
Inferencing Relational Database Tuning
Actions with OnDBTuning Ontology

Luciana de Sá Silva Perciliano 1, Veronica dos Santos1, Fernanda Baião 2,
Edward Hermann Haeusler 1, Sérgio Lifschitz1, Ana Carolina Almeida 3

1Departamento de Informática, PUC-Rio
2 Departamento de Engenharia Industrial, PUC-Rio

3 Instituto de Matemática e Estatı́stica, UERJ

{lperciliano, vdsantos, hermann,sergio}@inf.puc-rio.br

fbaiao@puc-rio.br, ana.almeida@ime.uerj.br

Abstract. OnDBTuning is a relational database (automatic) tuning ontology.
Ontologies are software artifacts that represent specific domain knowledge and
can infer new knowledge. However, most cases involve only a formal and static
description of concepts. Moreover, as database tuning involves many rules-of-
thumb and black-box algorithms, it becomes challenging to describe these in-
ference procedures. This research work first presents the OnDBTuning ontology
solution focusing on the inference of tuning actions. Next, we provide an actual
implementation using SPARQL Inferencing Notation (SPIN). Finally, we discuss
a practical evaluation for index recommendation.

1. Introduction
Database tuning actions are essential to improve applications performance by reduc-
ing database response time and increasing throughput. Database tuning involves many
rules-of-thumb and black-box algorithms empirically defined towards specific Relational
Database Management Systems (RDBMSs) vendors and particular releases. To mention
a frequent and straightforward situation, a DBA should check if the referenced columns
(from the WHERE clause of a SQL statement) are indexed, and, if not, the DBA may
create the respective indexes to avoid a full table scan [Shasha and Bonnet 2002].

It is possible to find a set of tuning heuristics followed by Database Administra-
tors (DBAs) using their own scripts or the available (either proprietary or open-source)
tuning tools. These heuristics encompass decisions upon creating and maintaining access
structures such as indexes and materialized views or even data replication, partitioning,
query rewriting strategies, among others.

This tuning knowledge may be modeled using ontologies, which - from a compu-
tational perspective - are artifacts capable of formally and explicitly representing a shared
conceptualization from a domain of discourse [Gruber 1993]. Definition of classes (con-
cepts), relations (object properties), attributes (data properties), and instances represents
the universe of discourse. Such knowledge representation makes knowledge-based sys-
tems able to infer new knowledge through semantic reasoning. However, most cases
involve only a formal and static description of concepts.

This paper proposes OnDBTuning, an ontology that represents knowledge about
the relational databases (automatic) tuning domain. It enables semantic reasoning for



performance improvements within a database system, focusing on the inference and sug-
gestion of possible tuning actions. Our solution considers SPARQL Inference Notation
(SPIN) for defining heuristic rules. We provide an actual implementation and practical
evaluation on top of PostgreSQL DBMS.

The semantic support for the implementation of tuning heuristics provides DBAs
with a transparent methodology for tuning databases [de Almeida 2013, Almeida et al.
2019]. Since heuristics may automate the user’s assistance in achieving a goal, OnDB-
Tuning heuristics help DBAs in their task to obtain successful results in most cases with
the advantage of being aware of the rationale followed by the ontology.

The remainder of this paper is organized as follows: in Section 2 we present theo-
retical background from database tuning domain and ontologies, including related works.
Section 3 describes the OnDBTuning ontology focusing on the inference of tuning actions
for index recommendation and present (Section 4) evaluation results considering a subset
of TPC-H queries. Section 5 concludes and discusses some current and future works.

2. Background

Database tuning is an activity that aims to reduce transactions response time and increase
database throughput. Since database performance is crucial for applications, tuning has
become essential. Typically, it is composed of a set of actions proposed by a specialist,
also known as a database administrator (DBA), based on previous experience or support of
advisor tools, after monitoring the system looking for contentions and bottlenecks [Shasha
and Bonnet 2002].

Tuning comprises adjustments at the database level of configurations, parame-
ters, and physical design to promote efficient use of existing resources without changing
physical machine components. It can be performed automatically (also called database
self-tuning) or manually. One way to adjust the physical design is to create an auxiliary
access structure such as an index.

