
A Framework to Compute Entity Relatedness in Large RDF
Knowledge Bases

Javier Guillot Jiménez1, Luiz André P. Paes Leme2,
Yenier Torres Izquierdo1, Angelo Batista Neves3,1, Marco A. Casanova3,1

1 Tecgraf Institute, PUC-Rio, Rio de Janeiro, RJ – Brazil
{javiergj, ytorres}@tecgraf.puc-rio.br

2 Institute of Computing, Federal Fluminense University, Niterói, RJ - Brazil
lapaesleme@ic.uff.br

3 Department of Informatics, PUC-Rio, Rio de Janeiro, RJ – Brazil
{ajunior,casanova}@inf.puc-rio.br

Abstract. The entity relatedness problem refers to the question of exploring a knowledge base, represented as
an RDF graph, to discover and understand how two entities are connected. This article addresses such problem by
combining distributed RDF path search and ranking strategies in a framework called DCoEPinKB, which helps reduce
the overall execution time in large RDF graphs and yet maintains adequate ranking accuracy. The framework allows
the implementation of different strategies and enables their comparison. The article also reports experiments with data
from DBpedia, which provide insights into the performance of different strategies.

Categories and Subject Descriptors: H.2 [Database Management]: Physical Design; H.3 [Information Storage
and Retrieval]: Information Search and Retrieval

Keywords: entity relatedness, RDF graph, path search strategy, entity similarity, path ranking, DBpedia, SPARK

1. INTRODUCTION

An RDF knowledge base K is equivalent to an RDF graph GK whose nodes represent the entities
in K and whose edges denote the relationships expressed in K. This is a convenient representation
to explore the connectivity in K of a pair of entities, a and b, which reduces to computing paths in
GK between a and b. This article focuses on the entity relatedness problem for large RDF knowledge
bases, defined as: “Given a large RDF knowledge base K and a pair of entities a and b, compute the
paths in GK from a to b that best describe the connectivity between a and b in K”.

Computing the relatedness between a pair of entities may return interesting results. Consider,
for example, DBpedia [Lehmann et al. 2015] – a triplified version of Wikipedia – and the problem
of discovering how the nodes that represent Albert Einstein and Kurt Gödel are related. Indeed,
there are more than 10,000 paths in DBpedia between the nodes representing these scientists. One
discovers, for example, that they were friends, neighbors (at Princeton, New Jersey), and colleagues (at
the Institute for Advanced Study - IAS), that Gödel demonstrated the existence of solutions involving
closed timelike curves, to Einstein’s field equations in general relativity, and that Gödel was awarded
(with Julian Schwinger) the first Albert Einstein Award in 19511.

1https://en.wikipedia.org/wiki/Kurt_Gödel#Princeton,_Einstein,_U.S._citizenship (Last accessed on May 26th,
2022).

Copyright©2022 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 13, No. 2, September 2022, Pages 271–292.

272 · J. G. Jiménez et al.

However, computing the relatedness between pairs of entities over large RDF graphs is challenging
due to the potentially explosive number of paths between a pair of entities, as the above example
illustrates. As a further indication, the experiments described in this article used two versions of
DBpedia with 21M and 45M edges. Furthermore, for the 21M and 45M versions, the average outde-
grees are approximately 4.0, and 7.4 and the average indegrees are 4.5 and 7.5, respectively. This is
a reasonable indication that the potential number of paths between a pair of entities in these graphs
can be quite large.

Following Fang et al. [2011], Herrera [2017] and Jiménez et al. [2021], this article then investigates
the entity relatedness problem for large RDF knowledge bases by exploring path search strategies,
which have two major steps. The first step uses the Backward Search Heuristic (BSH) [Le et al.
2014], which is a breadth-first search strategy that expands the paths starting from each input entity,
until a candidate relationship path is generated. The expansion process prioritizes certain paths over
others and filters out entities that are less related to the target entities. The process maintains entities
similar to the last entity reached in a partially constructed path, using an entity similarity measure,
a threshold, and an expansion limit. The second step ranks relationship paths using a path ranking
measure, and returns the top-k paths as a description of the connectivity of the entity pair.

The article describes a framework, called DCoEPinKB, which allows experimenting with various
path search strategies over large RDF graphs, using different entity similarity measures, expansion
limits, and path ranking measures. First introduced in [Guillot Jiménez et al. 2021] and unlike the
approaches described in Herrera [2017] and Jiménez et al. [2021], DCoEPinKB is built on top of
Apache Spark [Zaharia et al. 2010]. The experiments use a proof-of-concept standalone setup, leaving
to future work testing the framework in a fully distributed environment. However, the methods
used for transforming and partitioning the source datasets, as well as the data structures used for
representing data, are the same regardless of the architecture used.

