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ABSTRACT
Identifiers represent approximately 2/3 of the elements in source

code, and their names directly impact code comprehension. In-

deed, intention-revealing names make code easier to understand,

especially in code review sessions, where developers examine each

other’s code for mistakes. However, we argue that names should

be understandable and pronounceable to enable developers to re-

view and discuss code effectively. Therefore, we carried out an

empirical study based on 40 open-source projects to explore the

naming practices of developers concerning word complexity and

pronounceability.We applied theWordComplexityMeasure (WCM)

to discover complex names; and analyzed the phonetic similarity

among names and hard-to-pronounce English words. As a result,

we observed that most of the analyzed names are somewhat com-

posed of hard-to-pronounce words. The overall word complexity

score of the projects also tends to be significant. Finally, the results

show that the code location impacts the word complexity: names

in small scopes tend to be simpler than names declared in large

scopes.

1 INTRODUCTION
The software maintenance activity can easily exceed the cost and

time of other activities, such as system implementation. Therefore,

it is well-recognized as the most expensive activity in software

development [10]. As high-quality names might ease the devel-

oper’s source code understanding, the software maintenance cost

can be reduced by choosing intention-revealing names, as advo-

cated in [16, 20]. Indeed, as Booch suggests [3], software should be

described via natural language in the earlier stages. High-quality

nouns should to be used as a starting point to design classes, and

verbs used to describe operations. [3]. There are different means to

achieve high-quality names; by using: intention-revealing words;

searchable words; domain concepts, and pronounceable words [17].

Especially, pronounceable names can improve the discussion in

code review sections (e.g., an experienced developer helping a new-

comer). With easy-to-pronounce names, the discussion can happen

with less tension and be more productive [17].

To investigate whether identifier names are in general easy to

pronounce we carried out an empirical study in which we ana-

lyzed 1,421,607 names from 40 open-source projects. We performed

repository mining to investigate three research questions: RQ1:
How are names in Java projects compared with hard-to-pronounce
words in English? ; RQ2: What is the complexity score of names in
Java projects? ; RQ3: Is there a variation in name complexity regard-
ing identifier location in the source code?.

To answer the research questions, we use three phonetic algo-

rithms: Soundex [19]; Metaphone [18], and NYSIIS [21]. They take

as an input a word and return a code representing the respective

phonetic encoding. These algorithms have been used in many appli-

cations, such as spell checkers (to find a word with similar phonetic

encoding to an incorrectly-written one) and database search algo-

rithms. To determine the pronunciation relationship among the

analyzed names and hard-to-pronounce words, we calculated the

phonetics distance among them using the Jaro Distance [4] and

the Match Rate Index [13]. Finally, to quantify the overall word

complexity in the analyzed projects, we used the Word Complexity

Measure [22]. This measurement takes as input the phonetic en-

coding of a word and calculates the respective complexity based

on word patterns, syllable structures, and sound classes.

The remainder of this paper is organized as follows. The Section 2

presents the background on naming practices. Section 3 details how

we carried out our study. The Section 4 outlines the results of

our empirical study and provides a general discussion. Section 5

describes the threats to the validity. Finally, Section 6 presents some

concluding remarks.

2 BACKGROUND
In this section, we highlight the role identifier names play in code

comprehension. We also present some conceptual aspects about

phonemes and the phonetic algorithms used in this study.

2.1 Identifier Names
Identifier names play an important role in software development

since they can be seen as the most fundamental source of infor-

mation in the source code [7]. Therefore, they impact not only

code comprehension but also the overall code quality [6]. First,

names are essential to represent real-world concepts in the source

code [20]. Concepts can be represented in the source code as an

object, single variables or parameters. Names chosen to represent

concepts in the source code should be concise and consistent [9].

Second, high quality names can also be helpful as source code

documentation. Terse names indeed do not contribute to source

code discussions neither provide information about their purpose.

Therefore, many researchers and practitioners emphasize the im-

portance of using descriptive and meaningful identifier names [2].

Interestingly, the length of identifier names can also impact the

code quality: the prevalence of very short names has a strong effect

on fault-proneness [14].

As mentioned, identifier names must also be pronounceable [17].

It is impractical to discuss source code snippets composed of words

that programmers cannot pronounce in a code review session.

Therefore, pronounceable names positively contribute to source

code discussion and code review sessions. However, as stated by [15],
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abbreviations (often hard-to-pronounce) are prevalent in propri-

etary and open-source code. This fact indicates that newcomer

developers need to learn and comprehend abbreviations, increas-

ing the training cost. Complementarily, single-letter names and

abbreviations also impose an increase in defect discovery time [11],

resulting in software that is harder to maintain and evolve.

