e 133

Identifying and Fusing Duplicate Features for Data Mining
Horténsia C. Barcelos, Mariana Recamonde-Mendoza, Viviane P. Moreira

"nstituto de Informética — Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 — 91.501-970 — Porto Alegre — RS — Brazil

Abstract. This work addresses the problem of identifying and fusing duplicate
features in machine learning datasets. Our goal is to evaluate the hypothesis
that fusing duplicate features can improve the predictive power of the data whilst
reducing training time. We propose a simple method for duplicate detection and
fusion based on a small set of features. An evaluation comparing the duplicate
detection against a manually generated ground truth obtained F1 of 0.91. Then,
the effects of fusion were measured on a mortality prediction test. The results
were inferior to the ones obtained with the original dataset. Thus we concluded
that the investigated hypothesis does not hold.

1. Introduction

The problem of identifying duplicate features has been extensively studied in the Database
field in the context of data integration. The literature on schema matching, data deduplica-
tion, and record linkage is prolific with many solutions having been proposed throughout
the years [Madhavan et al., 2001, Do and Rahm, 2002, Storer et al., 2008, Meister et al.,
2012, Bhattacharya and Getoor, 2004, Christen, 2008]. However, within the fields of ma-
chine learning (ML) and data mining, this problem is not well studied since most work 1is
devoted to devising techniques for dimensionality reduction and feature selection.

The duplicate features issue appears in situations in which data comes from differ-
ent sources (as with data integration) but also in large datasets such as medical databases.
MIMIC-III [Johnson et al., 2016], for example, is a very important healthcare dataset used
in hundreds of scientific works. It contains many events that were recorded as separate
features (e.g., arterial pressure is recorded as arterial pressure, arterial bp mean, arterial
blood pressure mean, and arterial bp mean #2), although they share the same semantics.
Whenever different sources or information systems are involved in data collection, ML
tasks are subject to duplication and redundancy between features, making it necessary
to create a denser representation of information with minimal loss of quality. Duplicate
features lead to data sparsity (i.e., missing feature values), which is known to have a
negative impact on ML algorithms. Moreover, not only fitting high dimensional data is
computationally expensive, but it is also prone to overfitting due to high complexity.

In this context, identifying and fusing duplicate features could potentially bring
gains in terms of prediction quality and computational costs by reducing data sparsity and
dimensionality. We note, however, that duplicate features fusion differs from dimension-
ality reduction techniques based on feature extraction (e.g., Principal Component Analy-
sis). Whereas the latter produces new features in a lower-dimensional space by creating
linear combinations of the original variables, regardless of their semantics, feature fusion
aims at preserving the underlying semantics of the data by aggregating information for
closely-related features in a domain-specific fashion.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

134

Manually evaluating a dataset in search for duplicate features is unfeasible, as
pairwise comparisons are required. A small dataset with 100 features would require an
expert to evaluate almost SK pairs. Thus, to minimize the effort from the domain special-
ist, feature fusion methods should be able to learn the fusion rules from a small annotated
sample. The model derived from the sample can then be applied to the complete dataset.

The goal of this paper is to evaluate the hypothesis that fusing duplicate features
can improve the predictive power of the data whilst reducing training time. In order to
do that, we propose a set of fusion features that capture evidences from different sources.
These evidences are fed to a classification algorithm. We compared three types of al-
gorithms: a traditional method (Random Forest) [Breiman, 2001]; and two methods that
require only positive instances, the Positive Unlabeled method SKC [Bao et al., 2018] and
One Class Classification Support Vector Machine (OSVM) [Scholkopf et al., 2000].

The fusion methods were applied to MIMIC-III [Johnson et al., 2016] in two ways.
First, we performed an intrinsic evaluation to measure the quality of the duplicate feature
detection. The results have shown that duplicate detection can achieve an F1 of 0.91 using
our proposed features. Then, we ran an extrinsic evaluation to assess the effects of feature
fusion on a mortality prediction task. With the extrinsic evaluation, we test our hypothesis
regarding the benefit of feature fusion. These results do not support the hypothesis since
learning from the original (unfused) dataset yielded better classification results.

