
Tool support to aligning requirements and testing through
behaviour-driven requirements patterns

Pollyana de Queiroz Ribeiro1, Ernesto F. Veiga2, Mariana C. Martins2,
Auri M. R. Vincenzi3, Taciana N. Kudo2, Renato F. Bulcão-Neto2

1Universidade Estadual de Goiás, Santa Helena de Goiás, Brazil

2Instituto de Informática, Universidade Federal de Goiás, Goiânia, Brazil

3Departamento de Computação, UFSCAR, São Carlos, Brazil

pollyana.queiroz@ueg.br, auri@ufscar.br, {taciana,rbulcao}@ufg.br

Abstract. The software industry still struggles with adverse effects of a weak align-
ment between requirements and testing. The Software Pattern Metamodel (SoPaMM)
aligns requirements and test patterns under the influence of agile practices. However,
these patterns will be more beneficial for professionals if development activities are
supported by a software tool. This paper presents the behaviour-DRivEn Applica-
tion Model generator (DREAM) tool, automatically generating requirements and test
specifications from SoPaMM-based patterns. We show how DREAM supports require-
ments elicitation and specification, test case elaboration, and software documentation
using a patterns catalogue for electronic health record systems.

1. Introduction
Requirements reuse is a feasible approach to lessen the negative impacts on soft-
ware projects whenever Requirements Engineering (RE) activities are inadequately exe-
cuted [Irshad et al. 2018]. Reusing the knowledge acquired in previous projects allows mak-
ing the RE activities more prescriptive and systematic while facilitating the reuse of existing
requirements artifacts and improve teams’ productivity [Barros-Justo et al. 2018].

Among the requirements reuse approaches existing, we have investigated the theory
and practice of software requirements patterns (SRP). An SRP is an abstraction that combines
behaviours and services common to several systems and that can be reused in similar soft-
ware [Withall 2007]. The use of SRP in software projects positively affects RE activities, e.g.,
saving time and improving the quality of requirements regarding completeness, uniformity,
consistency, and clarity [Da Silva and Benitti 2013].

Recent work [Kudo et al. 2019a] shows that those benefits acquired with SRP are pri-
marily focused on the RE process, despite the intrinsic relationship between RE outcomes
and the remaining software development phases. For instance, consider the established as-
sociation between requirements and system tests and between business cases and accep-
tance tests. However, despite the knowledge accumulated over the years, the industry still
copes with adverse effects resulting from a weak alignment between requirements and test-
ing [Bjarnason and Borg 2017].

In light of this, we elaborated on a metamodeling solution to relate SRP to outcomes
produced over the software development life cycle [Kudo et al. 2022]. Our solution called

Software Pattern MetaModel (SoPaMM) associates SRP with software test patterns (STP) that
are high-value testing solutions to recurrent behaviours in various scenarios. Besides, we
implemented the Terminal Model Editor (TMEd) tool for supporting the development pro-
cess of pattern catalogues as SoPaMM instance models [Kudo et al. 2020]. Using TMEd,
we have built pattern catalogues, e.g., for Brazilian Electronic Health Record (EHR) sys-
tems. [Kiatake et al. 2021, Kudo et al. 2020].

However, aligning requirements and testing through SoPaMM, pattern catalogues, and
TMEd is not enough for the software industry. TMEd-supported pattern catalogues compile
recurrent requirements and test cases for a given application domain. These catalogues are built
upon domain experts’ knowledge and represented under the SoPaMM grammar, i.e., in such
abstract form not suitable for professionals [Kudo et al. 2020]. Thus, there is a need for a tool
that automates RE and testing activities, reducing software team members’ cognitive load.

This paper presents the behaviour-DRivEn Application Model generator prototype
(DREAM). The DREAM’s current version focuses on the automatic generation of software
artifacts from pattern catalogues built using TMEd. We show how DREAM maps each el-
ement of a pattern catalogue to produce specification documents of requirements and test
cases and a requirement traceability matrix. Information items applicable to RE and test-
ing [ISO/IEC/IEEE 2018, ISO/IEC/IEEE 2013] and their content influenced the generation of
documents by the DREAM tool.

