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Abstract. The accuracy of machine learning models implementing classification
tasks is strongly dependent on the quality of the training dataset. This is a chal-
lenge for domains where data is not abundant, such as personalized medicine,
or unbalance, as in the case of images of plant species, where some species have
very few samples while others offer large number of samples. In both scenarios,
the resulting models tend to offer poor performance. In this paper we present
two techniques to face this challenge. Firstly, we present a data augmentation
method called SAGAD, based on conditional entropy. SAGAD can balance mi-
nority classes in conjunction with the increase of the overall size of the training
set. In our experiments, the application of SAGAD in small data problems with
different machine learning algorithms yielded significant improvement in per-
formance. We additionally present an extension of SAGAD for iterative learning
algorithms, called DABEL, which generates new samples for each epoch using
an optimization approach that continuously improves the model’s performance.
The adoption of SAGAD and DABEL consistently extends the training dataset
towards improved target classification performance.

1. Introduction
Learning algorithms generalize the information captured from a large number of samples
enabling the construction of models for challenging scenarios, such as: patient diagnosis;
plant species classification; and drug recommendation, just to name a few. Despite its
adoption in a number of fields, there is still a group of applications where the amount
of available data is not enough. As an example, consider athlete’s training suggestions
[Porto et al. 2012], which is very dependent on the characteristics of each individual and
similar to what is found in personalized medicine. In those few samples scenarios, learn-
ing algorithms are not given enough samples so that the model achieve desirable general-
ization capability.

Problems associated with small number of instances in the training set have been
previously studied ([Vanegas et al. 2018], [Prince and De Vos 2018]). Also, similar prob-
lems have been investigated in the context of sample unbalance [Cugliari et al. 2019].

To tackle these issues, we propose SAGAD a method based on data augmenta-
tion to mitigate the learning algorithm generalization problems caused by unbalanced and
small data. The SAGAD method preserves the relationships between attribute values, as
well as their distributions, when applying data augmentation. In addition, for machine
learning problems that use iteractive algorithms, we present DABEL (Data Generation
Based on Complexity per Classes) to optimize the data generated quality towards model
performance improvement.



Previous work in machine learning that use data augmentation based techniques,
focus on generating data to feed the algorithm based on some heuristics, independent of
the target learning algorithm [Shorten and Khoshgoftaar 2019]. When only considering
SAGAD, our work becomes similar to the usual strategies, as the adopted heuristic is
based on feature distribution and relationship between features. However, as we consider
DABEL, we additionally include an optimization step that guides the data augmentation
process towards improving the performance of the existing model.

The remainder of this paper is organized as follows. Section 2 presents some
preliminary concepts. Next, Section 3, presents the SAGAD and DABEL algorithms.
Then, in Section 4, we describe the experimental set-up and, in section 5, we discuss the
evaluation results. Finally, the conclusions and future work are presented in section 6.

2. Preliminaries

2.1. Machine Learning

Machine learning is a subfield of artificial intelligence, which aims to create models based
on seen data. Two large subgroups of machine learning are known as supervised learning
and unsupervised learning. The first aims to learn a function y = F (x) using a set of
labeled data, (xi, yi), during a process known as training. At each sample i, xi describes a
list of features and yi is the target variable. The learned function F (x), once trained, can
be executed on new values of x to predict what should be its corresponding y value. Some
examples of learning algorithms include: Logistic Regression; Decision Trees; Support
Vector Machines; Random Forests; and Neural networks, among others. Unsupervised
learning, on the other hand, considers unlabeled data. In this scenario, one aims to apply
an algorithm on the available data in order to find some form of structure or identify
groups. Some examples of unsupervised learning algorithms include: K-means/K-modes;
Auto-encoders; DBSCAN, among others.

2.2. Data Argumentation

Data augmentation is an area of study consisting of techniques to expand the sample set.
The technique introduces new samples that did not originally exist in the data, ensuring
that statistical similarity occurs between the samples. The approach is useful for var-
ious methods and domains [Van Dyk and Meng 2001]. Data argumentation techniques
are commonly used in machine learning, in scenarios where available data do not cover
the different patterns occurring on a domain. Its use can be employed to data of several
modalities.