Indexes are access structures that speed up data retrieval [Shasha and Bonnet
2002]. The database optimizer can use the index to fetch only the rows that satisfy range
or lookup filter conditions of SQL statements avoiding full table scan. These can be clas-
sified as real (actual) or hypothetical. Real indexes are indexes that physically exist in
a database. In contrast, hypothetical indexes are candidate indexes that exist only in the
database’s metadata with no physical space consumption [de Almeida 2013]. What-if
analysis, implemented by some RDBMS, simulates how query execution plans benefit
from indexing based on hypothetical indexes.

(Self)Tuning techniques for relational database systems have been studied for
decades, particularly for index selection These strategies are modeled as heuristics to
explicitly and precisely define DBA’s knowledge. We may cite the Automatic Index Re-
construction Heuristic (HRAI) [Morelli et al. 2012], which has rules that suggest index
automatic elimination or reconstruction. Other works [Valentin et al. 2000] proposed
heuristics for choosing candidate indexes that best match each SQL statement of a given
workload.



Ontologies, RDF and SPIN
An ontology is represented as a tuple O = 〈C,R, I, A〉, where: i) C represents the set of
concepts of a domain; ii) R is the set of relationships - or associations - between these
concepts; iii) I is the set of instances of classes and iv) A is a set of domain axioms used to
model restrictions and rules on the objects of the domain [Staab and Studer 2010]. These
constructors can be modeled using RDF/RDF-S and OWL languages.

RDF1 is a data model specified by the W3C as a directed, labeled graph data
format and is at its core a collection of triples. RDF-S (or RDF-Schema) is a specification
that allows describing ontologies through the definition of classes, properties, and their
relationships using few elements. The OWL language (Ontology Web Language) is a
language developed based on the RDF/RDF-S specifications and recommended by the
W3C. It is a widely used language for formally representing ontologies.

The Modeling languages mentioned above are useful to model classes, properties,
and relationships between these concepts, i.e., they are used to model the static struc-
ture of knowledge, including axiomatic definitions of data structures. Other languages
are necessary to describe objects behavior and inferencing. Inferencing can be defined
as the ability to create new knowledge, that is, to generate new triples, based on the cur-
rent knowledge (existing triples) using a Rule Engine. SWRL2 cover this scope through
combining OWL with horn logic rules. SWRL has been a popular choice for rule-based
systems built on top of ontologies. It is supported by widespread tools such as ontol-
ogy editors, rule engines, and ontology reasoners. However, it has never become a W3C
recommendation [Bassiliades 2020].

SPARQL3 is a declarative language (a SQL-like style) designed to manipulate
RDF triples. The query language is primarily intended for pattern (subgraph) match-
ing rather than path traversal. SPARQL supports four query types for (sub)graph pattern
matching: SELECT (project out specific variables and expressions), CONSTRUCT (con-
struct RDF triples/graphs), ASK (ask whether or not there are any matches, the result is
either “true” or “false”.), and DESCRIBE (describe the resources matched by the given
variables retrieving basic node/edge adjacency). Particularly, the CONSTRUCT query
form can be used to map subject, predicates, and objects of stored triples to domain on-
tology’s classes, relations, and attributes or infer new triples. SPARQL is the standard
language to query graph data represented as RDF triples. It is one of the three core stan-
dards of the Semantic Web. The other two are OWL and RDF itself.

Almost all programming languages have an API to SPARQL to operate queries
on RDF triple stores (3Stores). There are also specialized 3Stores, AllegroGraph4, for ex-
ample, that perform better than these APIs. They have state-of-the-art inference engines.
Among these expert ontology inference engines, we can cite SPIN. The main idea behind
the design of SPIN is to relate ontology classes with queries in SPARQL such that we
obtain constraints and rules formalizing the class members’ behavior. As such that, SPIN
can define inference rules (from that infer that) on top of SPARQL queries. Hence, SPIN
is the natural choice to be the inference engine we need to express in a rule-based way

1https://www.w3.org/TR/rdf11-concepts/
2https://www.w3.org/Submission/SWRL/
3https://www.w3.org/TR/sparql11-query/
4https://allegrograph.com/



the OnDBtunning represented knowledge. In the sequel, we provide a brief explanation
of SPIN.

According to [Bassiliades 2020], SPIN is a de-facto industry standard to represent
rules and constraints on the Semantic Web, built based on the SPARQL query language,
commonly used for querying and processing Linked Open Data. SPIN specification5 de-
fines a vocabulary as a collection of RDF properties to represent SPARQL queries as RDF
triples. SPIN Vocabulary includes constructors such as spin:rule, spin:constraint, and
spin:constructor, enabling queries, restrictions, and rules definition and storage attached
to classes. For example, spin:constructor can be used by modelers to automatically record
instance creation timestamp as a property value through a SPARQL CONSTRUCT state-
ment. A spin:constraint using a SPARQL ASK statement allows to specify conditions
that all class instances and their subclasses must fulfill.