To illustrate the DREAM capabilities, we describe a scenario in which it reads the pat-
tern catalogue we made for EHR systems [Kudo et al. 2020]. The DREAM tool is the first
ongoing work capable of generating software specifications from behaviour-driven requirement
pattern catalogues to the best of our knowledge. As developed, we believe DREAM can auto-
mate RE and testing-related tasks, save development time, and reduce the team’s workload.

This paper is organised as follows: Section 2 analyses related work; Section 3 presents
theoretical background; Section 4 describes how DREAM supports RE and testing activities;
and Section 5 brings final remarks and future work.

2. Related Work

The SERS tool [Benitti and Silva 2013] provides requirement analysts with user and project
management facilities, search, selection, and reuse of requirement patterns, requirements rec-
ommendation and tracing, and requirements specification documentation and printing. Simi-
larly, PABRE-Proj [Palomares et al. 2013] users can manage projects, import and browse cata-
logues, reuse requirement patterns, and generate requirements specifications. Also, PABRE-
Proj allows the generation of calls for tender documents and usage statistics for patterns.
PABRE-Proj is the one that most resembles DREAM because the catalogues’ information items
also rely on a metamodel.

Besides aiding requirements elicitation and specification through pattern catalogues
reuse, the computational support proposed in [Barcelos and Penteado 2017] provides require-
ment professionals with pattern catalogues specification and management. This functionality is
similar to TMEd’s, whose pattern catalogues generated are DREAM inputs. In turn, the InstRP
Editor [Beckers et al. 2013] assists professionals in selecting and instantiating cloud-based se-
curity requirements using a cloud system analysis pattern.

In brief, every tool, including DREAM, reads requirement pattern catalogues, allows
patterns reuse aiding elicitation, and generates requirements specifications as instances of the
catalogue’s content. As the SoPaMM-based catalogues bridge requirement and test patterns,
DREAM goes further by also documenting test case specifications traced to requirements.

3. Background
This section presents components required to comprehend the DREAM support in our
behaviour-driven requirement pattern approach: the Software Pattern MetaModel (SoPaMM)
and the Terminal Model Editor (TMEd) tool.

3.1. The SoPaMM Metamodel

The SoPaMM metamodel describes how requirement patterns and test patterns are specified,
related, and classified [Kudo et al. 2022]. The Catalogue is the coarsest grained reuse unit for
collecting software pattern-related concepts in SoPaMM. A Software Pattern Bag (SPB) com-
prises Software Pattern (SP) elements that, in turn, are extensible points to allow different types
of SP, such as requirement, test, or other software patterns. Thus, the SPB concept allows or-
ganising, in the same catalogue, software patterns for problems at various software development
stages. SoPaMM is flexible regarding relationship types between catalogues, SPBs, and SPs by
not predefining them (e.g., dependence and usage [Withall 2007]).

We have focused on how to bridge functional requirement patterns (FRP) and accep-
tance test patterns (ATP). Under the influence of the BDD agile methodology, an FRP is a
composition of Features, written as user stories, whose behaviours are described as scenarios
using the BDD’s Gherkin syntax.

Consider the following excerpt of the FRP for user account creation. Its feature de-
scribes the administrator user allowed to register a new user for the system. This feature has
two behaviours represented: a successful and an unsuccessful scenario, both linked to the same
precondition (the attempt of creating a new user). However, the scenarios’ execution steps are
distinct regarding the user data’s validity. Similarly, one different outcome is represented for
each scenario, i.e., the new user registration and the display of an error message.

Finally, the Example concept allows defining and linking multiple data to each scenario.
Thus, each scenario has one data instance so that one scenario registers a new user successfully.
In contrast, the other scenario does not due to an invalid example of user identification num-
ber. This FRP-Feature-Scenario-Example representation is what defines our behaviour-driven
functional requirement pattern approach.