In this context, tabular data is frequent in several domains. For example, personal-
ized medicine-based health treatment models [Zhang et al. 2019], [Chen et al. 2017] are
created for each individual patient, and since collecting many samples from a individual
is not feasible, this leads to a small data problem. Thus, data augmentation techniques can
become useful to provide more data to create generalizable models in small data domains.

This is, for a simple dataset D (composed by two attributes and two samples) this
initial data augmentation strategy is based on the generation of a new sample (denomi-
nated d3) as the mean of previous values. The synthesis of data by the mean procedure
unfortunately has several problems. One of them is that it ignores the correlation among



attributes, analyzing the attributes individually. When analyzing the attributes individ-
ually, linearity between them is assumed. In other words, there is a risk that the new
samples would not belong to the original distribution of the data.In this sense, a new set
of techniques was proposed to create synthetic data correlated with their attributes.

In this direction, it is worth to mention the growth of popular tools like SMOTE
[Chawla et al. 2002] that proposes to generate data by correlating its attributes. SMOTE
finds points of the same class and interpolates among them, to generate new samples.
Initially, SMOTE was proposed only for continuous data and later updated to support
categorical data [Mukherjee and Khushi 2021].

As this particular example, several DA techniques attempt to incorporate statistical
techniques for the construction of new samples with the premise of obtain better results,
for example GANs for tabular data (GANT) [Ashrapov 2020]. Originally, GANs was
developed for imaging, but recently received modifications to the other domains. Table 1
presents a set of DA techniques.

Data Argumentation in tabular data
Techniques Categorical data Machine learning
SAGAD X
SMOTE
FAST-DAD X X
Mean using line space
SMOTE-ENC X
GAN TABULAR X X
DLTD X X

Table 1. Some of most common Data Augmentation techniques. In the table is
marked when techniques are able to be applied on categorical data and
which are based on machine learning techniques.

Table 1 classifies the different data augmentation techniques as: support for tabu-
lar data, and whether the approach adopts any ML component. The use of ML algorithms
requires some prior knowledge. Joining these principles with statistical techniques in-
creases the complexity of the method.

In this scenario, we propose a new technique in data augmentation for categorical
data, called SAGAD. This strategy is based on principles of probability with more flexible
concepts than techniques using ML.

SMOTE has as its primary hypothesis that a linear interpolation between two
neighbors of the same class generates only samples of the same class. This Hypothe-
sis is not assumed in SAGAD. We would argue that this hypothesis may not hold when
using points that are near a border between classes in the feature space. SMOTE also does
not have a synthetic sample validation step where one can stipulate a minimum threshold
of confidence that the new sample actually belongs to the desired class.

3. Methodology
In this section, we introduce the SAGAD data augmentation method for tabular data. It
consists of using the relationships among the features of the training dataset to condition



the generation of new samples. Additionally, we introduce the DABEL (Data generAtion
Based on complExity per cLasses) method. DABEL is applied on neural networks and
aims to optimize the data generated by considering how ambiguous different classes are.

3.1. SAGAD

Consider a dataset D, with D = (a1, a2, . . . , an), such as au, 1 ≤ u ≤ n, compose D
schema attributes. Also consider that au ⊂ Domz, where Domz is a set of values, called
domain values. Now, consider additionally that D is used to train a learning algorithm A,
for example: decision tree, Support Vector Machine (SVM), etc., producing a machine
learning-based model M . Moreover, card(D) indicates the number of samples r in D,
and card(au) the number of distinct values contained in the au.

