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Abstract. The entity relatedness problem refers to the question of exploring a
knowledge base, represented as an RDF graph, to discover and understand how
two entities are connected. This question can be addressed by implementing
a path search strategy, which combines an entity similarity measure, with an
expansion limit, to reduce the path search space and a path ranking measure to
order the relevant paths between a given pair of entities in the RDF graph. This
paper first introduces DCOEPINKB, an in-memory distributed framework that
addresses the entity relatedness problem. Then, it presents an evaluation of path
search strategies using DCOEPINKB over real data collected from DBpedia.
The results provide insights about the performance of the path search strategies.

1. Introduction

An RDF knowledge base K is equivalent to an RDF graph G whose nodes represent
the entities in K and whose edges denote the relationships expressed in K. This is a
convenient representation to explore the connectivity in K of a pair of entities, a and b,
which reduces to computing paths in G between a and b. This paper focuses on the
entity relatedness problem for large RDF knowledge bases, defined as: “Given a large
RDF knowledge base K and a pair of entities a and b, compute the paths in G from a to
b that best describe the connectivity between a and b in K.

Following [Fang et al. 2011, Herrera 2017, Jiménez et al. 2021]], the paper inves-
tigates the entity relatedness problem for large RDF knowledge bases by exploring path
search strategies, which have two major steps. The first step uses the backward search
heuristic [Le et al. 20141, which is a breadth-first search strategy that expands the paths
starting from each input entity, in parallel, until a candidate relationship path is generated.
The expansion process prioritizes certain paths over others and filters out entities that are
less related to the target entities. The process maintains entities similar to the last entity
reached in a partially constructed path, using an entity similarity measure and a thresh-
old, or expansion limit. The second step ranks relationship paths, using a path ranking
measure, and returns the top-k paths as a description of the connectivity of the entity pair.

However, implementing a path search strategy over a large RDF graph, such as
that of DBpedia [Lehmann et al. 20135]], is challenging. The paper then introduces a
novel framework, called DCOEPINKB, which allows experimenting with path search
strategies over large RDF graphs, using different entity similarity measures, expansion
limits, and path ranking measures. Unlike the approaches described in [Herrera 2017,



Jiménez et al. 2021]], the implementation of the DCOEPINKB framework is distributed
and built on top of Apache Spark [Zaharia et al. 2010]].

Using DCOEPINKB, the paper presents an evaluation of a family of path
search strategies over two large RDF knowledge bases extracted from DBpedia data,
DBPEDIA21M and DBPEDIA45M, in two entertainment domains. The results pro-
vide insights about the impact of the entity similarity measures, the expansion lim-
its, and path ranking measures on the performance of the path search strategies,
measured by their execution time and the Normalized Discounted Cumulative Gain
(nDCQG) [Jarvelin and Kekéldinen 2002] of the path rankings obtained.

The main contributions of the paper, therefore, are: (1) a flexible, distributed
framework that helps investigate the entity relatedness problem for large RDF knowl-
edge bases; (2) a performance analysis of a family of path search strategies over two
entertainment domains over real data available in the DBpedia.

The remainder of this paper is organized as follows. Section [2| discusses path
search strategies. Section 3| describes the architecture and some technical aspects of the
implementation of the proposed framework. Section {4 describes the evaluation setup of
our experiments. Section [5 presents a performance evaluation of two path search strate-
gies, using the proposed framework. Section [] briefly reviews related work. Finally,
Section [7 contains the conclusions and directions for future work.

2. Finding Relevant Relationship Paths between Entity Pairs

Let GG be an RDF graph. We consider a family of path search strategies that receive as
input a pair of target entities (wp, wy) and output a ranked list of paths in G from wy to
wyg. Bach path search strategy in the family has two basic steps: (1) find a set of paths in
G from wy to wy such that each path satisfies a set of selection criteria; (2) rank the paths
found and select the top-k relevant ones.

The first step considers one or both of the following selection criteria: (1) se-
lect a path whose entities have less than n neighbors in G; and (2) select a path
(wo, p1, W1, Pa, Wa, - . ., Pr—1, Wk—_1, Pk, Wy) iff there is ¢ € [0, k] such that, for each
i € [0,q), w; and w;; are similar and, for each j € [¢, k), w; and w;; are similar.