2.2 Phonetic Encoding
A phonetic algorithm indexes words by their pronunciation, i.e.,

they provide an index that operates from the sound of words. There

are several phonetic algorithms, most of which were developed

for the English language. The Soundex is the most well-known

algorithm for creating phonetic indices. It is available in many

database management systems (e.g., Oracle, MySQL). The algorithm

considers the letters in a word and associates them with numbers,

transforming a word into a code with four elements: an initial

letter; and three numbers [19]. The New York State Identification

and Intelligence System (NYSIIS) algorithm, in contrast to Soundex,

tries to capture differentiation in pronunciation by encoding similar

sounds [21]. Finally, the Metaphone algorithm also encodes words

by reducing them to consonant sounds (16 sounds) [18].

We can use some algorithms to measure the similarity between

two encoded-words (string distance algorithm). For example, the

Match Rating Approach (MRA) is a phonetic algorithm with sep-

arate encoding and comparison rounds. Since the MRA encoding

may return inconsistent encoding for similar words, we can use

a string distance algorithm to compare the MRA-encoded words

in a second round. We can also employ the exact two-stage pro-

cess to the encoded words returned by the previously mentioned

phonetic algorithms. In this case, the Jaro Distance algorithm is an

alternative to calculate the distance between the encoded words by

computing the number of insertions, deletions, and substitutions

to get from encoding to another (also called edit distances) [21].

This algorithm returns a number between 0 (exact match) and 1

(entirely dissimilar), representing the dissimilarity between strings.

2.3 Word Complexity Measure
TheWord ComplexityMeasure [22] is an algorithm designed to give

words a representative complexity score. The algorithm uses word

patterns, syllable structures, and sound to calculate the complexity

score of a word [22]. Therefore, a word that gains a high score

contains more complex morphology structures that are harder to

pronounce.

3 METHODOLOGY
This section presents the research questions, the study’s design,

and goals.

3.1 Research Questions and Study Goals
This empirical study investigates names beyond their intention-

revealing quality (which concept they aim to represent); it analyzes

the impact of words on the pronounceability of identifier names.

As discussed in Robert C. Martin Book (Clean code) [17] by Tim

Ottinger, pronounceable names can positively contribute to source

code discussions and improve the overall understanding between

developers. To study the pronounceability of identifier names, we

convert them into their respective phonetic encoding and calculate

their pronunciation similarity among words considered hard-to-

pronounce. Therefore, we settled the evidence what make identifier

names hard to pronounce. We summarize the goals of the study in

the following research questions:

• RQ1: How are names in Java projects compared with
hard-to-pronounce words in English? We examine some

words considered hard to pronounce, to analyze if names

chosen to be identifier names are close or not to those words.

• RQ2: What is the complexity score of names in Java
projects? Using the Word Complexity Measure, we seek

to find the usual complexity score within a Java project.

• RQ3: Is there a variation in name complexity regarding
identifier location in the source code? This question pro-

poses establishing source code locations (e.g., attribute,

parameter, variable) in which names can be more chal-

lenging to be pronounced.

3.2 Sample Selection
To obtain a broad view of the pronunciation of names in practice,

we chose 40 Java projects to be part of the study, representing

different domains of application, such as Natural Language Pro-

cessing, Image Manipulation, Software Testing, Computer Vision.

First, we selected well-known projects with several contributors

and commits, for example: Jenkins, Junit4, Spring-boot, and Tomcat.
To select additional projects to be part of our study, we picked other

smaller projects from a curated list of awesome projects
1
. All of

the projects are open-source and were downloaded directly from

their Github repository. Overall, the analyze Java projects comprise

more than 7 million lines of code. Therefore, we consider that we

have selected a representative set of open-source projects.

3.3 Extracting Identifier Names
We extracted 1,421,607 names (i.e., attribute, parameter, and

variable) from the 40 collected projects. After applying the words

tokenization, we get a total of 17,886 unique words. We examined

the words of each extracted identifier and their distance to 40 hard-

to-pronounce word to answer the RQ1. To answer the RQ3, we also

collected the location in the code in which the identifier names

appear. Analysing the location in the code where a name is declared

may corroborate in the understanding of how developers choose

words in diverse scopes.

To convert words into their proper phonetic encoding, we start

out by extracting all the identifier names of the analyzed projects. To

achieve this goal, we develop a script based on a tool called SrcML
2
,

which converts source code from different languages into an XML

(Extensible Markup Language) representation [8]. In this XML file,

the original properties of the code are kept inside different tags.

For instance, there is a tag representing a class (<class>), following

it, a tag name (<name>) stores the actual class name. The SrcML

representation enables performing Xpath queries. We went through

the XML files searching for the names and the ones found in the

queries were stored in a database.

