Almeida et al. 2019] presents
a framework to support the DBA on choices concerning tuning activities. Their research
work includes the proposal of an ontology for database tuning that enables a formal ap-
proach for decisions and inferences. It permits the inclusion of new tuning types through
the extension of that ontology. It might be one of the closest related works found in the
literature. However, the primary goal of using the ontology is to offer transparency and
confidence in the available tuning alternatives concerning the possible RDBMS scenarios
through a concrete justification for the decisions made. Although a well-defined way to
include new tuning practices is presented, a concrete and extensible tooling to compare
self-tuning strategies across multiple RDBMS:s is not available, in contrast to our work.

6. Concluding Remarks

Given the variety of approaches and implementations of self-tuning tools, it would be
desirable to evaluate existing database self-tuning strategies, particularly recent and new
heuristics, in a standard testbed.

In this paper, we presented a reuse-oriented framework approach towards assess-
ing and comparing automatic relational database tuning strategies. We used our frame-
work to instantiate three customized automated database tuning tools, employing strate-
gies using combinations of different tuning actions for various RDBMSs.

We then evaluated these tools using a query workload derived from a known
database benchmark. Results showed that the framework enabled instantiating useful
customized self-tuning tools, which provided significant query execution cost reductions.

The main benefits of sharing this framework with the database research commu-
nity, with respect to evaluating different tuning strategies, are twofold:

1. Instead of developing a complete tool, using the framework only specific hot-spots
need to be extended, concerning the tuning strategies to be compared and adapting
the tools to the RDBMS of interest; and

2. According to our results, the framework provides a common testbed that does not
restrict the capacity of self-tuning tools and enables fair experimental comparisons
by sharing main common features that are not related to the experimental factor
of interest (i.e., the tuning strategy and the adaptation to the RDBMS).

The developed framework is open-sourced' and can be further evolved by the
scientific community to create and evaluate customized database self-tuning tools.

References

Agrawal, S., Chu, E., and Narasayya, V. (2006). Automatic physical design tuning: Work-
load as a sequence. In Proc. ACM SIGMOD, pages 683—-694.

Thttps://github.com/BioBD/tap

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)



Rafael Pereira de Oliveira et al. * 107

Aken, D. V., Pavlo, A., Gordon, G. J., and Zhang, B. (2017). Automatic database manage-
ment system tuning through large-scale machine learning. In Procs. ACM SIGMOD,
pages 1009-1024.

Almeida, A. C., Campos, M. L. M., Baido, F. A., Lifschitz, S., de Oliveira, R. P., and
Schwabe, D. (2019). An ontological perspective for database tuning heuristics. In
Conceptual Modeling - 38th Intl Conf. ER, Proceedings, pages 240-254.

Alvaro, A. and Garcia, V. C. (2007). C.R.U.L.S.E: Component Reuse in Software Engi-
neering. Number May 2014. C.E.S.A.R. Books.

Ameri, P. (2016). On a self-tuning index recommendation approach for databases. In
IEEE 32nd Int. Conf. on Data Engineering Workshops (ICDEW), pages 201-205.

Baralis, E., Paraboschi, S., and Teniente, E. (1997). Materialized views selection in a
multidimensional database. In Procs. VLDB, pages 156—165.

Belknap, P., Dageville, B., Dias, K., and Yagoub, K. (2009). Self-tuning for SQL perfor-
mance in oracle database 11g. Procs. IEEE ICDE, pages 1694—-1700.

Bonnet, P. and Shasha, D. E. (2009). Index Tuning. Encyclopedia of Database Systems,
pages 1433-1435.

Bruno, N. (2012). Automated Physical Database Design and Tuning. CRC Press.

Chaudhuri, S. and Narasayya, V. (2007). Self-tuning database systems: A decade of
progress. In Proc. of VLDB, VLDB ’07, pages 3—14, Vienna, Austria. VLDB.

Chaudhuri, S. and Weikum, G. (2005). Foundations of automated database tuning. In
Procs. ACM SIGMOD, pages 964-965.

Chen, S., Nascimento, M. a., Ooi, B. C., and Tan, K.-L. (2010). Continuous online index
tuning in moving object databases. ACM Trans. on Database Systems, 35(3):1-51.