An inference rule can be defined through the use of SPARQL CONSTRUCT in
the spin:rule, where the WHERE clause defines the sub-graph conditions (IF) to be sat-
isfied (TRUE) and the CONSTRUCT builds the new triples (THEN). In Figures 1a and
Figure 1b we can see an example of an inference rule that creates a new triple of type
tuning:QueryStatement (Figure 1a - line 1 to 3) if what is defined in the WHERE (Fig-
ure 1a - line 4 to 8) is true. Figure 1b shows the RDF representation of the SPARQL
CONSTRUCT statement shown in figure 1a.

(a) SPARQL Statement (b) RDF representation

Figure 1. spin:rule Example

Some works found in the literature made use of ontology reasoning to infer new
knowledge. Among them, we can cite [Doulaverakis et al. 2016], from the medical field,
used an Ontology of Clinical Practice Guidelines (CPGs) and rules in SPIN. Another

5https://www.w3.org/Submission/spin-modeling/



work is [Promkot et al. 2019], which uses a traditional herbal medicine ontology to infer,
through SWRL rules, recommendations for traditional herbal medicines in a similar way
as a specialist would do. With regard to machine learning tuning approaches, proposals
[Aken et al. 2021] and [Zhang et al. 2021] aim at efficiency in parameter adjustments
without explaining how to achieve this goal. In this research work, we investigate how
an ontology like OnDBTuning may be helpful with a reasoning process and rule-based
approach that suggests possible tuning actions for the DBAs with their explainability.

3. OnDBTuning Inferencing

OnDBTuning6, the Database Tuning Ontology, was initially proposed in [de Almeida
2013] and defines concepts, properties, and relationships used in the database tuning
domain. The current research work brings a declarative and well-founded solution, as
originally suggested, to add semantics to self-(or autonomic) tuning activities. Figure
2 illustrates a fragment of the OnDBTuning. Among these concepts and relationships,
we can highlight tuning:DMLStatement that represents any data manipulation language
(DML) statement that access and manipulate data from tables of a relational database. Ev-
ery DML statement from the input workload corresponds to an asserted instance of this
concept. An instance of query type, that is, if the DML statement begins with ”SELECT”
(figure 1a - line 7), is inferred as tuning:QueryStatement (figure 1a - line 2). Other con-
cepts will be instantiated through parsing the DML statement such as tuning:WhereClause
(figure 4), which contains the components that constitute the WHERE clause and tun-
ing:ReferencedTable that relates the DML statement with the accessed tables from the
physical schema through its FROM clause.

Figure 2. Fragment of OnDBTuning

Figure 3 shows a state diagram representing the states and events of the instantia-
tion process in OnDBTuning. In the initial state, the individuals in the ontology are only
those representing the classes and properties of the tuning domain. In this article, we used
the prefix tuning to identify classes, object properties, data properties, and instances of
the OnDBTuning ontology.

When OnDBTuning receives the workload (receive workload) composed of DML
statements, schema metadata, and optimizer statistics, new triples are created (asserted)

6https://www.ime.uerj.br/ondbtuning/



as individuals of ontology’s classes with their respective properties. After that, the rule
engine executes the ontology rules, and new triples are created (inferred). Some inferred
instances are the result of the SQL parse rules and others are the result of the tuning rules,
as described afterwards. The last ones contain suggestions for tuning actions. The in-
stantiation process repeats for every new workload received, accumulating the acquired
knowledge (asserted and inferred) from previous workloads for the same database in-
stance.

Figure 3. Ontology Instantiation State Diagram

Initially, OnDBTuning’s inference rules were designed in SWRL [Almeida et al.
2019]. However, we decided to use SPIN to implement the tuning rules due to SWRL
technological and expressiveness restrictions. First, a technological limitation was found
using Protégé7 and the SWRLTab8: we cannot use the OR operator with SWRL, and there
was also a limitation regarding the rule sizes. Therefore, we tried to use several rules,
one for each type of clauses combination [de Almeida 2013] in a DML query, which
makes rule creation and maintenance very complex. Moreover, SPARQL could be more
expressive than SWRL since it offers operators such as FILTER, OPTIONAL, UNION,
and the possibility of defining new functions and templates in SPIN, besides spin built-in
functions. Another feature is related to the performance of the rule engines: with SPIN,
the rules are checked when new instances or changes occur, while in SWRL we need to
check all the rules at each execution [Bassiliades 2020].