FRP Name: FRP_User_Creation
FEATURE User creation

As: an administrator
I_can: create a new user
So_that: he/she is registered for the system
SCENARIO Successful user creation

Given: I am trying to create a new user
When: I enter <ITRN>, <name>, <gender>, <date of birth>,

<father’s name>, <mother’s name>, <role>
Then: the system should register a new user with these data
EXAMPLE

735.101.320-92 | Carlos Chagas | Male | 01.01.2000 |

Jose Chagas | Carla Chagas | Doctor
SCENARIO Not successful user creation - Invalid ITRN

Given: I am trying to create a new user
When: I enter an invalid <ITRN>
Then: the system should display the <message> error message
EXAMPLE

735.101.320-00 | "This is an invalid individual taxpayer
registration number (ITRN)"

ATP Name: ATP_User_Creation
TEST CASE Successful user creation

InputData = EXAMPLE of SCENARIO Successful user creation
OutputData = EXAMPLE of SCENARIO Successful user creation

TEST CASE Not successful user creation - Invalid ITRN
InputData = EXAMPLE of SCENARIO Not successful user creation -
Invalid ITRN
OutputData = EXAMPLE of SCENARIO Not successful user creation -
Invalid ITRN

Aligned to the FRP User Creation, the ATP User Creation is composed of two test
cases, each related to a particular test scenario: (un)successful user creation. Each test case
contains preconditions (Given), expected results (When), and postconditions (Then), as well as
input and output test data from the respective Example of Scenario. Thus, this is how an ATP
verifies compliance against a specific FRP in our approach. Further details about the SoPaMM
metamodel can be found elsewhere [Kudo et al. 2019b, Kudo et al. 2022].

3.2. Terminal Model Editor (TMEd)
SoPaMM borrows the MetaObject Facility’s (MOF) four-layered architecture [OMG 2002] in
which lower-layer models are instances of immediately upper-layer models. In the M2 layer,
SoPaMM has the MOF metametamodel as a reference model. In the M1 layer, SoPaMM in-
stances are pattern catalogues (or terminal models) built on our TMEd tool. These pattern cata-
logues follow the SoPaMM grammar constructors presented in Section 3.1, such as Catalogue,
SPB, FRP, Feature, Scenario, Example, ATP, etc.

As pattern catalogues’ development is not a trivial task, domain experts usually build
these through tool support. Developed on top of the Eclipse Modeling Framework (EMF), the
TMEd’s user interface allows the creation and edition of every SoPaMM component (e.g., SPB,
FRP, and ATP) and the generation of an XML output file following the SoPaMM grammar.
That output file then feeds the DREAM tool to generate real-world software specifications (or
application models, as in the M0 layer).

4. The DREAM tool
DREAM is a web tool developed in these technologies: Java and JavaScript languages,
Spring framework (backend), Angular with TypeScript (frontend), and PostgreSQL as DBMS.
DREAM supports RE and testing activities through pattern catalogues produced by the TMEd
tool. These catalogues include FRP and ATP represented following the SoPaMM metamodel
grammar presented previously. DREAM helps requirements teams in the elicitation, specifica-
tion, and documentation activities. Besides, it also aids testing professionals in elaborating and
documenting test cases.

Overall, the DREAM’s main requirements include, but are not limited to: user account
management; basic software project management; TMEd-based pattern catalogue importing;

imported catalogues search; the exhibition of each catalogue element’s contents (e.g., SPB and
SP); the association of catalogues with a software project; the reuse of individual catalogue
elements supporting requirements elicitation and test case elaboration; and the automatic gen-
eration of requirement and test case specifications based on international standards, such as
ISO/IEC 29148 [ISO/IEC/IEEE 2018] and ISO/IEC 29119-3 [ISO/IEC/IEEE 2013].

4.1. Supporting requirements elicitation and test case elaboration through patterns reuse

DREAM provides a set of functionalities to support requirements elicitation and test case de-
velopment through reuse and the automatic generation of artifacts, i.e., software requirements
specification (SRS), test case specification (TCS), and traceability matrix (TM). The DREAM
user can create and manage software projects as well as register new catalogues or reuse ones
already registered. Figure 1(i) depicts a DREAM user interface with the following functional-
ities: (A) project update; (B) project members; (C) project statistics (mainly related to reuse);
(D) associate a patterns catalogue to the current project; (E) view patterns reused; (F) reuse pat-
terns catalogues; (G) edition of requirements and test cases specifications; and (H) automatic
generation of SRS, TCS, and TM.