The problem studied is to produce a dataset D′ = (a1, a2, . . . , an), with
schema(D) = schema(D′) and card(D′) >> card(D). Consider P a probability dis-
tribution function (PDF). We want to obtain D′ such that in the process of extending D,
the probability distribution of values in attributes D is kept, that is P (au) = P (a′u) for
all 1 ≤ u ≤ n. Another property observed is P (au|az) = P (a′u|a′z), u 6= z, so that
the relationships between the (au, az) pairs are maintained. To model the pdfs P (au)
and P (au|az), we use the histogram technique to approximate the P function by a set
of rectangles. To determine the optimal number of rectangles needed to represent P , the
Sturges[Sturges 1926] method was used. The process is depicted in algorithm 1, in which
we present the process of creating one sample. To create b samples of a given class, one
needs to execute the algorithm b times.

In algorithm 1, D is the dataset used in the data synthesis process. The
Target Class value c is the class value that novel samples should belong to, and
Target attribute g is the attribute name corresponding to the classification target class
in the dataset. In line two, α receives the subset of D with rows conforming to the tar-
get class ”c”, target attribute g = c. In the first loop, the algorithm traverses the set of
attributes of the dataset. hist is a function that generates the histogram of an attribute ai.
It returns a vector that denotes the start of each histogram cell, H , as well as the amount
of values contained in the corresponding cell, k. In lines 5-8, we normalize the k values
to obtain the probability density function of the column. We then calculate from it the
cumulative density function CDF .

We use a random number generator function rand() to generate a value in the
[0, 1] interval, using a uniform distribution. Given that the CDF ranges from the same
interval, we can then use the random value to map to the CDF interval. The new sample
value, line 17, is randomly picked in the interval[Hindex,Hindex+1]. The values of the
interval are then stored into the vectors ψ and φ in order to validate the sample at line 22.

Once a sample value has been generated, in line 20 we filter α to only keep the
rows contained in the interval [Hinter, Hinter+1]. The process repeats until all features
have a value, and the set of values generated constitute a novel sample. After the synthetic
sample is generated, we test the choices that led to the novel sample against the dataset
containing all classes, in order to find what is the probability the sample belongs to the
desired class. A parameter prob is provided to the function in order to reject samples that
do not have at least prob probability of being of the desired class.



Algorithm 1 SAGAD algorithm

1: SAGAD( Dataset D, Target Class value c, Target attribute g, cutoff prob)
2: α← {x ∈ D| x.g = c}
3: for i = 1, · · · , n do
4: (H, k)← hist(ai)
5: Sum←

∑
k

6: for j = 1, · · · ,m do
7: kj ← kj

sum

8: end for
9: CDF ← cumsum(k)

10: δ ← rand(U [0, 1])
11: index← 1
12: for j = 2, · · · ,m do
13: if CDFj ≤ δ then
14: index← j
15: end if
16: end for
17: samplei ← rand(U [Hindex, Hindex+1])
18: φi ← Hindex

19: ψi ← Hindex+1

20: α← {x ∈ α |Hindex ≤ x.ai ≤ Hindex+1}
21: end for
22: sample← V alidation synthetic sample(D, sample, φi, ψi, prob)
23: Return sample

3.2. Optimizing generated candidates using DABEL

In the context of a multi-class classification problem, an important result obtained from
the data augmentation procedure is to separate instances whose mappings to classes are
ambiguous. In such a context, by expanding the number of instances in ambiguous regions
of the data, we expect to improve the classification model performance.

An example of ambiguity can be seen in Figure 1, whereas we present a dataset
with 3 classes, where one is very isolated from the others and requires very few samples
to be classified. On the other hand, the green and blue points are very close to each other,
which requires a larger number of samples to better separate them.

Given that the ambiguity among classes are hard to foresee, we believe that data
augmentation optimization is a process that should be considered along model optimiza-
tion. We choose to develop DABEL to extend SAGAD, when considering iterative algo-
rithms. The algorithm relies on the iterative computation of the loss function per epoch.

DABEL is combined with SAGAD so that new samples are generated for each
epoch, in the hope of guiding data augmentation towards prediction accuracy improve-
ment. During this process, we favor more ambiguous classes in the data generation pro-
cess. The number of generated samples for a class t is presented in equation 1.



