
Merge Nature: a tool to support research about merge conflicts
Luan Reis Ciribelli
João Pedro Lima∗

luanreisciribelli@ice.ufjf.br
joao.carvalho.lima@ice.ufjf.br

Universidade Federal de Juiz de Fora
Juiz de Fora, Minas Gerais, Brasil

Heleno de S. Campos Junior
helenocampos@id.uff.br

Universidade Federal Fluminense
Niterói, Rio De Janeiro, Brasil

Márcio de Oliveira Barros
marcio.barros@uniriotec.br

Universidade Federal do Estado do
Rio de Janeiro

Rio de Janeiro, Brazil

André van der Hoek
andre@ics.uci.edu

University of California, Irvine
Irvine, U.S.A.

Leonardo Gresta Paulino Murta
leomurta@ic.uff.br

Universidade Federal Fluminense
Niterói, Brazil

Gleiph Ghiotto
gleiph@ice.ufjf.br

Universidade Federal de Juiz de Fora
Juiz de Fora, Minas Gerais, Brasil

ABSTRACT
The modern software development model requires concurrent pro-
gramming to create more complex programs. As such, existing
approaches are able to track and merge the changes made on a
code repository, allowing more developers to work collaboratively.
Despite these solutions, 10% to 20% of all merges result in conflicts,
such as when changes are made on the same file region. Existing
studies have analyzed, prevented, predicted, and even automatically
resolved merge conflicts. However, they are usually focused on a
specific language or on language-independent information from
the source-code lines involved in the conflict. This situation hin-
ders the generalization of results. To enrich the information to be
used by further studies about merges, we present the Merge Nature
Tool, which recreates all project merges and extracts characteristics
from conflicts, such as the resolutions adopted by developers, and
the language constructs involved in the conflict for Java, C++, and
Python files. The tool was evaluated regarding reproducibility and
generalization. It was able to reproduce 87.75% of the results of a
previous study. The differences can be explained by newly intro-
duced features. On the other hand, regarding generalization, the
tool was used to analyze a set of 100 merges from Python projects.
The merges were analyzed manually to ensure the reliability of
the results. We found that 100% of the data matched the expected
result. We expect this tool to facilitate future work regarding merge
conflicts. For instance, it may allow comparing the characteristics
of merge conflicts from different programming languages.

KEYWORDS
Git, version control systems, software merge, merge conflicts

1 INTRODUCTION
The complexity of software projects has been increasing over the
years, requiring an increasing number of developers coding over
the same set of artifacts in parallel. In this context, version control
systems (VCS) allow multiple developers to work simultaneously
through branches, which can receive contributions from different
developers and have specific goals. However, their contributions
must be combined using the merge feature provided by the VCS.

A merge can report conflict when it is impossible to combine the
contributions performed in different branches automatically [6].
∗Both authors contributed equally to this research.

For instance, a conflicting merge occurs when multiple developers
change the same region of one file in parallel. In such a situation,
the merge cannot automatically combine the contributions, and a
developer must be assigned to resolve the conflict manually [5].

Previous studies report that 10% to 20% of the merges end up in a
conflict [2, 3, 8]. This shows how frequent merge conflicts are in the
life of software developers. Despite the broad array of programming
languages available to developers, most studies [1, 6, 7, 9, 13] have
investigated merge conflicts on Java projects only, neglecting other
programming languages since each programming language has its
grammar that should be considered during a tool implementation.

This paper extends Ghiotto et al. [6] approach for extracting
information aboutmerges that would demand significant work from
researchers considering the processing and implementation effort.
The tool automatically recreates all merges for a given software
project and extracts the number of merge conflicts, the number
of conflicting files and chunks, the most common conflict types,
and the resolutions adopted by the developers for all programming
languages. Additionally, it is able to extract the language constructs
involved in such conflicts for Java, C++, and Python files since they
depend on the language’s grammar.