2. Background

In this section, we summarize some important concepts in the context of the problem of
fusing duplicate features.

2.1. Supervised Learning Algorithms

The context of this work involves supervised learning algorithms, i.e., a subclass of ML
in which a model is learned from annotated training instances and is further applied to
classify unseen data. Several algorithms have been proposed for this task and are widely
employed [Mitchell, 1997]. Below we briefly review the algorithms adopted in our work.

Naive Bayes (NB) is a probabilistic classifier based on Bayes’ theorem, with an
assumption of independence among predictors. NB computes the posterior probability of
each possible class y given our prior knowledge, represented by the input feature vector
X = (zy, g, ...,vx) from which conditional probabilities are estimated. The class that
maximizes the posterior probability is returned by the classifier [Mitchell, 1997].

Random Forest (RF) is a tree-based ensemble algorithm, well known for its pos-
itive impact on performance variance. RF groups several Decision Trees with different
branch structures that generate different paths. The tree outputs are combined in such a
way that the RF output is generated from the class that appeared most often among the
set of tree outputs present in the forest [Breiman, 2001]. Thus, it is necessary to configure
the parameters such as (1) number of trees to be used, (i1) the measure of the quality of a
split, such as gini for the Gini impurity and entropy for the information gain and (iii) the
maximum depth of the tree.

2.2. One-class Classification

One-class Classification (OCC) works with the premise that the classifier should identify
whether the new instance belongs to a target class. It is applicable to problems where neg-

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Horténsia C. Barcelos et al. * 135

ative instances represent failures, anomalies, or errors, making negative instances difficult
to obtain. For this reason, OCC defines the classification limit around the positive class in
order to allow the classifier to accept as much data as possible as a positive class and to
minimize the probability of accepting data outside the target class. The difficulty lies in
deciding, using only positive data, how narrow this boundary should be around the data
and what attributes of these instances should be used to assist in the separation between
positive and negative classes [Khan and Madden, 2014].

The OCC-Support Vector Machine (OSVM) algorithm is a modification of the
Support Vector Machine (SVM) method that works according to the OCC premise, being
used mainly in problems of anomaly detection. Scholkopf et al. [2000] developed an
algorithm that returns +1 if the instance is within a small region that captures most of the
data, which would be considered as the target class that share similar characteristics, and
-1 for data outside that region. This way, when generating a hyperplane that separates
the space, this function is used when the apprentice machine receives a new instance and
must evaluate in which region it will be. Depending on the region, it will be labeled
as positive or negative. This type of classifier prioritizes learning the characteristics of
the positive class; for this reason its training phase uses only positive instances. The
parameters that need to be configured for OSVM are the kernel type (linear, poly, rbf,
sigmoid), the kernel coefficient (), and the limit between the fraction of training errors
and the support vectors.

2.3. Positive-Unlabeled Learning

Positive-Unlabeled Learning (PUL) presents a different approach to training data: it as-
sumes that all labeled input data is positive and that the remaining unlabeled data for
the problem can be either positive or negative. PUL methods are different because both
positive and unlabeled samples are used during the training phase. Bao et al. [2018] pro-
posed the Set Kernel Classifier (SKC) method based on PUL, which dealt with this type
of classification along with another learning problem, called Multiple Instance Learning.
Their work is based on sets of instances called bags that are labeled as follows: if there is
at least one positive instance, then the bag is labeled as positive; if there are no positive
instances, then the bag is labeled as negative.

Two important parameters that must be configured when using PUL are the class
prior, i.e., the probability of the positive class, and the regularization term (\). The class
prior, in PUL problems, cannot be calculated since only a small sample labeled as positive
is known during classifier training. Thus, during their experiments, Plessis et al. [2015]
used variations of the class prior, however, they suggest that these parameters should be
known or estimated at training time.