SQL Parsing Rules

Abstract syntax trees (AST) is a structured (tree) representation from the code of any
language with grammar. The SPIN vocabulary enables SPARQL statements’ ASTs rep-
resentation in RDF. SQL queries can also be represented by their ASTs. Thus, a database
workload can be represented by an RDF graph, where nodes are resources typed with
language’s abstract classes, whose syntactic structures can be annotated with additional
metadata.

The DML statements from input workloads are submitted to a parsing process
since most tuning heuristics are highly dependent on the queries’ structure (precondi-
tions). This process used to split SQL into indivisible nodes was supported by 06 (six)
spin:rules. We have considered the CONSTRUCT command to infer new triples, catego-
rize their nodes and create relationships based on OnDBTuning classes and properties.

Figure 4 shows the result of a parse rule for the tuning:WhereClause: one triple
with the data property correspondent to its content (tuning:hasClauseDescription), five

7https://protege.stanford.edu/
8https://github.com/protegeproject/swrltab



triples linking to the referenced columns (tuning:clauseReferencesColumn) and the triple
that links with the input workload DML (tuning:componentOfDMLSt).

Figure 4. Parsing of the WhereClause

Instantiating ontology concepts through rules attached to their classes rather than
other approach makes any reasoning explicit and consistent. It also makes the ontol-
ogy self-contained and with high cohesion, reducing external dependency and increasing
reuse. In the presence of new DB tuning heuristics that rely on a concept not previously
defined, it is quite straightforward to extend the ontology with the classes, properties, and
their respective parse rules.

Modeling Tuning Rules
Activity Diagrams of figures 5a and 5b demonstrate the rationale behind the rules used to
suggest (a) simple and (b) composite indexes. Each one is more detailed as follows.

(a) Simple (b) Composite

Figure 5. Activity Diagrams



For the simple (non composite) index rule (Figure 5a): (i) get DMLStatement:
for each query instance, check if there is a ”WHERE” clause; (ii) get ReferencedCol-
umn: select each column referenced in its ”WHERE” clause; (iii) get Index: check if
this column has an (physical) index; and (iv) suggest Index: suggest an index based on
this column.

For composite indexes (Figure 5b): (i) get DMLStatement: for each query in-
stance, check if there is a ”WHERE” clause; (ii) get CompositeExpression: for each
Composite expression of the ”WHERE” clause it checks if it has the logical connector
”OR”; (iii) get ReferencedColumn: select a pair of columns referenced in its ”WHERE”
clause and checks if they are different columns and belong to the same table; (iv) get In-
dex: check if this pair of columns has an (physical) index; and (v) suggest Index: suggest
a index based on this pair of columns.

4. Evaluation
SPIN rules were added to OnDBTuning using the TopBraid Composer Free Edition9 tool.
Topbraid’s front end enables users to define rules using a GUI interface rather than writing
their SPARQL rules using RDF syntax. This is one of the most used tools for creating
Ontologies, besides Protégé, OWLGrED10 and SWOOP11 [Suganya and Porkodi 2018].
To infer new individuals, we used the TopSPIN SPIN rule engine.

Tuning rules named tuning:RuleHypCompositeIndex and tun-
ing:RuleHypSimpleIndex are instances of tuning:HeuristicDefinitionRule and were
implemented as spin:rules attached to the tuning:DMLStatement concept. Using the
property tuning:isGeneratedBy of the triple generated by each rule, the user can identify
and even filter specific rule suggestions.

For each suggested hypothetical index, we calculate its bonus based on equation 1:

bonus =
count(hypIndex→ queries)

count(hypIndex→ column← table← queries)
(1)

A bonus refers to the total number of queries that originate the suggested hypothetical in-
dex divided by the sum of queries that references the corresponding table. The underlying
idea is that the closer the bonus value is to 1, the better. It indicates that it can be helpful
in most queries present in the accumulated workload. Above a user-defined threshold,
this bonus can show hypothetical index candidates to become actual indexes.