The initial evaluation of the tool considered two main goals:
reproducibility and generalization. The reproducibility shows the
developers’ decisions match in 87.75% of [6] analyses while the
language constructs match in 67.27% of the cases. On the other
hand, the generalization evaluation shows that 100% of the merges
analyzed are according to the expected results.

This paper is structured into six sections, besides this introduc-
tion. Section 2 introduces relevant concepts to understand the fea-
tures of the tool. Section 3 presents an overview of the tool. Section
4 presents the main assets of the tool and the software technology
used to implement it. Section 5 present initial results. Section 6
presents research and tools that have similar goals. Finally, Section
7 summarizes the paper’s contributions and future work.

2 SOFTWARE MERGE AND PARSER
VCSs enable developers to manage the projects’ history and work
collaboratively with other developers. To manage the project’s
history, developers usually change a set of software artifacts and
perform a commit to store a new version in the repository. Addi-
tionally, many developers can work on the same project and create

Woodstock ’18, June 03–05, 2018, Woodstock, NY Ciribelli et al.

branches to contribute in parallel. Eventually, these branches are
also integrated using the merge feature [11].

Amerge can be performed automatically or it can report conflicts
that should bemanually resolved by developers [5]. Using themerge
feature implemented in Git [4], a merge is performed automatically
when developers change different areas of a software artifact in
parallel. On the other hand, when changes are performed over
the same region of a software artifact, the VCS reports a conflict
that the developer must resolve manually. It is worth mentioning
that a conflict may be composed of one or more conflict files that
may contain one or more conflict chunks. We also refer to "conflict
chunk" as "chunk" in the remainder of the paper.

Listing 1 shows the source code of a chunk extracted from the
merge b14ca5 of the project ANTLR4 1. This merge2 is the result
of the integration between the versions 05b0f6 and b80ad5 and
reported eight conflict files, where the file RuleStartState.java
has the chunk presented in Listing 1. During the merge, the changes
are identified and integrated considering the most recent version
in common, named merge-base. In this merge, the merge-base is
the version f7d0ca.

The chunk has three markers: begin, separator, and end. They
are represented by the following symbols, respectively: <<<<<<<,
=======, and >>>>>>>. The code lines between the begin marker
and the separator are called Version 1 (V1). The lines between the
separator and the end marker are called Version 2 (V2). The code
before the begin and after the end markers is called context, or,
more specifically, prefix and suffix, respectively.

Listing 1: Conflicting chunk of merge b14ca5 from ANTLR4.
1 public f ina l c l a s s R u l e S t a r t S t a t e extends ATNState {
2 public Ru l e S t o p S t a t e s t o p S t a t e ;
3 <<<<<<< HEAD
4 public boolean i s P r e c e d en c eRu l e ;
5 =======
6
7 @Override
8 public int ge t S t a t eType () {
9 return RULE_START ;
10 }
11 >>>>>>> b80ad5052d1b693be6e5 c 0a2be8b f 8 7 e15b86 f 1 8
12 }

As discussed earlier, each conflict must be manually resolved by
the developers. For example, the adopted resolution for the chunk
displayed in Listing 1 is presented in Listing 2. In this case, the
developer’s decision is a concatenation of the code of V1 and V2.

The source code of one chunk can be parsed to extract the lan-
guage constructs in V1 and V2. It is important to identify the lan-
guage construct involved in the source code of each chunk. More-
over, it is a challenging task since each programming language,
such as C++, Python, and Java, has its own set of language con-
structs defined in the grammar, demanding a new implementation
for each programming language. For instance, the conflict depicted
in Listing 1 parsed with a Java grammar results in the following lan-
guage constructs: field declaration (line 4), annotation (line 7), and
method declaration (lines 8-10) that comprises return statement and
variable (line 9). In this paper, we call language-dependent analyses

1https://github.com/antlr/antlr4
2https://merge-nature.netlify.app/501687/antlr4/b14ca56441196d63b8974455c0050bfaee4cb3a4/
b14ca56441196d63b8974455c0050bfaee4cb3a4

that depend on the grammar of the programming language. The
other analyses are called language-independent analyses.

