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Abstract. Hyperparameter optimization is a fundamental step in machine learn-
ing pipelines since it can influence the predictive performance of the resulting
models. However, the setup generally selected by classical hyperparameter op-
timization based on minimizing an objective function may not be robust to over-
fitting. This work proposes CHyper, a novel clustering-based approach to hy-
perparameter selection. CHyper derives a candidate cluster of close or similar
hyperparameters with low prediction errors in the validation dataset. Hyper-
parameters chosen are likely to produce models that generalize the inherent
behavior of the data. CHyper was evaluated with two different clustering tech-
niques, namely k-means and spectral clustering, in the context of time series
prediction of annual fertilizer consumption. Complementary to minimizing an
objective function, cluster-based hyperparameter selection achieved robustness
to negative overfitting effects and contributed to lowering a generalization error.

1. Introduction
The recent rise in machine learning stems from the need for applications to efficiently
process large volumes of data. Among the various machine learning applications, the ones
provided by supervised learning models stand out. In the context of predictive models,
several factors influence the predictive performance of the algorithm even before training
starts, such as the choice of methods for data preprocessing and hyperparameters [García
et al., 2014]. Hyperparameters are values that make up the initial configuration of the
learning algorithm. We define a hyperparameter setting for a learning algorithm A as a
tuple of assignments to each hyperparameter in A.

For the algorithm to make predictions with greater accuracy, it is necessary to op-
timize the hyperparameters [Liu et al., 2021]. The Grid Search approach is commonly
adopted to explore a broad range of hyperparameter settings. It consists of repeatedly
training the learning algorithm with different possible hyperparameter settings combina-
tions. At the end of the process, the hyperparameter setting that resulted in the lowest pre-
diction errors (measured in a separate validation set) is chosen [Khalid and Javaid, 2020].
Such optimized hyperparameter settings can then be used to fit the learning model [Ran
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and Hu, 2017]. Since the number of hyperparameters can be high, adjusting each one
and analyzing model behavior is challenging [Liu et al., 2021]. Although relevant, this
challenge is outside the scope of this paper.

However, another relevant challenge occurs when the optimized hyperparameter,
corresponding, for example, to the lowest global prediction error in machine learning,
results in low accuracy in the test dataset. It is commonly related to the problem of data
overfitting. Overfitting occurs when the fitted model is too dependent on the training
dataset. One consequence is the lack of ability for the fitted model to generalize to unseen
data observations [Sarwar Murshed et al., 2022]. When faced with the problem of over-
fitting, one must search for robust solutions in order to select optimized hyperparameters.
In this case, choosing the hyperparameters that help the model reach the global minimum
prediction error may not be enough to reach robustness.

Consider, for example, that a Grid Search for hyperparameters establishes a search
space hyperparameters (i.e., a set of hyperparameters). Each hyperparameter setting has
an associated prediction error. Figure 1.a schematically illustrates the problem. Consider
that each dot (red or blue) is a hyperparameter setting for a given learning algorithm in this
picture. The set of considered hyperparameter settings is split into two clusters. Also, the
hyperparameter setting corresponding to the minimum global prediction error (double-
lined, green) in the validation dataset is clustered with similar hyperparameter settings.
Here, closeness or similarity between hyperparameter settings refers to low vector dis-
tances. All hyperparameter settings close to the one with minimum global prediction
error result in high prediction errors in the validation dataset. In this scenario, the hy-
perparameters with minimum global prediction error might be particularly suited for the
training set by luck.

Figure 1. Hyperparameter selection problem (a), CHyper approach (b)

Considering this information, it seems more interesting to identify a cluster of sim-
ilar hyperparameter settings that result in low prediction errors in the validation dataset.
Thus, hyperparameter settings chosen from this cluster are more likely to allow the
learned model to generalize better the inherent behavior of the data than the one with
the minimum global error. In this context, the main objective of this work is to evalu-
ate the hypothesis that selecting one among a group of close (similar) hyperparameter
settings that generally result in low prediction errors in the validation dataset is better
than selecting one that directly minimizes errors agnostically to its neighborhood. The
proposed optimization approach, which we call CHyper, thus focuses on the phase of
hyperparameter selection. First, it clusters the set of available hyperparameter settings.
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Then, it considers the neighborhood of each candidate solution to drive the selection. The
proposed solution, inspired by community detection techniques, aims to find communi-
ties of the most connected hyperparameter settings regarding configuration and prediction
performance [Fortunato, 2010]. The intuition is that this approach achieves robustness in
the hyperparameter setting and mitigates the negative effects of overfitting.