During requirements elicitation, a user can reuse a specific pattern (FRP, NFRP, or ATP),
a set of patterns, or the complete catalogue. Os ATPs estão vinculados aos FRPs e/ou NFRs em
um mesmo catálogo. This is achieved by accessing the “Associate Catalog” option available on
the project’s main page, as shown in Figure 1(i)D. A list of the catalogues registered into the
DREAM database is exhibited so that the user choose one or more patterns.

When clicking on the “Reuse” option, the user is redirected to the screen in Figure 1(ii),
which contains detailed information about each element of the pattern catalogue (FRP, NFRP, or
ATP). Reuse options include one or more patterns or the entire catalogue. We implemented such
reuse options in DREAM to make requirements elicitation faster. The same effect is expected
for test case elaboration when the user reuses ATPs linked to FRPs.

4.2. Supporting requirements and test cases specification

DREAM allows users to edit patterns reused according to a project’s needs. The fields on the
requirements editing screen, shown in Figure 1(iii), are automatically filled in with the reused
patterns’ content and can even be edited (except for the reserved words As, I can, So that.

Filling the Priority (1 to 5) and Mandatory (yes or no) fields is optional. The remaining
fields (Name, As, I can, So that) are automatically filled by the information from the corre-
sponding FRP reused. Their contents can also be edited by the user if necessary. Information
about the source catalogue and the original pattern bag (NOT shown in Figure 1(iii)) can not be
changed to maintain reuse traceability and generate software pattern usage reports.

Similarly, Figure 1(iv) illustrates the test case editing screen in which the fields Name,
Given, When, Then, and Examples are extracted from the corresponding ATP reused. Likewise,
the Scenario’s name and the FR id come from the FRP-ATP aligned but are not editable.

Figure 1. The DREAM user interface: (i) main functionalities for a sample project; (ii) patterns reuse; (iii) requirements edition; (iv)
test cases edition; and excerpts of (v) a requirements specification document, (vi) a test case specification document, and
(vii) a traceability matrix.

4.3. Automatic documentation of software artifacts
Once a user has reused and edited the definitions of requirements and test cases from pattern
catalogues, the DREAM tool also allows the automatic generation of software artifacts. For
example, Figure 1(v) illustrates an excerpt of a requirements specification document describing
an FR1 functional requirement for the registering of a new health institution. Specified as a
user story, FR1 is not mandatory and its source is the electronic prescription section of our
catalogue for EHR systems. This document structure, encoded in the .docx format, conforms
to the ISO/IEC 29148 standard [ISO/IEC/IEEE 2018].

In turn, Figure 1(vi) depicts an excerpt of a test case specification document describing
a TC1 test case for the registering of a new patient. The TC1 contents include preconditions,
inputs, and expected results. In addition, observe that TC1 links to an FR7 functional require-
ment for tracing purposes. This document structure, encoded in .docx, adheres to the ISO/IEC
29119-3 standard [ISO/IEC/IEEE 2013].

Finally, DREAM can generate a traceability matrix document encoded in the .xlsx for-
mat. Figure 1(vii) presents the association between FR and TC following the relationships
between FRPs and ATPs imported from pattern catalogues.

The generation of agile documentation is a work in progress – see H in Figure 1(i).
We have produced a graphical view with individual cards with user stories and acceptance test
scenarios to support professionals’ tasks. This functionality will be available soon.

5. Final remarks and future work
The DREAM tool is innovative in relating different types of software patterns, i.e., FRP and
ATP, to assist requirements and testing activities. None of the similar tools represents and pro-
cesses the alignment between requirements and testing. In addition, DREAM maintains trace-
ability between reused standards when generating documentation, allowing the management of
these requirements throughout a project.

We are aware that, as a CASE tool, DREAM is at an early stage of the investigation.
But, on the other hand, we claim we advance state of the art by developing tool support for our
reuse approach based on requirement patterns linked to acceptance test patterns.