Listing 2: Resolution adopted by the developers to resolve
the conflict chunk displayed in Listing 1.
1 public f ina l c l a s s R u l e S t a r t S t a t e extends ATNState {
2 public Ru l e S t o p S t a t e s t o p S t a t e ;
3 public boolean i s P r e c e d en c eRu l e ;
4
5 @Override
6 public int ge t S t a t eType () {
7 return RULE_START ;
8 }
9 }

3 APPROACH
The Merge Nature tool aims at supporting researchers to extract
the data from merges in the history of projects coded in C++, Java,
and Python. Figure 1 shows an overview of this process that en-
compasses four stages: pre-processing, which receives a software
repository and extracts information, such as the metadata of ver-
sions and the chunks; chunk analysis, which extracts the language
constructs, the developer’s decision, and some metrics, such as the
number of conflicting merges and the distribution of developers’
decisions; storage, which stores the results of the analysis; and
visualization, which is responsible for showing the information
extracted during the merge analyses to a researcher.

The pre-processing stage extracts the metadata of merges and
the versions involved and verifies if the merge is in conflict. In
Figure 1, each merge is represented by a red rectangle, represent-
ing a conflicting merge, or a green rectangle, representing a non-
conflicting merge. The metadata extracted from merges is focused
on four versions: the merge result, the two parents, and the merge-
base, which is composed of their identifiers, their authors and com-
mitters, and the commit’s date and message. Another piece of infor-
mation is extracted by replaying the merges to identify whether a
given merge is a conflicting merge. If the merge is non-conflicting,
the analysis is finished. Otherwise, the analysis continues to iden-
tify the conflicting files and chunks. Considering the conflict files,
the conflicts are generally on the content level. However, there are
conflicts in the level of files and directories. It is possible when
someone deletes a file and someone else adds lines in the same
file, when developers change the directory of files, and so on. The
approach also deals with these conflict file types.

The chunk analysis stage extracts the information from the
chunks formerly identified, such as the language constructs, the
developers’ decisions, and metrics such as the number of lines of
code in V1 and V2. Such information is collected for all chunks in
the project’s history under analysis. The language constructs are
extracted using the language’s grammar to parse the source code
and select the language constructs of the lines inside the chunks.

The developers’ decisions are extracted using textual analyses,
considering the code of the chunks and their resolution. Consider-
ing that the contexts are not changed during the chunk resolution,
the textual analyses consist of identifying the sequence of lines
between the prefix and the suffix. If the sequence of lines is equal
to the code of V1, the developer’s decision is Version 1. Ghiotto
et al. [6] defined other developers’ decisions that are used in this

https://github.com/antlr/antlr4
https://merge-nature.netlify.app/501687/antlr4/b14ca56441196d63b8974455c0050bfaee4cb3a4/b14ca56441196d63b8974455c0050bfaee4cb3a4
https://merge-nature.netlify.app/501687/antlr4/b14ca56441196d63b8974455c0050bfaee4cb3a4/b14ca56441196d63b8974455c0050bfaee4cb3a4

Merge Nature: a tool to support research about merge conflicts Woodstock ’18, June 03–05, 2018, Woodstock, NY

Language constructs

Developer’s decisions

Metrics

Storage Visualization

<<<<<<<HEAD
V1
=======
V2
>>>>>>>

Merges

Metadata
extraction

Conflicting
chunks

Chunk
analyses

Figure 1: Merge Nature tool architecture.

approach as Version 2, which is analogous to Version 1; Concate-
nation, which occurs when the sequence of lines is represented
by the concatenation of V1 with V2 or V2 with V1; Combination,
which takes place when the sequence of lines is a subset of V1
and V2 combined in any order; None, which happens when the
sequence of lines is empty; and New Code, which ensues when
the developer adds one or more lines that were not included in V1
or V2 in the sequence of lines. For improving the classification, this
approach added the following developers’ decisions: Deleted file,
which occurs when the developer deletes the file containing the
conflict during the merge resolution; Postponed, which takes place
when the developer leaves at least one marker of the chunk in the
resolution; and Imprecise, which occurs when one of the context
lines was changed by the developer during the chunk resolution.
In that case, it is not possible to determine the resolution precisely.