The last criterion says that a path can be broken into two parts, left and right,
such that the entities in the left part are transitively similar to the first entity, wy, and
the entities in the right part are transitively similar to the second entity, wy. This crite-
rion can be implemented by a backward search strategy that executes two breadth-first
searches (BFS) alternately to traverse the RDF graph starting from each input entity. In
each expansion step, the BFS uses an entity similarity measure ¢ and an expansion limit
A to move from a node p;_; to a node p; iff o(p;_1, p;) falls in the top \ values. A path is
generated if both BFS processes reach a common entity or a target entity. In this paper,
we consider two entity similarity measures (i.e., the Jaccard index [Jaccard 1901] and the
Wikipedia Link-based Measure (WLM) [Milne and Witten 2008]]) and experiment with
various expansion limits.

The second step of each path search strategy receives as input the set of paths
found in the first step and uses a path ranking measure to sort the paths by rel-
evance. Each of these paths is a possible explanation of how the two input en-



tities are related. In this paper, we consider three path ranking measures: the
Predicate Frequency Inverse Triple Frequency (PF-ITF) [Pirro 2015], the Exclusivity-
based Relatedness (EBR) [Hulpus et al. 2015]], and the Pointwise Mutual Information
(PMI) [[Church and Hanks 1990]. Table [I] shows the six path search strategies obtained,
to be evaluated in Section [5

Table 1. Path Search Strategies

# | Acronym | Name | # ] Acronym | Name

1 J&I Jaccard index & PF-ITF || 4 W&l WLM & PF-ITF
2 J&E Jaccard index & EBR 5 W&E WLM & EBR
3 J&P Jaccard index & PMI 6 W&P WLM & PMI

3. The DCOEPINKB Framework

To investigate path search strategies, we introduce a distributed framework, called
DCOEPINKBEL which stands for a Distributed way of understanding the Connectivity
of Entity Pairs in Knowledge Bases. DCOEPINKB uses Scala in conjunction with other
technologies, such as Apache Spark, for large-scale data processing through Spark SQL
and Dataframes; Redis, as a persistent cache; and the scala-redis library, for con-
necting Scala applications to a Redis server. Spark has a programming model similar to
MapReduce [Dean and Ghemawat 2008]], extended with a data-sharing abstraction called
Resilient Distributed Datasets, or RDDs, which are distributed collections of data, parti-
tioned across cluster nodes that operate in parallel.

Figure|l{shows an overview of the architecture of DCOEPINKB. The DATA PRE-
PROCESSOR component transforms the source files of an RDF knowledge base into files in
the Parquet format, partitions these new files into fragments, and distributes the fragments
over a cluster. Apache Parquet is a columnar storage format that provides optimizations
to speed up queries and is a much more efficient file format than CSV or JSON, supported
by many data processing frameworks. It provides flexible and efficient data compression
and encoding schemes with enhanced performance.

After the data preprocessing stage and with the RDF graph ready to be queried, the
two-step strategy to search for the most relevant paths between a pair of entities can start.
First, the user enters a pair of entities and specifies a path search strategy by selecting an
entity similarity measure, together with an expansion limit, and a path ranking measure.
The user also specifies other parameters such as the maximum path length between the
entities; the maximum entity degree, to discard entities with a high number of neighbors
during the expansion; a list of properties irrelevant to the analysis when building the
relationship paths; and an entity prefix, to expand only to resources that are considered
entities.