The article uses DCoEPinKB to evaluate a family of path search strategies over two large RDF
knowledge bases extracted from DBpedia data, in two entertainment domains. The results provide
insights into the impact of the entity similarity measures, the expansion limits, and path ranking
measures on the performance of the path search strategies, measured by their execution time and the
Normalized Discounted Cumulative Gain (nDCG) [Järvelin and Kekäläinen 2002] of the path rankings
obtained.

The main contributions of the article, therefore, are: (1) a flexible framework that helps investigate
the entity relatedness problem for large RDF knowledge bases; (2) a performance analysis of a family
of path search strategies over two entertainment domains over real data available in the DBpedia.
The article is an improved version of [Guillot Jiménez et al. 2021].

The remainder of this article is organized as follows. Section 2 discusses path search strategies.
Section 3 describes the architecture and some technical aspects of the implementation of the proposed
framework. Section 4 describes the evaluation setup of the experiments. Section 5 presents a perfor-
mance evaluation of path search strategies using the proposed framework. Section 6 briefly reviews
related work. Finally, Section 7 contains the conclusions and directions for future work.

2. FINDING RELEVANT RELATIONSHIP PATHS BETWEEN ENTITY PAIRS

Let G be an RDF graph. We consider a family of path search strategies that receive as input a pair
of target entities (w0, wk) and output a ranked list of paths in G from w0 to wk. Each path search
strategy in the family has two basic steps: (1) find a set of paths in G from w0 to wk such that each
path satisfies a set of selection criteria; (2) rank the paths found and select the top-k ones.

The first step considers one or both of the following selection criteria: (1) select a path whose
entities have less than n neighbors in G; and (2) select a path (w0, w1, w2, . . . , wk−1, wk) iff there is

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

A Framework to Compute Entity Relatedness in Large RDF Knowledge Bases · 273

q ∈ [0, k] such that, for each i ∈ [0, q), wi and wi+1 are similar and, for each j ∈ [q, k), wj and wj+1

are similar.

The last criterion says that a path can be broken into two parts, left and right, such that the entities
in the left part are transitively related by similarity to the first entity, w0, and the entities in the
right part are transitively related by similarity to the second entity, wk. This strategy is implemented
with a Backward Search Heuristic (BSH) [Le et al. 2014] that executes two breadth-first search (BFS)
processes, alternating between left and right, in a single thread, to traverse the RDF graph starting
from each input entity. In each expansion step, the BFS process uses an entity similarity measure
σ and an expansion limit λ to move from a node wi−1 to a node wi. The movement is allowed iff
σ(wi−1, wi) falls in the top λ values. A path is generated if both BFS processes reach a common
entity or a target entity. Common entities are not expanded anymore. This article compares two
entity similarity measures, the Jaccard index [Jaccard 1901] and the Wikipedia Link-based Measure
(WLM) [Milne and Witten 2008], and various expansion limits.

As an example, Figure 1 shows a simple BSH execution to find relationship paths of maximum
size equal to 4 between two entities a and b in an RDF graph. As argued by Pereira Nunes et al.
[2014], paths longer than four would express unusual relationships, which users might misinterpret. It
is important to note that the example only presents a fragment of the entire RDF graph (Figure 1a).

a

a11

a12

a1m1

a21

a2m2

a22

a23

b21

b22

b2n2

b11

b12

b1n1

b

p1

p2

p3

p5

p4

p6

p5

p1

p2

p3

p4

p5

p1

p2

p3

p4

(a) Fragment of the RDF graph

a

a11

a12

a1m1

a21

a2m2

a22

a23

b21

b22

b2n2

b11

b12

b1n1

b

p1

p5

p4

p2

p3

p6

p5

p1

p2

p3

p4

p5

p1

p2

p3

p4

(b) Expanding a (iteration 1)

a

a11

a12

a1m1

b11

b12

b1n1

b

a21

a2m2

a22

a23

b21

b22

b2n2

p1

p5

p4

p2

p3

p6

p5

p1

p2

p3

p4

p5

p1

p2

p3

p4

(c) Expanding b (2)

a

a11

a12

a1m1 a2m2

a22

a23

b12

b1n1

b

a21

b11b21

b22

b2n2

p1

p5

p4

p2

p3

p5

p3

p4

p1

p2

p5

p1

p2

p3

p4

p6

(d) Expanding the neighbors of a (3)

a

a11

a12

a1m1 a2m2

a22

a23

b22

b2n2

b12

b1n1

b

a21

b21 b11

p1

p5

p4

p2

p3

p5

p3

p4

p1

p2

p5

p1

p2

p3

p4

p6

(e) Expanding the neighbors of b (4)

a a12 a22 b12 bP1

a a12 a23 b1n1 bP2

blank

p1

p1

p3

p2

p4

p3

p1

p5

(f) Relationship paths found

Fig. 1: Backward search execution example

The first iteration of the thread (Figure 1b) expands the entity a and finds the most similar neighbors