2.4. Classifier Evaluation

Classifier evaluation is done by comparing the predicted labels against ground truth la-
bels. Some of the most widely used evaluation metrics are:

e Accuracy, which measures the proportion of the correctly classified instances.

e Precision, which measures what proportion of the instances that were classified as be-
longing to a given class, in fact belong to that class.

e Recall, which measures what proportion of the instances that belong to a given class
that were assigned to the class by the classifier. The recall of the positive class is also

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

136

called TR_Rate.

e F1, which is the harmonic mean between precision and recall.
e FP_Rate, which measures the proportion of false positives.

e FN_Rate, which measures the proportion of false negatives.

In order to reduce the effects of variability, cross-validation (CV) [Kohavi, 1995]
is typically employed. It consists in splitting the dataset into k-folds, with k-1 folds being
used for training and the remaining fold used for testing. Training and test folds change
k times so that all folds are used for testing. Then results of the k-folds are averaged.

3. Related Work

Feature fusion is a widely used method in the area of image classification and recognition.
Sun et al. [2004] proposed a feature fusion method based on Canonical Correlation Anal-
ysis, which uses the correlation of two groups of features as for fusion and to eliminate
redundant information between features. This reduction allowed only essential features
of the image to be maintained, showing good performance in classification tasks. Scalzo
et al. [2008] used the Feature Fusion Hierarchies model, which combines feature fusion
and decision fusion, generated by an evolutionary algorithm for the classification of gen-
der in images. This model significantly reduced the classification error when compared
with PCA. Perez et al. [2012] demonstrated that feature fusion after feature selection us-
ing mutual information measures improves the performance of gender classification in
images. Lin et al. [2015] proposed a fusion algorithm called Heterogeneous Structure
Fusion that deals with the distribution of each feature and similarity between features. It
was evaluated in image classification, face recognition, shape analysis, and infrared im-
agery. Their results revealed that this algorithm outperformed feature fusion methods for
classification problems. Our work differs from feature fusion in image classification due
to the nature of our features. Here, our scope is structured data. This work is the first to
use feature fusion to fuse duplicate features.

The task of feature fusion shares similarities with schema matching, one of the
phases of data integration that aims at identifying matching elements across different
schemas so that they can be merged. Even though both methods have similar goals,
the phases of (i) checking the data to detect the matches between the attributes and (ii)
joining the attributes that match; are different. Gal [2006] and Sutanta et al. [2016] point
to the dependence that schema matching tools have on the need for user interaction and
how attached these tools are to the Data Base Management System for which they were
designed. There is a vast literature on this topic [Bilke and Naumann, 2005, Do and Rahm,
2002, Bernstein et al., 2011]. However, schema matching solutions are designed to work
with two or more schemas to integrate. In our work, the duplicate features are considered
within a single schema.

4. Detecting and Fusing Duplicate Features

Table 1 shows a small example of duplicate and non-duplicate features. The data refers
to health measurements of patients. This example is useful to illustrate the difference
between redundant and duplicate features. Features “heart rate” and “Hr_rate” are du-
plicate, i.e., they refer to the same measurement and should thus be fused. On the other
hand, “temperature C” and “Temp F” (which record the patient’s body temperature in

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Horténsia C. Barcelos et al. * 137

Table 1. Examples of duplicate and non-duplicate features

[1 /2 f3 Ja B fo Iz s fo
Subject temperature C heart rate NBP[systolic] Hr.rate Manual BP [systolic] Temp F Venous PVCO2 Venous PVO2

1 30 71 100 35 38

2 100 120 97 40 42

3 32 75 135 32 41

Celsius and Fahrenheit, respectively) are not duplicate as they use different units of mea-
surement. Fusing them would merge values coming from different distributions, which
in turn would add noise to the learning tasks. These two features are redundant, as they
are likely to be highly correlated. Thus, a feature selection algorithm, such as a wrapper
method, is likely to discard one of them. In this paper, we focus on duplicate and not on
redundant features.