During the first phase of the execution of the path search strategy, the BACKWARD
SEARCH component communicates with the SPARK QUERY EXECUTOR component re-
questing the required data to execute the backward search algorithm. This last component
gets the requested data using two different approaches: (i) first, it tries to get the data from
the persistent cache; (ii) if the requested data is not available, then it gets the data directly

I'The source code of DCOEPINKB is available at https:/bitbucket.org/guillot/dcoepinkb/
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Figure 1. DCOEPINKB architecture

from the Dataframe object in Spark, and stores it in the persistent cache to speed up future
searches. After the backward search algorithm finishes, the BACKWARD SEARCH com-
ponent sends a list of relationship paths between the pair of entities to the RELATIONSHIP
PATH RANKING component. The RELATIONSHIP PATH RANKING component commu-
nicates with the SPARK QUERY EXECUTOR component requesting the required data to
execute the path ranking algorithm. After the algorithm finishes, the RELATIONSHIP
PATH RANKING component sends the list of ranked paths back to the user.

There are two key points of flexibility in the framework —the activation function,
implementing the entity similarity measure and the expansion limit, and the path rank-
ing measure— which are the core of the BACKWARD SEARCH and RELATIONSHIP PATH
RANKING components. These components were designed using an architectural pattern
based on interfaces (specifically using fraits in Scala), which increases the extensibility of
the framework by making it easier to add new entity similarity measures and relationship
path ranking measures. As illustrated in Figure [I] the current version of DCOEPINKB
implements two entity similarity measures (i.e., Jaccard index and WLM) and three rela-
tionship path ranking measures (i.e., PF-ITF, EBR, and PMI).

At the data layer, the framework has the SPARK QUERY EXECUTOR component
that interacts with the Dataframes that represent different views of RDF datasets stored in
the distributed file system as Parquet files. The framework also uses a persistent cache to
store the result of the queries executed during the expansion of the path. The main reason
for this decision is that both the backward search and the path ranking algorithm require
executing a large number of queries.

4. Experimental Setup

Hardware and Software Configurations: All the experiments were performed on a
Linux server with Ubuntu 16.04.7 LTS system, an Intel® Core™ i7-5820K CPU @
3.30GHz, and 16GB of memory dedicated to Spark applications. We used Spark v2.4.3
in the Spark Standalone Mode and Redis v3.0.6. In fact, we experimented with a proof-
of-concept standalone setup, leaving to future work testing the framework in a fully dis-



tributed environment. However, although the experiments were carried out on a single-
machine configuration, the methods used for transforming and partitioning the source
datasets in multiple Parquet files, as well as the data structures used for representing data
and the subsequent execution of our algorithms for finding relevant paths between entity
pairs, are the same regardless of the architecture used.

Knowledge Bases: We extracted and used two publicly available subsets of the English
DBpedia corpus to form our two experiment knowledge bases. The first source dataset
consists of the cleaned version of high-quality statements with IRI object values extracted
by the mappings extraction from Wikipedia Infoboxeﬂ and the second dataset consists of
data from Wikipedia Infoboxes, as it is, with some smart automatic parsing; this dataselﬂ
has better fact coverage than the first one but has less consistency. Using the DATA PRE-
PROCESSOR component available in DCOEPINKB, we transformed these source datasets
from the Turtle format to two new datasets in the Parquet format — DBPEDIA21M con-
tains the statements in the first source dataset, and DBPEDIA45M contains the union of
the triples in both source datasets. In both cases, we exclude statements involving liter-
als or blank nodes. For each dataset, Table [2| shows the total number of triples (#T), the
count of different subjects (#S), properties (#P), and objects (#0O); the average out and
in node degrees; the size of the source file in Turtle format; and the size of the file after
preprocessing and transforming it to Parquet format.

Table 2. Datasets

Dataset #T #S #P #0  AVG Outdegree AVG Indegree Turtle Size Parquet Size
DBPEDIA2IM 21.5M 54M 632 46M 3.96 4.66 3.1GB 673 MB
DBPEDIA4SM 455M 6.1 M 13691 6.0M 7.40 7.53 16.2 GB 1.5GB

Data Storage and Partitioning. We logically represent the datasets using the Statement
Table schema, which maps RDF data onto a table with three columns (subject, predicate,
object), in which each tuple corresponds to an RDF statement. For data partitioning, we
used the horizontal-based partitioning technique, which evenly partitions the data horizon-
tally over the number of machines in the cluster. For our proof-of-concept, we partitioned
the two statement tables representing the data in the two datasets according to the number
of CPU cores on the machine. Both datasets were partitioned into 200 Parquet files each,
each file representing a partition.