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

274 · J. G. Jiménez et al.

a11, a12, a1m1
which will be expanded later. The second iteration of the thread (Figure 1c), the

expansion of b, shows an example in which the neighbor b11 is discarded because it would not be
similar to b. Only entities b12 and b1n1

are selected for later expansion steps. The third iteration
(Figure 1d) expands the neighbors of the entity a discovered during the first iteration, except for the
entity a11 which does not satisfy the entity degree limit criterion, that is, it has a high number of
neighbors. In the fourth and final iteration (Figure 1e), entities b12 and b1n1

are expanded. Finally, it
is verified that there are entities that were reached by the expansions from the left and from the right
(i.e., a22 and ba23

) so that the sub-paths that reach these entities can be joined to generate the paths
from a to b (Figure 1f).

The second step of each path search strategy receives as input the set of paths found in the first
step and uses a path ranking measure to sort the paths by relevance. Each of these paths is a possible
explanation of how the two input entities are related. This article considers three path ranking
measures: the Predicate Frequency Inverse Triple Frequency (PF-ITF) [Pirrò 2015], the Exclusivity-
based Relatedness (EBR) [Hulpuş et al. 2015], and the Pointwise Mutual Information (PMI) [Church
and Hanks 1990].

Just to exemplify, we present some paths in DBpedia. The nodes that represent Elizabeth Tay-
lor and Richard Burton are directly related by the path (dbr:Elizabeth_Taylor, dbo:spouse,
dbr:Richard_Burton), which shows that these entities are related because Elizabeth Taylor married
Richard Burton. The following paths reveal more complex relationships:

(dbr:Elizabeth_Taylor,
ˆdbo:starring, dbr:Doctor_Faustus_(1967_film),
dbo:producer, dbr:Richard_Burton)

(dbr:Elizabeth_Taylor,
ˆdbo:starring, dbr:Love_Is_Better_Than_Ever,
dbo:director, dbr:Stanley_Donen,
ˆdbo:director, dbr:Staircase_(film),
dbo:starring, dbr:Richard_Burton)

The first path says that Elizabeth Taylor starred in the movie “Doctor Faustus”, which Richard
Burton produced, and the second says that Elizabeth Taylor starred in the movie “Love Is Better
Than Ever”, directed by Stanley Donen, who also directed the film “Staircase”, which Richard Burton
starred. Note that the paths pass through entities representing movies or film directors, which are
not discarded by the path finding step because they have some degree of similarity, not based on their
classes or information domains, but rather computed from the set of nearby entities.

This behavior is also illustrated when trying to discover the connectivity between The Beatles and
The Rolling Stones:

(dbr:The_Beatles,
ˆdbo:associatedBand, dbr:Brian_Jones,
ˆdbo:formerBandMember, dbr:The_Rolling_Stones)

(dbr:The_Beatles,
ˆdbo:artist, dbr:Twist_and_Shout,
dbo:recordLabel, dbr:Atlantic_Records,
ˆdbo:recordLabel, dbr:The_Rolling_Stones)

The first path says that The Beatles had a special guest appearance by Brian Jones, which was a
member of the Rolling Stones, and the second says that The Beatles recorded “Twist and Shout” on
the same label, Atlantic Records, as the Rolling Stones.

Finally, Table I summarizes the six path search strategies evaluated in Section 5.

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

A Framework to Compute Entity Relatedness in Large RDF Knowledge Bases · 275

Table I: Path Search Strategies

Acronym Name # Acronym Name
1 J&I Jaccard index & PF-ITF 4 W&I WLM & PF-ITF
2 J&E Jaccard index & EBR 5 W&E WLM & EBR
3 J&P Jaccard index & PMI 6 W&P WLM & PMI

3. THE DCOEPINKB FRAMEWORK

The acronym DCoEPinKB2 stands for a Distributed way of understanding the Connectivity of
Entity Pairs in Knowledge Bases. The DCoEPinKB framework was implemented in Scala with the
help of other technologies, such as Apache Spark, Redis for persistent cache, and the scala-redis3

library for connecting to a Redis server.