The problem addressed here can be more formally described as follows. Given
a set of original features F' = {fi, fo, ..., fu}, (fi, f;) is a pair of features, where f; €
F,f; € Fand i # j. Each original feature f; is associated with a name /; and a set
of values V; = {v,v,...,v,}. The task of identifying duplicate features determines
whether f; and f; are duplicate, i.e., refer to the same actual feature. Then, feature fusion
is responsible for merging the original features that have been identified as duplicates.
Each duplicate pair (f;, f;) is fused to became a new feature f, = f; & f;, where S is a
previously defined aggregating function and depends on the type of data. A new name [,
is created and associated to this new fused feature f7,.

Duplicate feature detection relies in a set of features that are fed into a classifier,
which creates a model from an initial set of labeled instances. Once the model is created,
it can be used to classify all pairs of features from the dataset. This is a very challenging
task because of a number of reasons:

e The number of pairs of original features to analyze can be very large, which makes
the task computationally expensive. To help mitigate this problem, the number of
features should be kept small.

e The model will need to learn from a small set of labeled instances, since labeling
is a labor-intensive task that needs to be performed by a domain-specialist.

e The number of negative pairs (i.e., pairs of features that are not duplicate) is much
larger than the number of positive pairs. This yields an extremely unbalanced
dataset, which typically poses challenges to learning algorithms. In this sense, the
use of learning schemes that rely solely on positive instances (such as the ones
presented in Sections 2.2 and 2.3) is desirable.

e Capturing the semantic similarity of the attributes is very difficult. For example,
the pair (fs, fo) from Table 1 has similar names and their values lie within the
same range. However, they are not duplicate as one refers to Carbon Dioxide and
the other to Oxygen. This example reinforces the idea that using different sources
of evidence is necessary.

4.1. Duplicate Detection

Duplicate detection is modeled as a binary classification problem. For a given pair of
original features f; and f;, the task of the classifier is to assign a label stating whether f;
and f; are duplicates. The decision as to whether any pair of original features is duplicate

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

138

is based on a set of fusion features that rely on evidences coming from different sources.
These evidences are explained next.

Evidences based on feature names. In some situations, duplicate features have similar
names. This can be seen in Table 1 as f; and f5, for example, have similar names. In
order to assess how similar two feature names are, we employed string similarity met-
rics in a similar fashion to what is done in data integration. Among the many metrics
available, we chose Levenshtein, Jaro-Winkler, and Soundex. The goal was to capture
different aspects of similarity (both syntactic and phonetic). Levenshtein, also known as
edit distance, calculates how many changes (insertions, deletions, or substitutions) are
required to transform one string into the other one. In order to calculate the similarity
using this metric, we used the Normalized Levenshtein (Eq. 1). The Jaro-Winkler simi-
larity (Eq. 2 and Eq. 3) is also based on shared characters. It considers that differences
at the beginning of the word are more significant than differences at the end. It counts
matching characters and takes transpositions into consideration. Both metrics result in a
score between 0 and 1. A score of 1 denotes that the strings are identical and a score of 0
means that the strings do not share any characters. Unlike the other two metrics, Soundex
is a phonetic algorithm that produces a representation of strings according to their sound
and then, the similarity is calculated comparing the representation of the input strings; if
they are equal, the similarity is 1; otherwise it is 0.

maz(i,j) if min(é,7) =0

L. Lev bi—l,j +1
NormLevap = 1=LevapLevas(i, j) = min Levw EZ' J 1; +1 otherwise
a,b\tJ — .

LBUGVb(Z' — 1] — 1) + 1(%7&[)].)
(1)
_ 0 ifm=0 o
simj = _ .

%(Isﬂl + % + %ﬁ) otherwise

8iMyy = simj + €p(1 — sim) 3)

Evidences from feature values. If two features are duplicate, then their values should be
within the same range. This evidence helps distinguish between duplicate and redundant
features. As shown in Table 1, the values of redundant features do not need to be in
the same range. To assess how similar the distribution of values between the original
features are, it is necessary to know their data types (i.e.,, numeric or categorical). If
both features have different types, then their similarity score is zero. If both original
features are numerical, then the Kolmogorov-Smirnov test is used. Finally, for categorical
features, the cosine similarity is used. The Kolmogorov-Smirnov test computes whether
two samples come from the same distribution. Is this hypothesis is accepted, then the
p-value resulting from the test should be high. The cosine is commonly used to measure
the similarity of two documents represented by their vectors. To calculate the cosine
similarity, original features f; and f; are transformed into d dimensional term incidence
vectors, where d is the number of distinct values in V;UV;. The vectors have the frequency
counts of each distinct term.