Finally, metrics, such as the number of lines in a chunk, are ex-
tracted from the source code of the chunks. This stage is responsible
for most of the analyses performed by this tool, and it may consume
most of the processing time depending on the number of merges
and the size of the files involved.

The storage stage stores the analyses performed in the previ-
ous stages to build a collection of analyses, allowing the users to
compare them or share the results, which can be stored in a text
file or a database. Finally, the visualization stage is responsible
for presenting the available information and allowing researchers
to navigate over the merges, files, or chunks they are interested in.

4 IMPLEMENTATION
TheMerge Nature tool extracts information about merges by replay-
ing them in the same sequence they appear in the project history.
The current implementation3 supports projects that are versioned
in Git and coded in C++, Java, and Python. The decisions of the VCS
3https://figshare.com/articles/software/MergeNature-main_zip/20644443

and the programming languages supported are based on the size
of the community that uses Git and the top three object-oriented
languages on TIOBE index 4. Moreover, ANTLR 5 was elected as a
parser because it has a set of implemented grammars that enable
future extensions.

To analyze a repository, the tool requires two inputs: the path
to a Git repository and the number of context lines that should be
displayed for each conflicting chunk. A low number of context lines
may facilitate the visualization of the chunks, and more context
lines may give more insights when someone is trying to understand
the conflict. Based on these inputs, the tool identifies and processes
the repository’s merges, and reports the results on a screen with the
data obtained during the steps of pre-processing and chunk analysis.
This screen, depicted in Figure 2, is divided into five regions that
are explained in this section.

Region 1 shows the analyzed project, including its name, the
URL from where it was cloned, and the organization that maintains
it. In this case, the project used is ANTLR4, which was cloned from
GitHub and is maintained by the ANTLR organization. Region 1
has a button entitled Metrics that shows the main statistics for the
project, such as the number of chunks resolved with each developer
decision, the number of files by conflict type, and the number of
chunks having each language construct.

Region 2 shows a table with all the merges found by the analyses
and information about the conflicts. The table has columns that
show the merges’ hashes, the number of chunks, and whether
this merge is in conflict. For instance, we can observe that merge
b14ca56 is in conflict and has 12 chunks, while merge 6d1d0e0 is
non-conflicting.

The tool allows researchers to filter the merges according to
their goals. This feature is available by pressing the Set Filter button

4https://www.tiobe.com/tiobe-index/
5https://www.antlr.org/

https://figshare.com/articles/software/MergeNature-main_zip/20644443
https://www.antlr.org/

Woodstock ’18, June 03–05, 2018, Woodstock, NY Ciribelli et al.

Figure 2: Main screen of Merge Nature tool.

in Region 2. For instance, it is possible to order the merges by the
number of chunks and filter the chunks resolved using specific
developers’ decisions. To improve the user experience, they can
filter the current content to refine their results, or they can reset the
table contents to the initial state by using the Reset Table button.

After selecting the set of merges for subsequent analysis, the
user can view their characteristics by double-clicking each merge.
For instance, by double-clicking the row b14ca56, Region 3 shows
information about the commits involved in this merge, such as the
commits’ message, their committers, and their dates. The figure
shows the information related to the merge’s version, but it is
possible to see the information of parents 1 and 2, and merge-base
versions by selecting another option in the drop-down menu.

When the selected merge is in conflict, the data for each con-
flicting file is shown in Region 4. Such data includes the file path
in each commit, the conflict file type, and the number of chunks.
This region also shows whether the conflict resolution has altered
source code outside the chunks, which can be used to evaluate if
the merge resolution is restricted to the chunks or if other regions
of the code were affected when a developer resolved the merge.
Furthermore, the user can click the blue hyperlink Show file alter-
ations to open a new screen that shows all changes made by the
developer during the conflict resolution process, including changes
performed outside of chunks. Lastly, the user can select one chunk

file for visualization using the left and the right drop-down menus
of Region 4.