Figure 1. PCA visualization in iris dataset

Samplec = S ∗ lossc∑n
L=1 lossL

(1)

where

• Samplec = Synthetic data for Class c, generated for next epoch;
• S= Total number of samples generated for all classes;
• Lossc = Loss for class c;
• LossL = Loss for class L.

By adopting our proposed method for generating the training set, we aim to feed
more samples of harder classes to the network until it can achieve a satisfiable loss value
on the validation set for all classes. We expect that by using such an approach the network
can focus on harder classes that present greater ambiguity during the training process.

In Figure 2, we present the pipeline which implements SAGAD along with
DABEL, expanding a dataset to feed it into a neural network. The dataset is divided
into training, validation, and testing.

The training data is the input to SAGAD for data generation. The output from
SAGAD is then used for training the neural network. Later the model is validated with the
validation data. At the end of the first epoch, the loss is calculated over each class using the
validation dataset. At this point, we use the loss as a measure of class ambiguity. DABEL
uses it to inform SAGAD which classes should be prioritized for the data generation
process for the next epoch. The process repeats until the model converges by reaching a
validation loss smaller than some threshold the user considers or the maximum number
of epochs are executed. Then the model can be executed in the test data to evaluate its
generalization capability. Finally, observe that the model used during the DABEL step
is a preliminary one. Once the data have been augmented, the training process can be
resumed by training the learner in the augmented training data.



Figure 2. Pipeline about data generation process using SAGAD and DABEL

4. Experiments
In this section, we present the datasets used in the validation of this work, as well as
the methodology adopted to simulate the scenario of small data. Lastly, we present the
machine learning pipeline designed to perform the experiments.

4.1. Experimental Set-up

All experiments were run using google collaboratory and deep learning models were
trained using a GPU NVIDIA Tesla K80 by using the keras package. When training
machine learning models, we used the R caret package [from Jed Wing et al. 2018]. Our
data augmentation method named SAGAD was also implemented in R and is published
under the name AugmenterR [S. Pereira et al. 2021] in CRAN. All caret models were
optimized using cross-validation with 5 folds.

In this work, the datasets Iris[Dua and Graff 2017a] and Wine Quality
[Dua and Graff 2017b] were used, with 150 and 6,497 examples, respectively. Iris and
Wine are benchmark datasets balanced an unbalanced (69% for white class and 31% for
red class), respectively. Initially, we sample the datasets, in order to simulate the problem
of small data. For both datasets, the samples present sizes N = 15, N = 25 and N = 45,
respecting the original imbalance of classes.

When training the model, the datasets were first split into train and test. The train
set contained N samples and the test set contained the rest of the data. The training set
was then further split into 70% and 30% for training and validation. The model then will
be optimized on the training set and evaluated on the test set.

In oder to create novel samples we use the following process: firstly, 1.500 data
points are generated using the training dataset in all machine learning algorithms, for
SMOTE, GANT and SAGAD. Secondly, in the method known as DABEL described in
section 3.2, 1500 datapoints were generated per epoch, where the number of samples per
class was calculated according to equation 1.



The parameters used for data creation used the default settings mentioned in the
documentation of each of the DA techniques, except in the training process for GANT, in
which the number of epochs was reduced from 500 to 20, to simulate the same computa-
tional cost of SAGAD. We repeat the process 10 times and evaluate it using f1-score.

To verify if there is statistical difference between means on the analysed tech-
niques, we performed the One Tailed T statistical test. We considered a p-value of 0.05
to reject a NULL hypothesis that SAGAD mean metric value would be smaller or equal
to the other methods. We summarise those results in Tables where ”*” represents the
alternative hypothesis, while ”-” represents the NULL hypothesis.

5. Results

Figure 3 depict the comparison of Wine dataset for 15, 25 and 45 samples. In Figure 4,
we present the same result for the Iris dataset.