Indeed, for each real index, its usefulness is calculated, dividing the total tun-
ing:WhereClause, for the involved columns, by the total tuning:DMLStatment that refer-
ences its table. The closer the result is to 1, the better, as it indicates that the real index
can be useful for most DMLs from the accumulated workload. Values close to 0 suggest
index candidates to be dropped, as they require maintenance and are not being used.

We consider SPIN built-in functions in conjunction with SPARQL in the im-
plementation of parsing and tuning rules. In the parser process, the spif:split func-
tion allows the division of some strings into substrings. In the tuning rule called tun-
ing:RuleHypSimpleIndex (Figure 6a), for each referenced column in the where clause

9https://www.topquadrant.com/
10http://owlgred.lumii.lv/
11https://www.w3.org/2001/sw/wiki/SWOOP



(tuning:WhereClause) of a SQL statement, it was checked if there are indexes for that
column (FILTER NOT EXISTS). For bonus calculation, the function spif:countMatches
is called, which sums the occurrences of a triple, according to the rule (see Figure 6b).

(a) RuleHypSimpleIndex (b) RuleBonus

Figure 6. Tuning Rules

(a) Inference RuleHypSimpleIndex (b) Inference RuleHypCompositeIndex

Figure 7. Hypothetical Index suggestion

For this experiment, we used the well-known TPC-H benchmark12, which targets
analytical workload (OLAP). We used a subset of its schema, consisting of six tables and
28 columns. Real indexes initially exist for 6 primary keys and 6 foreign keys.

First, the schema metadata and 5 queries (Q01, Q03, Q04, Q05, and Q07) com-
posed the workload and instantiated OnDBTuning. For this workload, 38 hypothetical
indexes are suggested: 9 by the tuning:RuleHypSimpleIndex rule and 29 two-column

12http://www.tpc.org/tpch/



indexes by the tuning:RuleHypCompositeIndex rule. All bonus values are calculated
(tuning:hasHypBonus) for each hypothetical index, as well as real indexes utility (tun-
ing:hasIndexUsefulness). See Figure 7 for one example of each type.

Figure 7a shows an inferred hypothetical index identified by its URI (line
1) and described by its properties. Line 3 shows tuning:DML TPCH 7 and tun-
ing:DML TPCH 5 as the names of the benefited queries (tuning:dmlOriginatesHypInd)
which are instances of tuning:QueryStatement. Line 4 indicates its bonus value as
1.0 (tuning:hasHypBonus), line 5 HYP R NAME as hypothetical index name (tun-
ing:hasHypotheticalIndexName), line 6 tuning:Column R NAME that relates to the ref-
erenced column (tuning:HypIndexesColumn) named R NAME (tuning:hasColumnName),
and at line 7 tuning:RuleHypSimpleIndex indicates the tuning rule (tuning:isGeneratedBy)
that suggested this hypothetical index (rdf:type tuning:HypotheticalIndex).

In Figure 7b, identified by its URI (line 1), lines 2-3 describe
the properties content about the first (tuning:FirstColumn) and the sec-
ond (tuning:SecondColumn) column analyzed to generate the index: tun-
ing:Column L SUPPKEY and tuning:Column L PARTKEY, respectively. Line
4 presents the input query that generates the hypothetical index, named tun-
ing:DML TPCH 7 (tuning:dmlOriginatesHypInd). Line 5 has the bonus value
(tuning:hasHypBonus), its name is shown at line 6: HYP L SUPPKEY L PARTKEY (tun-
ing:hasHypotheticalIndexName) and indexed as in line 7: tuning:Column L SUPPKEY
and tuning:Column L PARTKEY(tuning:HypIndexesColumn). This composite hypotheti-
cal index was generated by tuning:RuleHypCompositeIndex (tuning:isGeneratedBy) rule
- see line 8. TopSPIN only inferred one composite hypothetical index for these pair of
columns since there already exist a real index for the same pair of columns in reverse
order.

After the first workload, the resulting triples are persisted at OnDBTuning, and
a second workload, with the TPC-H Q02 query, was added. The rule engine runs once
more, and both bonus (tuning:hasHypBonus) and utility (tuning:hasIndexUsefulness) are
calculated, considering the accumulated workload. A new triple with the respective prop-
erties for hypothetical and real indexes, were added where necessary.

In Figure 8 we can observe that bonus values of some hypothetical indexes have
decreased, increased, or neither. For instance, tuning:HYP C NATIONKEY, previously
0.66666667, dropped to 0.5. This result showed that there was a decrease in the number
of queries benefiting from this hypothetical index.