Dy, = sup|Fip () — Fom(z)| 4)
X

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Horténsia C. Barcelos et al. * 139

Evidences from co-occurrence. If two original features f; and f; are duplicate, then
their values tend to co-occur infrequently, i.e., instances do not normally have values for
both f; and f; simultaneously. This can be seen in Table 1, as duplicate features (fs, f5)
and (f4, fs) do not co-occur. To quantify feature co-occurrence, we compute the Jaccard
Similarity between them, according to Eq. 5. The intersection between f; and f; is the
number of instances in the dataset which have values for both f; and f;. When analyzing
a database with temporal data, the definition of intersection can be adapted to account for
events that occurred within a time interval (i.e., the same day, hour, etc.).

:fszj
JiU [

Jaccard(f;, f;) 5)

4.2. Feature Fusion

Once the duplicate features have been identified, the next step is to fuse them. The fusion
process needs to deal with merging a possibly large number of original features. For
example, if the pairs (f1, fo) and (fs, f3) are both identified as duplicate, then features f,
f2, and f3 should be fused. In order to prevent an undesirably large cascading of fusions,
we employ a threshold 6 that specifies the maximum number of original features to be
merged into a single one. In this process, original features that have a higher probability
of being duplicate should be prioritized. Hence, the pairs of original features that were
identified as duplicate are sorted in decreasing order of a score s that calculates the average
of the values of the fusion features. Then, fusion processes the pairs with highest s scores
first, merging them in groups of at most # features.

In order to fuse the values of the original features, aggregating functions (i.e., av-
erage, minimum, maximum, mode) are used to transform the feature distribution into a
single value. Hence, from a set of instances X = {z1, s, ..., x,,}, its processing cre-
ates x, = (fpalgl, fo2lgl, - fonlg]), Where g is the aggregating function used for each
original feature and r,, € X.

5. Intrinsic Evaluation

This evaluation aims to verify how well the classification methods perform on labeling
each pair of original features as duplicate or not i.e., here we perform an intrinsic evalu-
ation of the methods. The comparison was made using RF, SKC (a PUL method) [Bao
et al., 2018], and OSVM [Scholkopf et al., 2000]. In the next subsections, we describe
data preparation for these experiments, model training procedures, and their results.

5.1. Materials and Methods

Data. Our data comes from the MIMIC-III v1.4 database [Johnson et al., 2016], which
contains over 40K patients and thousands of variables. The patients are medical and
surgical who were admitted to an Intensive Care Unit at a hospital in Boston-USA. Each
patient has a number of associated events (i.e., measurements for vital signs, values of
laboratory tests, etc.). These events are the original features in our setting. This dataset
was chosen because it has events stored with different ids but that represent the same
event. This is a known issue that has made its organizers list the identified occurrences
in a repository!. For example, there are six features referring to Systolic Arterial Blood

Thttps://github.com/MIT-LCP/mimic-code/blob/master/concepts/firstday/vitals-first-day.sql

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

140 -

Test Train
I ==
il "l Forest
Test Train
s—{EDDLL

Truth

Test Train

HEENE
L]

Unlabeled Positive Megative

Y

SKC

w

h A

OsVM

A 4

Figure 1. Configuration of training and testing datasets of each classifier.

Pressure. The dataset has 6,460 events (i.e., original features), so a complete analysis to
determine duplicate events would require 20,282,570 pairwise comparisons.