Selected Entity Pairs: We selected 20 entity pairs from the Entity Relatedness Test
Dataset [Herrera et al. 2017]], which contains entities belonging to the movie and music
domains (10 entity pairs from each domain). Table [3|shows the selected entity pairs and
the degree of each entity in the datasets used for experimentation. Observe that the entities
from the music domain have a higher degree than the entities from the movies domain,
which affects the performance of the path search strategies, as discussed in Experiment 1
reported in Section [5

Configuration parameters: The following parameters were used:

Entity similarity and path ranking measures: as in Table

Zhttps://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-
objects/2021.03.01/mappingbased-objects_lang=en.ttl.bz2

Jhttps://downloads.dbpedia.org/repo/dbpedia/generic/infobox-properties/2021.03.01/infobox-
properties_lang=en.ttl.bz2
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Table 3. Entity pairs from music and movies domains

Music domain Movies domain
EP Entity Degree in Degree in EP Entity Degree in Degree in
DBPEDIA2IM | DBPEDIA4SM DBPEDIA2IM | DBPEDIA4SM
1 dbr:Michael _Jackson 442 857 1 dbr:Elizabeth_Taylor 83 150
dbr:Whitney _Houston 189 362 dbr:Richard _Burton 79 139
2 dbr:The_Beatles 441 980 12 dbr:Cary_Grant 83 153
dbr:The_Rolling_Stones 353 769 dbr:Katharine_Hepburn 70 126
3 dbr:Elton_John 415 945 13 dbr:Laurence_Olivier 96 170
dbr:George_Michael 192 402 dbr:Ralph_Richardson 55 107
4 dbr:Led_Zeppelin 135 316 14 dbr:Errol_Flynn 83 149
dbr:The_Who 277 550 dbr:Olivia_de_Havilland 69 109
5 dbr:Pink Floyd 303 560 15 dbr:William_Powell 96 174
dbr:David_Gilmour 187 303 dbr:Myrna_Loy 105 189
6 dbr:U2 314 595 16 dbr:James_Stewart 103 190
dbr:R.E.M. 250 450 dbr:Henry_Fonda 122 220
7 dbr:Metallica 188 353 17 dbr:Paul_Newman 99 175
dbr: Anthrax 129 219 dbr:Joanne_Woodward 48 89
3 dbr:Rihanna 224 446 13 dbr:Bette_Davis 110 207
dbr:Nicki_Minaj 261 519 dbr:Joan_Crawford 103 197
9 dbr:Velvet_Revolver 84 117 19 dbr:John_Wayne 181 295
dbr:Guns_N’_Roses 259 392 dbr:Kirk_Douglas 104 190
10 dbr:Bob_Dylan 649 1663 20 dbr:Charlie_Chaplin 184 395
dbr:The_Band 124 245 dbr:Frank_D._Williams 57 109
Average 271 552 Average 97 177
Max 649 1663 Max 184 395
Min 84 117 Min 48 89
Standard Deviation 136,97 353,37 Standard Deviation 35,39 70,02

Expansion limit: successively set to A = 5,10, 15, 20, 25, that is, to the top 5,..., 25
adjacent nodes, ranked by the entity similarity measure, and also to the top 50%
of the adjacent nodes, ranked by the entity similarity measure.

Maximum path length between the entities: set to 4, since this was the limit adopted
by previous works, as REX [Fangetal. 2011], RECAP [Pirro 2015], and
EXPLASS [Cheng et al. 2014]].

Maximum entity degree: set to 200. This degree limit was deduced from DBpedia
statistics, which indicate that 90% of the entities have less than 200 links.
This kind of criterion is applied together with entity similarity because, as
in [Moore et al. 2012, it can be assumed that nodes with a high degree influence
the path search process with potentially very unspecific information.

Set of ignored properties: about 10 properties were ignored during the exploration of the
knowledge base because many of these properties describe relationships between
entities that are irrelevant for our analysis.

Entity prefix: settohttp://dbpedia.org/resource. This prefix was used to ex-
pand only to resources that are considered entities of our interest.