1
https://java-lang.github.io/awesome-java/

2
srcml.org
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Figure 1: Dissimilarity Between Phonetics

3.4 Producing the Phonetic Encoding
The R library called Phonics 3

, which implements phonetic algo-

rithms (see Section 2.2), was employed to produce the phonetic

encoding of the analyzed identifier names. The Soundex, Meta-

phone, and NYSIIS were the algorithms selected to produce the

encodings. The words used to in the identifier names were used

as input to the algorithms. Our motivation: during code review

sessions, developers use the words to indicate a certain identifier;

hence we chose to pass them as input to produce the phonetic

codes.

We used the Jaro Distance algorithm (available in the R library
stringdist) to compute the number of insertions, deletions, and

substitutions required to transform one phonetic encoding into

another. Therefore, in such a case, every word was compared with

forty different hard-to-pronounce words in English
4
. Then, we

calculated the mean of the dissimilarity between words. The exact

process was replicated using the Match Rating Codex. In particular,

this algorithm returns whether two words are similar or not regard-

ing their pronunciation (a response of True or False). So, instead
of computing the dissimilarity between words, we applied an OR

operator in the returned Boolean values to resolve if an identifier

has at least one challenging word to pronounce.

Finally, we calculated the WCM (complexity score) for all words

in identifier names in all projects. Then, the mean of those scores

was summarized for each project, representing the Project-specific

WCM. We also derived the Location-specific WCM, representing

the complexity score of identifiers declared in specific statements:

attribute, parameter, method, for, while, if, and switch. We

used the Project-specific WCM to answer RQ2 and the Location-

specific WCM to answer the RQ3.

4 RESULTS AND DISCUSSION
This section presents the results obtained in this study using the

phonetic algorithms. We discuss the analysis and answer the re-

search questions presented in Section 3.1.

3
jameshoward.us/phonics-in-r

4
www.thoughtco.com/hard-to-pronounce-words-4156950

4.1 RQ1:How are names in Java projects
compared with hard-to-pronounce words
in English?

We employed the Jaro Distance algorithm to measure the dissimilar-

ity between the phonetics produces using the Soundex, Metaphone

and NYSISS. As mentioned in Section 3, we split the identifiers com-

posed of more than one word and compared the word’s phonetics

with the phonetics of forty hard-to-pronounce words. The Figure 1

presents the resulting dissimilarities. As we can see, the dissimi-

larity measurement generally concentrates around the value 0.6,

which means that the words part of the analyzed names are some-

what hard-to-pronounce (the Jaro Distance algorithm considers 0

as an exact match and 1 as completely dissimilar).

The Match Rate Approach and Jaro Distance measures the dis-

tance between word’s phonetics. However, unlike Jaro, the MRA

gives a True or False answer if two words have similar pronuncia-

tion or not. Whether the MAR algorithm considered at least one

word as having a similar pronunciation, the respective identifier

name received the value True (hard-to-pronounce) and False oth-

erwise. We observed that the percentage of words that receive the

value True is much higher than the False ones. The names having

at least one hard-to-pronounce sub-word is 99% of the total. This

result indicated a high number of words chosen to compose the

analyzed names similar to hard-to-pronounce ones.

Words chosen to serve as identifier names are somewhat hard-to-

pronounce.

4.2 RQ2: What is the complexity score of
names in Java projects?

We used the Word Complexity Measure to answer the RQ2. We

calculated the WCM as the mean of the complexity of words in an

identifier name. The overall score of a project was calculated by

the mean of the scores of its identifier names. According to Table 1,

the average word complexity varies from 2.04 (Jtk project) to 4.11

(retrofit). As observed in a study [22], the average complexity in a
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Table 1: Frequency of Special Characters