Ground Truth Generation. Given the high number of original features in MIMIC-III
and the consequently huge number of feature pairs, it is unfeasible to have ground truth
labels for every pair. Thus, we worked on a sample in the following manner. We used 125
pairs of features that have already been identified as duplicate by other researchers and are
available at the MIMIC-III repository. Besides those, we adopted the following procedure
to identify further duplicate features. First, the scores for fusion features (see Section 4)
were computed for all 20M possible pairs. These pairs were sorted in decreasing order of
the average scores of the fusion features. The assumption was that pairs of features with a
higher chance of being duplicate would be at the top of the ranking. Then, 3K pairs from
the top, middle, and bottom of the ranking were selected, amounting to 9K pairs. We
then took a sample of 2,290 pairs that were manually labeled as duplicate or not duplicate
by a medical doctor. At the end of the process, our ground truth has 338 pairs labeled
as duplicate and 1,952 pairs labeled as non-duplicate. The sample for which the ground
truth was generated amounts to 0.1% of the possible pairs in the original dataset.

Tools. In order to calculate the values for the fusion features, we used different tools and
libraries. The St rsim library? was used to calculate the Normalized Levenshtein and
Jaro-Winkler. The Jellyfish library® was used to calculate the scores for Soundex. The
Kolmogorov-Smirnov statistic was computed using SciPy*. Finally, Scikit-learn® was
used for the cosine similarity.

Experimental procedure. Cross-validation was performed using five stratified folds,
according to Figure 1. The RF classifier considered both duplicate and non-duplicate la-
bels. For OSVM, training used only the duplicate instances. The non-duplicate instances
were evenly distributed across the test folds. For SKC, the non-duplicate instances were

Zhttps://github.com/luozhouyang/python-string-similarity

3https://github.com/jamesturk/jellyfish
“https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.stats.ks_2samp.html
Shttps://scikit-learn.org/stable/modules/generated/sklearn. metrics.pairwise.cosine_similarity.html

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Horténsia C. Barcelos et al. * 141

Table 2. Results for the Intrinsic Evaluation — Feature Fusion

OSVM SKC RF
TP Rate/Recall 0.654 0.766 0.867

Precision 0.781 0.615 0.958
Accuracy 0.922 0.895 0.975
FP Rate 0.032 0.083 0.007
FN Rate 0.346 0.234 0.133
F1 0.712 0.682 0.910

considered unlabeled for training and the folds were divided into positive and unlabeled
bags with three instances each. During test, the non-duplicate instances remained negative
and the fold was divided into bags with only one instance.

After evaluating several parameters configurations for the algorithms, the best
ones were defined as follows. OSVM: RBF kernel, kernel coefficient v = 0.25, and the
limit between the fraction of training errors and the support vectors nu = 0.35. SKC:
training error rate (\) = 0.0001 and the positive class probability (prior) = 0.15. RF: num-
ber of trees n_trees = 250, the function that measures the quality of the division criterion
= Gini (Index), and max_depth = None.

5.2. Results

Table 2 shows the results for the intrinsic evaluation. RF was the best performer across
all metrics. These results indicate that having negative instances helps the distinction
between duplicate and non-duplicate features, despite the existing class imbalance. In a
comparison between OSVM and SKC, the former is better in terms of precision, accuracy,
FP rate, and F1, while the latter is better in terms of TP Rate and FN Rate.

In order to assess whether the algorithms agreed on the instances they labeled as
duplicate/not duplicate, we plotted the intersections of the predictions of each method
w.r.t each other and the ground truth (i.e., the "True Positive” group). The Venn diagrams
are shown in Figure 2. We can see that 63% (212/338) of the duplicate features were iden-
tified by all three algorithms. For the non-duplicate features, the agreement was higher,
reaching 91% (1767/1952).

Once the classification models were learned using the annotated data, they were
used to label the complete dataset containing all possible pairs of original features. The
number of instances labeled in each class by the three methods are shown in Table 3.

Table 3. Number of instances (i.e., pair of original features) labeled as duplicate
and not duplicate by each classifier.