Maximum number of paths: set to 50, because this value suffices to explore the connec-
tivity between the entities, as reported in [Cheng et al. 2014, Fang et al. 2011},
Hulpus et al. 2015] [Pirro 20135]].

Ground Truth: We did not adopt the ranked lists of paths in [Herrera et al. 2017]] as
our ground truth because the subsets of DBpedia we used were different from those
in [Herrera et al. 2017] — DBpedia indeed constantly changes. Experiment 2 reported
in Section [5]describes how we constructed the ground truths.

Ranking Quality: We adopted the Normalized Discounted Cumulative Gain (nDCG) to
measure the quality of the rankings obtained. The Discounted Cumulative Gain (DCG)
is a well-known measure used in Information Retrieval to assess ranking quality. This
measure accumulates the gain from the top of a ranked list to the bottom, penalizing



lower ranks, and can be parameterized to consider only the top-k elements of the ranked
list. Consider a list with n documents with ratings rely, . .., rel,, and let the discounted
cumulative gain of the top-k results, with 1 < k& < n, denoted DC' G, be defined as

DCGy, = rely + Zfﬁ log;zfm. DCGY, is normalized by I DC'GY, the discounted cumu-
DCGy,

lative gain for an ideal ranking of the top-k results. Then, nDC'G), = ineo:-

5. Evaluation

The experiments in [Herrera 2017] indicated that J&E and W&E perform better than the
others strategies as far as finding the relevant paths between a pair of entities in the music
and movies domains and that the J&E strategy performs better than the baselines. The
experiments in [Jiménez et al. 2021]] showed that the J&E strategy is also the fastest one.
Taking into account these results, we conducted the following experiments.

Experiment 1 - Performance Evaluation. Using DCOEPINKB, the first set of exper-
iments evaluated the performance, in terms of average execution time, of different path
search strategies for increasing values of the expansion limit. Due to space limitations,
we only report the results using the J&E strategy (as this strategy achieved the best per-
formance for finding relevant relationship paths in [Herrera 2017]], and the best average
execution time in [Jiménez et al. 2021]]). Figure [2a]shows the average execution times for
this strategy. For each pair of entities in each dataset, we searched 6 times the top-50
paths between them, excluded the first run time to avoid the warm-up bias, and calculated
the average time of the last 5 executions.
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Figure 2. Average execution time and average number of paths found for the J&E
strategy varying the expansion limit
Clearly, the execution time increases with higher expansion limits. For the en-

tity pairs from the movies domain, the implementation of DCOEPINKB kept the time for
finding relevant paths, on average, below 2.0 secs, when the expansion limit was set to 25,
or below. When the expansion limit was the top 50% of most similar adjacent nodes, the
algorithm took, on average, around 3.3 secs for DBPEDIA21M and 4.6 secs for DBPE-
DIA45M. For the entity pairs from the music domain, the time for finding relevant paths
remained, on average, below 2.0 secs for DBPEDIA2 1M and 5.0 secs for DBPEDIA45M.
When the expansion limit was the top 50% of most similar adjacent nodes, the algorithm
took, on average, around 11.0 secs for DBPEDIA21M and 38.4 secs for DBPEDIA45M.

As the execution time depends on the number of paths found, we also show in
Figure the average number of paths found for different expansion limits using the



J&E strategy. The number of paths found is closely related to the degree of the entities
involved. Hence, by expanding the 50% most similar adjacent nodes, in the case of entities
with a high degree, the framework will carry out a broader exploration of the graph and

increase the probability of finding many more paths to be ranked, as shown in Figure [2b]
which implies that the running time also increases.

Experiment 2 - Ranking Accuracy. The second set of experiments evaluated the ranking
accuracy of the path search strategies, for different expansion limit values, as compared
to a ground truth, using nDCGy, for k = 1 to 50. For space limitations, we only report
the results for J&E and J&I. The J&I strategy is the second fastest strategy, as stated
in [Jiménez et al. 2021]], and it also presents advantages in terms of the ranking accuracy
in the movies domain using a less expensive expansion limit strategy.