Project Java LoC Commiters Commits Complexity Score

aeron 108442 86 14409 3.62

androidutilcode 39030 32 1317 2.88

archunit 100276 49 1499 3.91

boofcv 650019 14 4520 2.61

butterknife 13279 97 1016 3.52

corenlp 581374 107 16280 2.95

dropwizard 74215 364 5789 3.91

dubbo 179477 386 4681 3.39

eventbus 8369 20 507 4.10

fastjson 179996 158 3863 2.70

glide 76418 129 2583 3.48

guice 72980 59 1931 3.40

hdiv 30631 11 1086 3.73

ical4j 24130 35 2303 3.07

j2objc 1810274 75 5284 2.74

jenkins 175150 654 31156 2.87

jtk 204105 9 1373 2.04

junit4 31242 151 2474 3.83

keywhiz 23337 32 1538 3.64

libgdx 272510 505 14661 2.76

litiengine 75877 20 3324 2.97

lottie-android 16258 102 1292 3.30

mockito 55751 220 5523 3.34

mpandroidchart 25232 69 2068 2.76

nutch 141710 43 3215 2.92

okhttp 48465 235 4848 3.97

orienteer 55681 12 2274 3.12

picasso 9136 97 1368 3.55

rest-assured 73511 105 2020 3.17

rest.li 523972 89 2617 3.48

retrofit 26513 152 1865 4.11

riptide 27072 18 2131 3.71

rxjava 468957 277 5877 2.77

spring-boot 343138 804 32096 3.97

tomcat 343703 61 23140 3.15

twelvemonkeys 99418 42 1334 2.64

unirest-java 15979 43 1603 2.83

webmagic 12926 40 1119 3.49

xchart 24406 50 1451 2.75

zxing 107064 109 3582 3.16

Total 7111470 5519 217869 3.26

set of 10 words spoken by adults is 2.8. Therefore, projects such

as retrofit and eventbus possess a word complexity score superior

to the average observed by [22]. This result might indicate the

use of more complex words in some projects. On the other hand,

the projects jtk showed the lowest complexity score among all the

projects, and interestingly, this project also has the lowest number

of committers.

The overall mean of scores is 3.26. This score is almost 1 point

higher than the complexity of the words spoken by adults [22]. The

majority of the analyzed projects received scores between 3-4. This

result can indicate that developers tend to use words that are far

complex than the average. However, as adults, developers seem to

use a reasonable number of words that adults understand. Another

observation is the low diversity in the number of words. We recog-

nized only 17,886 unique words in the 1,421,607 extracted names.

Therefore, this result might justify the high homogeneity in the

WCM scores across projects (3 ± 1).

Figure 2: Complexity scores in different statements
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The word complexity measure in open-source projects, on average,

is higher than in studies with adults.

4.3 RQ3: Is there a variation in name
complexity regarding identifier location in
the source code?

Further, to answer the RQ3, we investigated the Word Measure-

ment Complexity over particular contexts (attribute, parameter,

method, for, while, if, and switch). The results are present in

Figure 2.

The most complex identifier names appear as attribute, pa-

rameter, and variable (complexity score of around 3). This result

might indicate that in such contexts (attribute, parameter, and

variable), identifier names contain words that are more similar to

hard-to-pronounce ones. In contrast, names present in relatively

small scopes (e.g., for, while, if, and switch) receive lower WCM

scores. We suppose that, in such context, names are, in general,

simple single-letter words. Indeed, some naming conventions [1] ac-

knowledge the use of single-letter words to name a local temporary

or looping variable. Therefore, identifiers declared in small scopes

tend to have identifiers with less complexity than those declared in

large scopes.

The size of the scope influences the word complexity of the iden-

tifier names declared within them.

5 THREATS TO VALIDITY
Our study is subject to some threats to its validity. In this section,

we present potential threats and how we tried to mitigate some of

those issues.

External Validity. To mitigate threats concerning the gener-

alization of our study, we selected a heterogeneous sample of 40

open-source Java projects. As our sample covers small code-bases

(with less than 10K LoC) and large-scale ones (with over 100K LoC),
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we consider the impact of this threat as minimal. However, given

our sample size, we cannot control that our results do not reflect

how name’s pronounceability occurs in the wild. Moreover, to un-

derstand how hard identifier names are to be pronounced, we used

a set of hard-to-pronounce words. Therefore, another potential

threat is that these selected words are not representatives ones.

Internal Validity. A threat to the internal validity of our study

comes from the number of names we analyzed in our study. To

mitigate this threat, we collected 1,421,607. Additionally, another

potential threat is how well the phonetic algorithm reflects extant

the identifier names pronunciation. We tried to mitigate this threat

by drawing from previous research, which has been extensively

using such algorithms in practice.

6 CONCLUSION
According to Tim Ottinger (Clean code) [17], identifier names must

persist pronounceable to empower developers in code review ses-

sions. However, coming up with proper identifier names is challeng-

ing [5], and, as stated by [12], even though programmers have to

name identifiers daily, it still entails a great deal of time and thought.

This study investigated the pronounceability of identifier names

in practice. We analyzed the identifier names using three phonetic

algorithms (Soundex, Metaphone and NYSIIS) and also outlined

the word complexity across projects and source code contexts (i.e.,

attribute, parameter, method, for, while, if, and switch).

Our results based on 1,421,607 identifier names and 7,886 unique

words from 40 open-source projects would seem to suggest the

following:

• Words chosen to serve as identifier names are somewhat

similar to other words considered as hard-to-pronounce.

• The word complexity measure in open-source projects is

higher than in studies with adults.

• The programmer’s naming practices are context-specific:

more complex words seem to be more common in large

scopes (attribute, parameter, variable).

• We could benefit from including pronounceable naming prac-

tices in code reviews. The current practices do not address

naming issues.

Our work highlights the need for further research on how nam-

ing practices are prevalent in source code and how better words

can be chosen. Our long-term goal is to identify opportunities to

rename identifiers and understand more about programmers nam-

ing practices. Finally, as future work, we plan to perform a study

involving source code written in other programming languages

(e.g., C and Python).
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