OSVM SKC RF

Duplicate 4,264,367 2,984,812 4,730,359
Not Duplicate 16,595,913 17,875,468 16,129,921

We also performed a manual analysis of the errors made by the classifiers. As a
general tendency, we noticed that false positives tended to have highly similar names and
distributions such as temperature celsius and temperature f. As for false
negatives, they typically either have highly similar names and high co-occurrence such

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

142

True

(a) Duplicate (b) Not Duplicate

Figure 2. Diagrams showing the intersection among classifiers’ predictions and
the ground truth for the (a) positive (duplicate) and (b) negative (not dupli-
cate) examples in our dataset.

as tpa#mg/hr and tpa#2 mg/hr or they have low similarity between their names,
zero co-occurrence, and high similarity of distribution such as glucose (70-105)
and bloodglucose.

6. Extrinsic Evaluation

This evaluation aims to assess the impact that feature fusion has on a classification task,
i.e., an extrinsic evaluation. The task used in the tests is mortality prediction, an important
topic in medical informatics.

6.1. Materials and Methods

Data. As our original features come from MIMIC-III (described in Sec. 5), the data used
for this evaluation also comes from this same dataset. Subjects were adult patients and the
instances had only events and measurements from the first 24 hours of their last hospital
stay. The task is to predict whether a patient will die based on information collected early
at the hospital stay. We took a random sample of 13,171 patients (out of the 32,507 in the
complete dataset). The sample has 4,563 deceased and 8,608 surviving patients.

Tools. Weka [Hall et al., 2009] was used for running the classifiers.

Experimental Procedure. We used the Naive Bayes classifier with ten-fold CV. The
threshold for feature fusion was 6 = 15. Experimental runs were done with each method
for feature fusion and two baselines — the original (unfused) dataset and also fusing only
the features that we identified as duplicate in the ground truth. Due to computational
limitations only Naive Bayes classifier was used in this evaluation.

6.2. Results

The results for the mortality prediction task are shown in Table 4. We can see that all
methods of feature fusion had a negative impact on the quality of the prediction. A paired
t-test was used to compare F1 results (which are normally distributed) across the ten folds
for each original and fused dataset. The results indicated that the reduction is statisti-
cally significant using o = 0.01. Even the fusion based on the ground truth lowered the

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Horténsia C. Barcelos et al. * 143

Table 4. Results for the Extrinsic Evaluation — Mortality Prediction

Metric Original Ground Truth OSVM SKC RF
TP Rate/Recall 0.773 0.772 0.755 0.759 0.762
Precision 0.713 0.712 0.699 0.700 0.700
Accuracy 0.647 0.646 0.633 0.633 0.631
FP Rate 0.419 0.420 0.432 0.434 0438
FN Rate 0.227 0.228 0.245 0.241 0.238
F1 0.655 0.654 0.641 0.640 0.639
Training Time (seconds) 2.615 2.463 1.000 1.107 1.098
#Features 6,108 6,010 2,063 2,119 2,328

scores. This fact leads us to conclude that the hypothesis that fusing duplicate features
can improve the predictive power of the data could not be validated in our experiments.

As expected, as a result of the reduction in the number of features, model training
was much faster on the fused datasets. Training time was reduced to almost a third of the
time as a result of the reduction in the number of features by the same proportion. We can
see here that the duplicate detection process had many false positives since the duplicates
actually represent a much smaller fraction of the set of original features.

7. Conclusion

In medical informatics, a recurrent problem found in datasets is duplicate features derived
from similar, decentralized data sources, which results in greater dimensionality without
proportionally increasing the value of the data. The hypothesis that drove this work was
that fusing duplicate features could result in better generalization power of classifiers.
Although the results for the intrinsic evaluation were quite high, the extrinsic evaluation
showed that fusion was too aggressive. The duplicate detection phase should be further
investigated, looking for more evidences that can assist in the process of labeling duplicate
feature pairs. Training time was improved for extrinsic evaluation, but predictive power
failed in surpassing baselines values.

We note, however, that our work had some important limitations. First, our tests
were done over a single dataset. Despite being a real, challenging medical dataset, exper-
iments on other datasets are needed to further investigate our hypothesis and improve our
understanding on this topic. Moreover, further experiments could be performed exploring
different proportions of labeled data for the duplicate features (which in our work was
only 0.1% of the possible pairs in the original dataset), as well as new features aiming
at reducing false positives. Finally, whereas lower dimensionality decreases model com-
plexity, which in turn contributes to a better generalization power, we could not investigate
more deeply in our scenario due to the lack of independent data.