Let 7 be one of the six path search strategies listed in Table[I} For each entity pair
in each DBpedia dataset, we created a separate ground truth path ranking for 7 by: (1)
executing 7 with different expansion limits; (2) combining all sets of paths thus obtained;
(3) ranking the combined set using 7, and retaining the top-50 ranked paths. This permits

evaluating the impact of the expansion limit, for a given entity similarity measure and a
path ranking measuref_f]

In what follows, let “S with top-n” indicates the strategy S expanding the top n
most similar adjacent nodes, where n may also be a percentage.
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Figure 3. Average nDCG@k for the J&E strategy varying the expansion limit

“The dataset containing the ground truth files is available at https:/figshare.com/articles/dataset/
Ground_Truth_for_Entity_Relatedness_Problem_over_DBpedia_datasets/15181086
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Figure [3| shows the average nDCG, for the J&E strategy for the movies and mu-
sic domains in DBPEDIA21M and DBPEDIA45M. For the movies domain, J&E with
top-50% obtained a good performance in both datasets: the average nDCG), was above
0.80 using DBPEDIA2 1M (Figure [3a)), and above 0.86 using DBPEDIA45M (Figure 3b)),
without a significant loss for higher values of k. J&E with top-50% also had a good per-
formance for the music domain. In this case, the average nDC'G), was above 0.73 using
DBPEDIA2 1M (Figure [3c)), and above 0.84 using DBPEDIA45M (Figure [3d).

Finally, note that, although J&E with top-50% had a high average execution time
over DBPEDIA45M, the difference between the average nDC' G, for J&E with top-50%
and J&E with top-25 does not justify saving time in detriment of finding the most relevant
paths. The smallest difference in the ranking accuracy between both expansion strategies
occurs between positions 2 and 8 of the ranking, where the top-50% strategy reaches an
average nDC' Gy, equal to 0.79, while the top-25
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Figure 4. Average nDCG@k for the J&I strategy varying the expansion limit

Figure || shows the average n DC' G|, for the J&I strategy for the movies and music
domains in DBPEDIA2 1M and DBPEDIA45M. We argue that, by using the PF-ITF mea-
sure for ranking the relationship paths, it is possible to achieve acceptable performance in
the movies domain using J&I with the top-25 most similar adjacent nodes. Indeed, the av-
erage nDCG|, for J&I with top-25 was above 0.67 using DBPEDIA2 1M (Figure {a)), and
above 0.73 using DBPEDIA45M (Figure 4b). Figure dal shows that the average nDCG,
for J&I with top-25 decreases for higher values of k. But, for £ < 20, it had an av-
erage nDC Gy of 0.72, which is better than the average nDC'G), of 0.52 for J&I with
top-50%. Figure |4bf also shows that the average nDCG), for J&I with top-25 is better
than the average n DC' G, for J&I with top-50%. Furthermore, for the music domain and



DBPEDIA21M, and for 3 < k < 15, J&I with top-25 and J&I with top-50% both had an
average nDCG, close to 0.62 (Figure fc)).

Lastly, due to space limitations, we did not include the average execution times
of the J&I strategy, but we observe that they were almost identical to those shown in
Figure [24] for the J&E strategy. Hence, given the high average execution time of J&I with
top-50%, it is worth opting for J&I with top-25, mainly if one wants the first few most
relevant paths.

6. Related Work

Processing Large RDF Datasets in Distributed Environments. Distributed SPARQL
query engines are generally built on top of distributed data processing frameworks, such
as MapReduce [Dean and Ghemawat 2008] or Spark [Zaharia et al. 2010]. Husain et
al. [Husain et al. 2011]] designed a storage scheme to store RDF data in HDFS. They
proposed a greedy algorithm that produces a query plan with a minimal number of
Hadoop jobs and built a framework that supports data-intensive query processing. How-
ever, MapReduce is not efficient to perform join-intensive tasks typical of graph algo-
rithms [De Virgilio and Maccioni 2014].