The related work was driven to search for papers that addressed hyperparameter
optimization. The articles were evaluated by the degree of relevance to the proposed
work. Selected articles can be divided into three groups. The first group involves works
that propose hyperparameter optimization methods. For example, Yu and Kang [2019]
proposes an optimization method based on clustering, but only for data partitioning, in
which the data sample for training contains only examples of the target class. The second
group applies Graph Theory to aid prediction. Zhang et al. [2019] proposes a composition
of neural networks and graphs hyper-networks that generate weights for any architecture
through its computational graphic representation. Finally, the third group presents articles
that use clustering to aid prediction, such as Li and Huang [2021], which uses k-means to
optimize the settings of an RBF Neural Network to predict stock values in the financial
market. From related work, it was observed that the selection of hyperparameters has not
yet been extensively studied. Therefore there is an opportunity for research in the area.
Moreover, no direct work exploited clustering techniques for selecting hyperparameters.

Besides this introduction, this work is divided into three sections. Section 2 details
the CHyper method. Section 3 presents the experimental setup and discusses the obtained
results. Finally, Section 4 describes the main contributions of the proposal and possible
future developments.

2. CHyper
This section presents the proposed approach for hyperparameter selection: CHyper. The
general idea of CHyper is to find a candidate cluster of close hyperparameter settings that
generally result in low prediction errors in the validation dataset. Instead of selecting hy-
perparameter settings that directly minimize error, CHyper recommends hyperparameters
that are more likely to generalize the inherent data behavior better. The general steps of
our approach are illustrated in Figure 1.b.

Consider a training-validation dataset scenario. A particular hyperparameter
search process generally encompasses the phases of (i) hyperparameter search space def-
inition, (ii) training of predictive models for each combination of mapped hyperparame-
ters, and (iii) evaluation of the prediction accuracy achieved by each trained model based
on a validation dataset. This process can produce a matrix Mn×(m+1), where m is the num-
ber of hyperparameters of interest, and n is the number of trained models. The matrix M
includes an additional column corresponding to the prediction error value.

Consider a matrix M as input. The proposed CHyper hyperparameter selection
approach outputs a hyperparameter setting that contributes to low prediction errors and
provides model generalization. The general steps comprising CHyper are presented in
Figure 1.b. In the first step, the m + 1 columns of matrix M are normalized using a
particular normalization method, such as z-score [Ogasawara et al., 2009]. This step is
important to ensure all scales are normalized and comparable, avoiding biased distances
between hyperparameter vectors. The result is given in matrix M ′.
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The second step produces a complete graph G = (V (G), E(G)), where each
row vector of M ′ corresponds to a vertex (|V (G)| = n). G is then computationally
represented by a distance matrix D or the similarity matrix S. The matrix D (or S) is
input to the third step consisting of applying a clustering method for deriving clusters of
closer (similar) hyperparameters in configuration. They are expected to produce models
with similar prediction performance. An adequate distance (similarity) function must be
selected as a criterion for the adopted clustering method for the second and third steps.
Examples include the Euclidean distance and Gaussian RBF. Methods such as k-means
and spectral clustering also require choosing the number k of clusters in the output. At
the end of the clustering process, a set of k clusters of hyperparameters is returned.

In the fourth step, the k clusters are compared to select a candidate cluster of close
hyperparameters that generally result in low prediction error metrics (eval). Note that
the selected candidate cluster may not contain the set of hyperparameters that minimizes
prediction errors in M . Instead, we focus on clusters that contain hyperparameters with
similar configurations that consistently contribute to relatively good prediction perfor-
mances. The possible techniques to select the candidate cluster are (i) error-based and (ii)
centrality-based. The error-based selects the cluster whose components summarize the
lowest average of prediction errors. The centrality-based calculates a centrality measure
for each vertex in a cluster-induced subgraph. The cluster with the most central vertex
contributing to the lowest prediction error is chosen.

The last step corresponds to the final recommendation of a hyperparameter set-
ting chosen from the selected candidate cluster. For that choice, different criteria can be
adopted. For example, the recommended hyperparameter setting can also be (i) Error-
based and (ii) Centrality-based. The error-based minimizes intra-cluster prediction er-
rors. The centrality-based corresponds to the most central vertex in the cluster-induced
subgraph.

3. Proof-of-concept experimental evaluation
The proposed method was experimentally evaluated in the context of time series pre-
diction. For that, it was derived a time series dataset from public data available at the
International Fertilizer Association (IFA)1. It contains data on the annual consumption
of three fertilizers (K2O, N , P2O5) in each of the world’s top ten consumers (Brazil,
Canada, China, France, India, Indonesia, Pakistan, Russia, Turkey, United States). The
dataset consists of 30 time series. Each one contains 58 observations from 1961 to 2018.
Observations for the period 1961-2002 are used for training, observations for 2003-2010
are used for validation, and the observations for 2011-2018 are used for testing.