Figure 3. F1-Score in Wine dataset for decision tree

Figure 4. F1-Score in Iris dataset for decision tree

Analyzing the bloxplots of the metrics in both cases, the smaller the number of
samples in the dataset, the better the performance of SAGAD. In all figures for N = 15
metrics computed on the original datasets achieved results greater than 50% prediction,



something different in the adoption of SAGAD and SMOTE. In cases N = 25, both
metric results show higher values when SAGAD and SMOTE is applied. For 45 sam-
ples, the trained model using SAGAD, SMOTE and the original dataset show equivalent
performance.

In Tables 3 and 2 we can visualize the One Tailed T statistical test results.

N SAGAD x Original SAGAD x SMOTE SAGAD x GANT
15 * - *
25 * - *
45 - - *

Table 2. Comparison of p-value for Iris dataset for decision tree

N SAGAD x Original SAGAD x SMOTE SAGAD x GANT
15 * - *
25 * - *
45 - - *

Table 3. Comparison of p-value for Wine dataset for decision tree

Note that the implementation of SAGAD obtained a better result for n = 15 and
n = 25 than original data in both tables. In all cases, SAGAD obtained a statistical
difference was in comparison to GANT and not for SMOTE.

Figure 5 depict the comparison of Wine dataset for 15, 25 and 45 samples. In
Figure 6, we present the same result for the Iris dataset.

Figure 5. F1-Score in Wine dataset for neural networks



Figure 6. F1-Score in Iris dataset for neural networks

Analyzing the bloxplots of the metrics in both cases, SAGAD, DABEL and
SMOTE proved to be effective for solving the proposed problem when data is small com-
pared to the original data and GANT. We highlight that in none of the scenarios, the
quality of the model worsens when using the proposed methodology. We note that as N
gets smaller SAGAD,SMOTE and DABEL performance outshines the other methods.

In Tables 4 and 5 we can visualize the One Tailed T statistical test results.

N DABEL x Original DABEL x SAGAD DABEL x SMOTE DABEL x GANT
15 * - - *
25 * - - *
45 * - - *

Table 4. Comparison of p-value for Wine dataset

N DABEL x Original DABEL x SAGAD DABEL x SMOTE DABEL x GANT
15 * - - *
25 * - - *
45 - - - *

Table 5. Comparison of p-value for Iris dataset

In the tests with Wine, DABEL obtained statistical difference in relation to original
data and GANT, in all cases. However, in Iris the only case that DABEL did not obtain a
statistical difference in comparison to wine is N = 45 for both metrics. To verify if there
is a difference between variances comparing SAGAD and DABEL we performed the one
tailed F statistical test assuming a null hypothesis that DABEL variance is smaller than
SAGAD variance. Results are presented on table 6. We also test for standard deviation
for SAGAD vs DABEL but due to lack of space we do not present the table results.



Results comparing variance for DABEL and SAGAD
N Iris Wine
15 * *
25 * *
45 - *

Table 6. Comparison between variances between DABEL and SAGAD

By visualizing Table 6, we can notice that with the exception of case N=45 for
Iris, we coud not reject the null hypothesis that DABEL variance is smaller than SAGAD
variance.

The tables 7 and 8 present the same tests performed in the decision tree with the
Logistic regression, Random Forest and SVM for accuracy and f1-score metrics.

Methods N = 15 N = 25 N = 45
Logistic Regression * - -

SVM * * -
Random Forrest * - -

Table 7. Test SAGAD vs original data in machine learning algorithms

Methods N = 15 N = 25 N = 45
Logistic Regression * - -

SVM * * -
Random Forrest * - -

Table 8. Test SAGAD vs original data in machine learning algorithms

We emphasize that these are preliminary results given time constraints, and future
research comparing these methods on a larger set of datasets is advisable.

6. Conclusion

In this paper, we present the SAGAD algorithm for data augmentation applied to tabular
data. It is already available on CRAN for the R language with more than 2000 downloads
to date. We presented tests using the Iris and Wine datasets. We also present DABEL,
SAGAD extension for iterative learning algorithms. By using SAGAD and DABEL we
were able to improve results in small data scenarios where models failed to generalize.
Future work should test these methods for more complex datasets, as well as compare
it against other data augmentation techniques. We also consider expanding SAGAD for
other data modalities.
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