Schitzle et al. [Schitzle et al. 2016] described a relational partitioning schema for
RDF data, and built a prototype system on top of Spark that achieved sub-second runtimes
for the majority of queries on a billion triples RDF graph. The results of a comparative
survey of 22 state-of-the-art distributed RDF systems [[Abdelaziz et al. 2017]] suggests
that specialized in-memory systems provide the best performance, assuming the data can
fit in the cumulative memory of the computing cluster. Ragab et al. [Ragab et al. 2021]]
presented a systematic analysis of the performance of the Spark-SQL query engine for
answering SPARQL queries over large RDF datasets in a distributed environment. The
experiments show interesting insights about the impact of the relational encoding scheme,
storage backends, and storage formats on the performance of the query execution process.

Entity Relationship Discovery and Ranking in Knowledge Bases. Several strategies
have been proposed to discover the semantic associations between entities in a knowl-
edge base [Fang et al. 2011, Moore et al. 2012} [De Vocht et al. 2013}, Cheng et al. 2014,
Pirro 2015, Herrera et al. 2016, [Herrera 2017]. While path-ranking measures were pro-
posed, for example, in [Cheng et al. 2014, Hulpus et al. 2015, [Pirro 2015]].

REX [Fang et al. 2011] is a system that uses two BFS on the RDF graph to
enumerate relationship paths between two entities and considers the degree of a node
as an activation criterion to prioritize nodes to produce a ranked list of relation-
ship paths. EXPLASS [Cheng et al. 2014]], RECAP [Pirro 2015], and DBpedia Pro-
filer [Herrera et al. 2016l implement pathfinding processes in an RDF knowledge graph
with the help of SPARQL queries. A family of path search strategies, based on the back-
ward search heuristic, that combines entity similarity and path-ranking measures was in-
troduced in [Herrera 2017]. The COEPINKB framework [Jiménez et al. 2021]] extends
the previous work and implements path search strategies using a multi-thread approach.

Table 4] compares DCOEPINKB with related systems. As for the RDF knowl-
edge base, only RECAP, COEPINKB and DCOEPINKB are knowledge base indepen-
dent; COEPINKB, as RECAP, only requires the availability of a remote SPARQL query



endpoint, while DCOEPINKB pre-processes any RDF dataset and transforms it into Par-
quet files. Regarding the architecture, DCOEPINKB is the only approach that addresses
the entity relatedness problem in a distributed manner.

Table 4. Comparison of DCOEPINKB with related systems

‘ System | KB | Output | Filtering Capabilities | Local Data | Architecture
REX Yahoo! Graph No Yes Centralized
EXPLASS DBpedia Paths Yes Yes Centralized
RECAP Any Graph, Paths Yes No Centralized
DBPEDIA PROFILER | DBpedia | Graph, Paths No Yes Centralized
COEPINKB Any Paths Yes No” Centralized
DCoOEPINKB Any Paths Yes Yes Cluster

* Local data is only necessary to be used as a cache to speed up queries, but it is not mandatory.

Benchmarks. A benchmark to evaluate the accuracy of path search strategies was intro-
duced in [Herrera et al. 2017]]. However, the benchmark was based on specific versions of
certain knowledge bases. Section [5|of this paper circumvents this problem by introducing
a strategy to construct ground truths for any given version of a knowledge base.

7. Conclusions

This paper introduced a distributed framework, called DCOEPINKB, that addresses the
entity relatedness problem in large RDF knowledge bases. DCOEPINKB features two
points of flexibility: (1) the entity similarity measure, with an expansion limit; and (2)
the path ranking measure. It works with any knowledge base stored using the Parquet
data format in a distributed file system, and even in a traditional file system on a single
node. In particular, the experiments showed that by reducing the expansion limit, when
finding the paths between entities with a high degree, can improve the execution time, as
expected, but without a significant loss in the quality of the ranking, when only the first
few (i.e., 10 or less) top paths are requested.

As future work, we plan to deploy the DCOEPINKB framework in a fully dis-
tributed environment and to implement additional entity similarity and relationship path
ranking measures. We also plan to investigate effective optimization techniques in Spark
to reduce the execution time for path search strategies.
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