3.1. Hyperparameter search

This work adopted a machine learning (ML) model to predict each fertilizer consumption
time series contained in the adopted dataset. The adopted ML model was the Multi-
layer Perceptron Neural Network (MLP), one of the most common neural network ar-
chitectures. It takes as main hyperparameters the number of neurons in the hidden layer
(neurons = [3, 8]), the number of input entries (inputsize = [3, 8]), and the parameter
for weight decay (decay = [0.1, 1.0]).

1http://www.fertilizer.org
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Based on the defined search space, 396 possible hyperparameter settings are gen-
erated, resulting in a matrix Mn×m, m = 3 and n = 396. Each hyperparameter setting
(row) is given as input for training a corresponding MLP model. This process is conducted
based on the training dataset of each time series previously normalized by Min-max [Oga-
sawara et al., 2009].

The prediction performance of each model is evaluated over the validation dataset
based on the symmetric mean absolute percentage error (sMAPE). Lower sums of predic-
tion errors over cross-validation indicate higher prediction performance and more accurate
predictions. Finally, the evaluated errors for models trained with each hyperparameter are
included in the last M (m = 4). By the end of the process, 90 M -like matrices are
produced (30 time series × 3 fold setups in cross-validation) and given as input to the
evaluation of CHyper.

3.2. Experimental setup

This section presents the experimental setup adopted to conduct the necessary steps for
CHyper hyperparameter selection based on M . Particularly, data normalization is done
by z-score [Ogasawara et al., 2009]. The Euclidean distance and the Gaussian RBF
are adopted as vector distance measures and similarity functions (kernel), respectively.
Heuristics automatically determine suitable values for the parameter sigma of the RBF
function [Karatzoglou et al., 2004]. Eigenvector centrality measures calculate vertex cen-
trality in cluster-induced subgraphs.

Both k-means and Spectral clustering perform clustering of the set of hyperpa-
rameters. The number of clustering centroids is determined by the elbow method. In this
case, the number of clusters is set to k = 3 after simulations of k in the discrete interval
2 ≤ k ≤ 10. Finally, the choice of the candidate cluster of hyperparameter settings and the
intra-cluster recommendation are either error-based or centrality-based (Section 2). Par-
ticularly, the matrix used by k-means is transformed into a similarity matrix S ′ = (s′i,j),
where s′i,j = (dist(xi, xj))

−1, for running the centrality after clustering. In the case of
Spectral clustering, the matrix used to obtain the centralities is precisely S.

The experimental results are compared with the traditional hyperparameter se-
lection (i.e., based on the lowest average prediction error in the training dataset). The
proposed CHyper hyperparameter selection approach is currently available at GitHub2.

3.3. Results and discussion

The first experimental evaluation target the selection of clusters, i.e., error-based versus
centrality cluster selection) for both clustering techniques. For spectral clustering, in 66%
of cases, error-based was better. However, for k-means, 100% of the error-based was
better. Due to that, the next experimental evaluation target error-based cluster selection.

The second experimental evaluation target the actual hyperparameter selection.
Evaluated methods are referenced as CHyper(spec) and CHyper(k-means), which corre-
spond to the hyperparameters recommended by CHyper using Spectral Clustering and
k-means. Besides, Traditional corresponds to selecting the hyperparameters that mini-
mize average prediction error in the training dataset.

2https://github.com/cefet-rj-dal/clusterhyper
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The performance of methods was evaluated for all input datasets (90). Overall,
CHyper outperformed the Traditional approach for most adopted datasets (51.1%). Spec-
tral Clustering resulted in 16.7% of the best results, while k-means was responsible for
14.4% of them. In 20% of the cases, Spectral Clustering and k-means tied, making the
same hyperparameter recommendation and outperforming the Traditional. These results
indicate the potential of CHyper to overcome overfitting effects and improve hyperparam-
eter selection and the process of time series prediction.

4. Conclusion
This work investigates alternatives to aid hyperparameter selection by proposing CHyper.
It is a novel hyperparameter selection approach named CHyper. It recommends hyper-
parameters that have surrounded hyperparameters with low prediction errors in the test
dataset. CHyper was competitive regarding prediction performances, recommending hy-
perparameters contributing to lower prediction errors in the test dataset for more than half
of the time series. The paper opens room for deeper studies on hyperparameter selection.
Additionally, the CHyper hyperparameter selection approach can be adopted by optimiza-
tion methods currently available in the literature and is not limited to Grid Search.
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