Region 5 shows the chunk information selected in the drop-down
menu of Region 4. The first information is the chunk content, which
presents the code from V1 highlighted in blue and the code from
V2 in green. Next, the region shows the developer’s decision and
the resolution adopted by the developer to address the conflicting
chunk. If the user needs to analyze the developer’s decision man-
ually – for instance, in Imprecise cases – the Show file alterations
feature in Region 4 shows the changes performed to resolve the
merges in the conflicting file. Region 5 also shows the language
constructs present in V1 and V2. It is worth mentioning that when
there are nested language constructs, we collect only the most ex-
ternal as in Ghiotto et al. [6]. In this case, the chunk represented
by Region 5 has the language constructs annotation (line 7), field
(line 4), and method declaration (lines 8 to 10).

5 EVALUATION
The Merge Nature tool was evaluated considering two main goals:
reproducibility and generalization. The reproducibility was evalu-
ated to verify if the developers’ decisions and language constructs
of chunks match with the results of Ghiotto et al. [6]. On the other
hand, the generalization was evaluated manually to identify if the
results for another language, Python, are reliable.

Merge Nature: a tool to support research about merge conflicts Woodstock ’18, June 03–05, 2018, Woodstock, NY

To evaluate reproducibility, we selected five Java projects that
have 137 merges that were analyzed by Ghiotto et al. [6] and 498
Java chunks. The tool was able to reproduce the [6] classification of
developers’ decisions in 87.75% of the chunks. Themain difference is
explained mainly by the introduction of imprecise which represents
9.39% of the chunks. Regarding the language constructs, 67.27%
of the chunks had identical language constructs. However, the
grammar used in the current version of the tool treats the language
constructs in different ways. For instance, Java Annotation is treated
as one of the modifiers of Method declaration and Attributes, while
it was an external language construct in the previous evaluation.
Despite the differences, this evaluation shows that the current tool
can reproduce the results of Ghiotto et al. [6] and some divergences
should be addressed in future work.

The generalization evaluation was performed on 100 merges ex-
tracted from five Python projects. One author manually inspected
the chunks of the merges and compared the expected results with
the result reported by the tool. Regarding developers’ decisions,
100% of the chunks matched the results expected by the author. Con-
sidering the language constructs, the tool found three chunks with
a parser error caused by syntax problems. All the other cases were
a match between what the author manually identified and what the
tool identified, which indicated the power of the tool for Python. It
also indicates that the tool can replace manual classification, which
can be error-prone.

6 RELATEDWORK
This section presents approaches that deal with merge analyses.
Owhadi-Kareshk andNadi [12] proposed a tool namedMERGANSER
to support researchers in collecting data regarding merge from Git
repositories. The tool can replay merge scenarios to identify merge
conflicts and collect data, such as the conflicts files and chunks.
MERGANSER was used to collect data from 267,657 merge sce-
narios from 744 GitHub repositories, comprising seven different
programming languages. However, the tool is only able to extract
language-independent information, such as those provided by Git.

Brindescu et al. [2] discuss a combination of three tools to iden-
tify merge conflicts, extract relevant metrics, such as the presence of
bug fixes and new features in merges, and track statements across
different versions of a source code. The authors collected data from
143 open-source projects comprising 36,122 merges. However, it is
not clear how the data is presented to the user and the collected
data is language-independent.

Menezes et al. [10] proposed a tool named MacTool (Merge
Attribute Collector). It identifies whether a repository has specific
types of files for eight different programming languages: JavaScript,
Python, Java, PHP, C#, C++, C, and Ruby. The tool also collects
information, such as the number of merges and conflicted merges
of a repository. However, while the tool can identify information of
files coded in a specific programming language, it does not consider
the language representation or grammar.