Acknowledgements. This work was partially supported by CAPES Finance Code 001.

References

Han Bao, Tomoya Sakai, Issei Sato, and Masashi Sugiyama. Convex formulation of multiple
instance learning from positive and unlabeled bags. Neural Networks, 105:132 — 141, 2018.
Philip A Bernstein, Jayant Madhavan, and Erhard Rahm. Generic schema matching, ten years

later. Proc. of the VLDB Endowment, 4(11):695-701, 2011.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

144

Indrajit Bhattacharya and Lise Getoor. Iterative record linkage for cleaning and integration.
In ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,
DMKD, page 11-18, 2004.

Alexander Bilke and Felix Naumann. Schema matching using duplicates. In International Con-
ference on Data Engineering (ICDE), pages 69—-80, 2005.

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

Peter Christen. Febrl -: An open source data cleaning, deduplication and record linkage system
with a graphical user interface. In International Conference on Knowledge Discovery and Data
Mining, page 1065-1068, 2008.

Hong-Hai Do and Erhard Rahm. Coma—a system for flexible combination of schema matching
approaches. In International Conference on Very Large Databases, pages 610-621, 2002.

Avigdor Gal. Why is schema matching tough and what can we do about it? ACM Sigmod Record,
35(4):2-5, 2006.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H Wit-
ten. The weka data mining software: an update. ACM SIGKDD explorations newsletter, 11(1):
10-18, 20009.

Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database, 2016.

Shehroz S Khan and Michael G Madden. One-class classification: taxonomy of study and review
of techniques. The Knowledge Engineering Review, 29(3):345-374, 2014.

Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selec-
tion. International Joint Conference on Artificial Intelligence, 1995.

Guangfeng Lin, Guoliang Fan, Xiaobing Kang, Erhu Zhang, and Liangjiang Yu. Heterogeneous
feature structure fusion for classification. Pattern Recognition, 2015.

Jayant Madhavan, Philip A Bernstein, and Erhard Rahm. Generic schema matching with cupid.
In VLDB, volume 1, pages 49-58, 2001.

Dirk Meister, Jurgen Kaiser, Andre Brinkmann, Toni Cortes, Michael Kuhn, and Julian Kunkel.
A study on data deduplication in hpc storage systems. In International Conference on High
Performance Computing, Networking, Storage and Analysis, pages 1-11, 2012.

Tom M. Mitchell. Machine Learning. McGraw-Hill, mar 1997.

Claudio Perez, Juan Tapia, Pablo Estévez, and Claudio Held. Gender classification from face im-
ages using mutual information and feature fusion. International Journal of Optomechatronics,
2012.

Marthinus Christoffel Du Plessis, Gang Niu, and Masashi Sugiyama. Convex formulation for
learning from positive and unlabeled data. In International Conference on Machine Learning,
volume 37, pages 1386—1394, jun 2015.

Fabien Scalzo, George Bebis, Mircea Nicolescu, Leandro Loss, and Alireza Tavakkoli. Feature
fusion hierarchies for gender classification. International Conference on Pattern Recognition,
2008.

Bernhard Schélkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and John C Platt.
Support vector method for novelty detection. In Advances in neural information processing
systems, pages 582-588, 2000.

Mark W. Storer, Kevin Greenan, Darrell D.E. Long, and Ethan L. Miller. Secure data deduplica-
tion. In International Workshop on Storage Security and Survivability, page 1-10, New York,
NY, USA, 2008.

Quan-Sen Sun, Sheng-Gen Zeng, Yan Liu, Pheng-Ann Heng, and De-Shen Xia. A new method of
feature fusion and its application in image recognition. Pattern Recognition, 2004.

Edhy Sutanta, Retantyo Wardoyo, Khabib Mustofa, and Edi Winarko. Survey: Models and pro-
totypes of schema matching. International Journal of Electrical and Computer Engineering,
2016.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