The tuning:LINEITEM L PARTKEY FKEY index has utility value of 0.2, Fig-
ure 9, and the second workload value decreased to 0.1666667, evidencing that it has low
potential to increase the performance of the workload queries. It is essential to mention
that, in the second workload, new triples were created only for those indexes that had
usefulness value variation due to the new query.



Figure 8. Hypothetical Index Bonus

Figure 9. Real Index Usefulness

5. Conclusions
In this research work we designed the inference of tuning suggestions based on index
heuristics. Two rules, tuning:RuleHypSimpleIndex and tuning:RuleHypCompositeIndex,
were implemented in the OnDBTuning ontology, and index hypothetical suggestions were
evaluated using TPC-H workload. The inferred suggestions supports a DBA in his tuning
actions with rationale explanations that black-boxes tools do not provide.

As future work we plan to extend OnDBTuning by refining index heuristics with
optimizer statistics, modelling and implementing others heuristics about partial indexes,
materialized views and partitions strategies as well as new database tuning concepts, prop-
erties and rules concerning NoSQL databases. In addition, OnDBTuning may also be



extended to capture concepts defined in Tun − OCM , a conceptual model that supports
database tuning decision making, CM-OPL methodology and its underlying language,
incorporating heuristics versioning [Almeida et al. 2021]. We will also integrate the on-
tology and a rule engine with a tool that captures RDBMS workload and executes the
inferred tuning suggestions for a complete evaluation of the database performance.

References
Aken, D. V., Yang, D., Brillard, S., Fiorino, A., Zhang, B., Billian, C., and Pavlo, A.

(2021). An inquiry into machine learning-based automatic configuration tuning ser-
vices on real-world database management systems. PVLDB, pages 1241–1253.

Almeida, A. C., Baião, F. A., Lifschitz, S., Schwabe, D., and Campos, M. L. M. (2021).
Tun-ocm: A model-driven approach to support database tuning decision making. De-
cision Support Systems, page 113538.

Almeida, A. C., Campos, M. L. M., Baião, F. A., Lifschitz, S., de Oliveira, R. P., and
Schwabe, D. (2019). An ontological perspective for database tuning heuristics. In Int.
Conf. on Conceptual Modeling (ER), pages 240–254. Springer.

Bassiliades, N. (2020). A tool for transforming semantic web rule language to SPARQL
infererecing notation. Intl. Journal Semantic Web Information Systems, pages 87–115.

de Almeida, A. C. B. (2013). Framework para apoiar a sintonia fina de banco de dados
(in portuguese). PhD thesis, PUC-Rio.

Doulaverakis, C., Koutkias, V., Antoniou, G., and Kompatsiaris, I. (2016). Applying
sparql-based inference and ontologies for modelling and execution of clinical practice
guidelines: a case study on hypertension management. In Knowledge Representation
for Health Care, pages 90–107. Springer.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowl-
edge Acquisition, pages 199–220.

Morelli, E. T., Almeida, A. C., Lifschitz, S., Monteiro, J. M., and Machado, J. C. (2012).
Autonomous re-indexing. In Symp. on Applied Computing, pages 893–897. ACM.

Promkot, A.-n., Arch-int, S., and Arch-int, N. (2019). The personalized traditional
medicine recommendation system using ontology and rule inference approach. In 4th
Intl. Conf. on Computer and Communication Systems, pages 96–104. IEEE.

Shasha, D. E. and Bonnet, P. (2002). Database Tuning - Principles, Experiments, and
Troubleshooting Techniques. Elsevier.

Staab, S. and Studer, R. (2010). Handbook on ontologies. Springer Sci & Bus. Media.

Suganya, G. and Porkodi, R. (2018). Ontology based information extraction-a review. In
Intl. Conf. on Current Trends towards Converging Technologies, pages 1–7. IEEE.

Valentin, G., Zuliani, M., Zilio, D. C., Lohman, G., and Skelley, A. (2000). Db2 advisor:
an optimizer smart enough to recommend its own indexes. In 16th Intl. Conf. on Data
Engineering, pages 101–110. IEEE Computer Society.

Zhang, J., Zhou, K., Li, G., Liu, Y., Xie, M., Cheng, B., and Xing, J. (2021). Cdbtune+:
An efficient deep reinforcement learning-based automatic cloud database tuning sys-
tem. VLDB, pages 1–29.