Ghiotto et al. [6] developed a tool that collects merge conflict
metrics and classifies the conflict resolution adopted by the devel-
opers. They used the tool to collect and analyze merge conflicts
data of 2,371 open-source Java projects. As discussed previously,
the current tool is an extension of the former one, given that their

tool can only analyze Java files, which does not allow researchers
to extract language-dependent information from conflict merges in
other programming languages, and extract a subset of our devel-
oper decisions, which can be imprecise in some cases. For instance,
when the developer postpones a conflict resolution and Ghiotto
et al. [6] classifies as new code resolution.

7 CONCLUSION
This paper presents a tool to support studies of software merge
conflicts dealing with information from three programming lan-
guages. Besides supporting the extraction of merge information,
the tool helps its users to visualize and analyze merge conflicts. The
tool was evaluated considering the power of reproducibility of the
results of Ghiotto et al. [6] and the generalization in a set of Python
projects. The initial results are encouraging and open the way for
new analyses. As future work, we propose to increase the coverage
of programming languages through an extensible architecture that
would allow researchers to analyze language-dependent informa-
tion. Other future work would be to use the results to research and
improve studies on the conflict merge analysis.

ACKNOWLEDGEMENTS
We would like to thank BIC/UFJF, VIC/UFJF, CAPES, and CNPq for
their financial support.

REFERENCES
[1] Iftekhar Ahmed, Caius Brindescu, Umme Ayda Mannan, Carlos Jensen, and Anita

Sarma. 2017. An empirical examination of the relationship between code smells
and merge conflicts. In 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 58–67.

[2] Caius Brindescu, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma. 2020. An
empirical investigation into merge conflicts and their effect on software quality.
Empirical Software Engineering 25, 1 (2020), 562–590.

[3] Yuriy Brun, Reid Holmes, Michael D Ernst, and David Notkin. 2011. Proactive
detection of collaboration conflicts. In Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software engineering.
168–178.

[4] Scott Chacon and Ben Straub. 2014. Pro git: Everything you need to know about
Git (second ed.). Apress. https://git-scm.com/book/en/v2

[5] Catarina Costa, Jair Figueirêdo, João Felipe Pimentel, Anita Sarma, and Leonardo
Murta. 2019. Recommending participants for collaborative merge sessions. IEEE
Transactions on Software Engineering 47, 6 (2019), 1198–1210.

[6] Gleiph Ghiotto, Leonardo Murta, Marcio Barros, and Andre Van Der Hoek. 2018.
On the nature of merge conflicts: a study of 2,731 open source java projects hosted
by github. IEEE Transactions on Software Engineering 46, 8 (2018), 892–915.

[7] Mário Luís Guimarães and António Rito Silva. 2012. Improving early detection
of software merge conflicts. In 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 342–352.

[8] Bakhtiar Khan Kasi and Anita Sarma. 2013. Cassandra: proactive conflict min-
imization through optimized task scheduling. In Proceedings of the 35th ICSE,
David Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.). IEEE / ACM, 732–741.

[9] Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsantalis. 2019. Are refactorings
to blame? an empirical study of refactorings in merge conflicts. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 151–162.

[10] José William Menezes, Bruno Trindade, João Felipe Pimentel, Tayane Moura,
Alexandre Plastino, Leonardo Murta, and Catarina Costa. 2020. What causes
merge conflicts?. In Proceedings of the 34th Brazilian Symposium on Software
Engineering. 203–212.

[11] TomMens. 2002. A state-of-the-art survey on softwaremerging. IEEE Transactions
on Software Engineering 28, 5 (2002), 449–462.

[12] Moein Owhadi-Kareshk and Sarah Nadi. 2019. Scalable software merging stud-
ies with merganser. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 560–564.

[13] Bowen Shen, Cihan Xiao, Na Meng, and Fei He. 2021. Automatic detection
and resolution of software merge conflicts: Are we there yet? arXiv preprint
arXiv:2102.11307 (2021).

https://git-scm.com/book/en/v2

	Abstract
	1 Introduction
	2 Software merge and Parser
	3 Approach
	4 Implementation
	5 Evaluation
	6 Related work
	7 Conclusion
	References