In future work, we will conduct experimental studies using DREAM in software require-
ments courses to evaluate to which extent it supports elicitation, specification, documentation,
and even validation of requirements through acceptance tests. The goal is to gather the first
pieces of evidence about the appropriateness of the DREAM-supported reuse approach. Ex-
perimentation results will also be used to identify the need for new features and promote the
continuous improvement of the tool. We also plan to experiment with DREAM in professional
scenarios later.

References
Barcelos, L. and Penteado, R. (2017). Elaboration of software requirements documents by

means of patterns instantiation. J Softw Eng Res Dev, 5(3):1–23.

Barros-Justo, J. L., Benitti, F. B. V., and Leal, A. C. (2018). Software patterns and requirements
engineering activities in real-world settings:a systematic mapping study. Comp. Standards
& Interfaces, 58:23–42.

Beckers, K., Heisel, M., Côté, I., Goeke, L., and Güler, S. (2013). Structured pattern-based se-
curity requirements elicitation for clouds. In 2013 International Conference on Availability,
Reliability and Security, pages 465–474.

Benitti, F. and Silva, R. (2013). Evaluation of a systematic approach to requirements reuse.
Journal of Universal Computer Science, 19:254.

Bjarnason, E. and Borg, M. (2017). Aligning requirements and testing: Working together
toward the same goal. IEEE Software, 34(1):20–23.

Da Silva, R. and Benitti, F. (2013). Evaluation of a systematic approach to requirements reuse.
Journal of Universal Computer Science, 19(2):254–280.

Irshad, M., Petersen, K., and Poulding, S. (2018). A systematic literature review of software
requirements reuse approaches. Inf. Softw. Technol., 93(C):223–245.

ISO/IEC/IEEE (2013). 29119-3:2013 Software and systems engineering - Software testing.
International Organization for Standardization, 5 edition.

ISO/IEC/IEEE (2018). 29148:2018 Systems and software engineering - Life cycle processes -
Requirements engineering. International Organization for Standardization, 2 edition.

Kiatake, L. G. G., Junior, L. A. V., da Silva, M. L., and Sanzovo, O. A. C. (2021). Man-
ual de Certificação de Sistemas de Registro Eletrônico em Saúde. Sociedade Brasileira de
Informática em Saúde. Versão 5.1. Instituı́do e regido pela Resolução CFM nº 1821/2007.

Kudo, T. N., Bulcão Neto, R. F., Macedo, A. A., and Vincenzi, A. M. R. (2019a). A revisited
systematic literature mapping on the support of requirement patterns for the software devel-
opment life cycle. Journal of Software Engineering Research and Development, 7:9:1–9:11.

Kudo, T. N., Bulcão Neto, R. F., and Vincenzi, A. M. R. (2019b). A conceptual metamodel
to bridging requirement patterns to test patterns. In Proceedings of the XXXIII Brazilian
Symposium on Software Engineering, pages 155–160, New York, NY, USA. ACM.

Kudo, T. N., Bulcão-Neto, R. F., and Vincenzi, A. M. R. (2020). Uma ferramenta para
construção de catálogos de padrões de requisitos com comportamento. In Proceedings of
WER20 - Workshop em Engenharia de Requisitos, São José dos Campos, Brazil, Agosto
24-28, 2020, pages 1–14. Editora PUC-Rio.

Kudo, T. N., Bulcão-Neto, R. F., Graciano Neto, V. V., and Vincenzi, A. M. R. (2022). Align-
ing requirements and testing through metamodeling and patterns: design and evaluation.
Requirements Eng, pages 1–19.

OMG (2002). Meta Object Facility (MOF) Specification, version 1.4. Object Management
Group, Inc.

Palomares, C., Quer, C., and Franch, X. (2013). Pabre-proj: Applying patterns in requirements
elicitation. In 2013 21st IEEE International Requirements Engineering Conference (RE),
pages 332–333.

Withall, S. (2007). Software Requirement Patterns. Best practices. Microsoft Press, Redmond,
Washington.