Chirkova, R. and Yang, J. (2012). Materialized views. Foundations and Trends in
Databases, 4(4):295-405.

Curino, C., Jones, E. P. C., Madden, S., and Balakrishnan, H. (2011). Workload-aware
database monitoring and consolidation. In Procs. ACM SIGMOD, pages 313-324.

de Oliveira, R. P., Baido, F. A., Almeida, A. C., Schwabe, D., and Lifschitz, S. (2019).
Outer-tuning: an integration of rules, ontology and RDBMS. In Procs SBSI, pages
60:1-60:8.

Duan, S., Thummala, V., and Babu, S. (2009). Tuning database configuration parameters
with ituned. Proc. VLDB, 2:1246-1257.

Fayad, M. and Schmidt, D. C. (1997). Object-oriented application frameworks. Commu-
nications of the ACM, 40(10):32-38.

Fayad, M., Schmidt, D. C., and Johnson, R. E. (1999). Building application frameworks:
object-oriented foundations of framework design. Wiley.

Frakes, W. and Kang, K. (2005). Software reuse research: status and future. /IEEE T. on
Software Engineering, 31(7):529-536.

Fuentes, A., Almeida, A., Costa, R., Braganholo, V., and Lifschitz, S. (2018). Database
tuning with partial indexes. In Procs. SBBD, pages 181-192.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)



108 -

Halevy, A. Y. (2001). Answering queries using views: A survey. The VLDB Journal,
10(4):270-294.

Kimura, H., Huo, G., Rasin, A., Madden, S., and Zdonik, S. B. (2010). Coradd: Cor-
relation aware database designer for materialized views and indexes. Proc. VLDB,
3(1-2):1103-1113.

Monteiro, J. M. (2008). Uma abordagem ndo-intrusiva para a manutencdo automdtica
do projeto fisico de banco de dados. PhD thesis, . Pontificia Universidade Catdlica do
Rio de Janeiro - PUC-RIO.

Pavlo, A., Angulo, G., Arulraj, J., Lin, H., Lin, J., Ma, L., Menon, P., Mowry, T. C.,
Perron, M., Quabh, I., Santurkar, S., Tomasic, A., Toor, S., Aken, D. V., Wang, Z., Wu,
Y., Xian, R., and Zhang, T. (2017). Self-driving database management systems. In
Proc. CIDR, pages 8—13.

Peters, J. F. and Pedrycz, W. (2000). Software engineering: an engineering approach.
Worldwide S. Comp. Science. New Jersey.

PGTune (2019). PGTune. http://pgfoundry.org/projects/pgtune/.

Piatetsky-Shapiro, G. (1983). The Optimal Selection of Secondary Indices is NP-
complete. SIGMOD Rec., 13(2):72-75.

Sametinger, J. (1997). Software Engineering with Reusable Components. Springer-Verlag
Berlin Heidelberg.

Shasha, D. and Bonnet, P. (2002). Database Tuning: Principles, Experiments, and Trou-
bleshooting Techniques. Elsevier Science, San Francisco, CA, USA.

Shirkova, R. (2011). Materialized Views. Foundations and Trends in Databases,
4(4):295-405.

Sommerville, I. (2011). Software Engineering. Pearson Education, New York.

SQL Server Profile, M. (2017). SQL Server Profiler. https://docs.microsoft.com/en-
us/sql/tools/sql-server-profiler/.

Stonebraker, M. (1989). The case for partial indexes. SIGMOD Rec., 18(4):4—-11.

Tran, Q. T., Jimenez, 1., Wang, R., Polyzotis, N., and Ailamaki, A. (2015). Rita: An
index-tuning advisor for replicated databases. In Procs. SSDBM, pages 22:1-22:12.

Transaction Processing Performance Council (TPC) (2018). TPC-H.
http://www.tpc.org/tpch/.

Zhou, L., Xu, M., Shi, Q., and Hao, Z. (2008). Research on Materialized Views Tech-
nology in Data Warehouse. 2008 IEEE Int. Symp. on Knowledge Acquisition and
Modeling Workshop, pages 1030-1035.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)