Spark has a programming model similar to MapReduce but extends it with a data-sharing abstrac-
tion called Resilient Distributed Datasets, or RDDs, stored in partitions on different cluster nodes. A
partition is the main unit of parallelism in Spark and is, basically, a logical chunk of a large distributed
dataset. It distributes the work across the cluster, dividing the task into smaller parts and reducing
memory requirements for each node.

Figure 2 shows the DCoEPinKB architecture.

Fig. 2: DCoEPinKB Architecture

The DCoEPinKB framework stores the RDF knowledge base using the Statement Table scheme,
which maps RDF data onto a table with three columns (subject, predicate, object), with each tuple

2The source code of DCoEPinKB is available at https://bitbucket.org/guillot/dcoepinkb/ (Last accessed on May 26th,
2022)
3https://github.com/debasishg/scala-redis (Last accessed on May 26th, 2022)

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

276 · J. G. Jiménez et al.

corresponding to an RDF statement. This scheme proved adequate due to the type of queries our
framework performs and the particularities of the graphs used in experiments, which have a large
number of properties.

The Data Preprocessor component transforms the source files of an RDF knowledge base into
files in the Parquet format, partitions these new files into fragments, and distributes the fragments.
Apache Parquet4 is a columnar storage format that compresses the data and allows fetching specific
columns from data as needed, resulting in less I/O usage and improving the performance of the
queries. The fragments have similar sizes and are allocated considering a round-robin partitioning
fashion, using the number of cores to estimate the number of resulting partitions.

The Spark Query Executor component interacts with DataFrames that represent views of
RDF datasets stored in the distributed file system as Parquet files. Based on previous experience
Jiménez et al. [2021], we implemented translations of the required SPARQL queries to Spark SQL
queries. Spark SQL is one of the most popular modules of Spark, targeted for processing structured
data, using the Datasets and DataFrames data abstractions, and provides support for reading and
writing Parquet files.

DCoEPinKB uses Redis as a persistent cache to store the result of the queries executed during the
expansion of the entities in the RDF graph. The structure of the keys in the cache was designed in
a way that facilitates partitioning data on a cluster of Redis nodes using a concept called hash tags5.
So, these hash tags can be used to force certain keys to be stored in the same hash slot.

The current implementation uses a centralized cache. However, the definition of the keys of the
elements that are allocated in the cache considered the possibility of working with Redis Cluster,
which provides the ability to perform the data sync automatically across multiple Redis nodes. In
a Redis Cluster, the keys are conceptually part of the hash slots, and each node in the cluster is
responsible for a subset of the hash slots. The implementation computes the hash slot for a certain
key K as the CRC16 of K modulo 16384. Therefore, the key definitions use a pattern that allows
grouping, in the same hash slot, data related to a given entity. In a distributed environment using
Redis Cluster, we only need to use {} brackets on the already defined keys to use this feature, which
forces multiple keys to be mapped into the same hash slot.

After the data preprocessing stage and with the RDF graph ready to be queried, the two-step
strategy to search for the most relevant paths between a pair of entities can start. First, the user
enters a pair of entities and specifies a path search strategy by selecting an entity similarity measure,
together with an expansion limit and a path ranking measure. The user also specifies other parameters
such as the maximum path length between the entities, the maximum entity degree to discard entities
with a high number of neighbors during the expansion, a list of properties irrelevant to the analysis
when building the relationship paths, and an entity prefix to expand only to resources that are
considered entities.

During the first phase of the execution of DCoEPinKB, the Backward Search component
communicates with the Spark Query Executor component requesting the required data to execute
the backward search algorithm. This last component gets the requested data using two different
approaches: (i) first, it tries to get the data from the persistent cache; (ii) if the requested data is not
available, then it gets the data directly from the Dataframe object in Spark that represents a view of
the data available in the Parquet file, and stores it in the persistent cache to speed up future searches.

After the backward search algorithm finishes, the Backward Search component sends a list of
relationship paths between the pair of entities to the Relationship Path Ranking component.
Then, the second phase begins. Similarly to the previous phase, the Relationship Path Ranking

4https://parquet.apache.org/ (Last accessed on May 26th, 2022)
5https://redis.io/topics/cluster-spec (Last accessed on May 26th, 2022)

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

A Framework to Compute Entity Relatedness in Large RDF Knowledge Bases · 277

component communicates with the Spark Query Executor component requesting the required
data to execute the path ranking algorithm. After the algorithm finishes, the Relationship Path
Ranking component sends the list of ranked paths to the user through the user interface.

There are two main hot spots in the DCoEPinKB framework: the activation function, imple-
menting the entity similarity measure, and the path ranking measure. The Backward Search
and the Relationship Path Ranking components were designed using an architectural pattern
based on interfaces, specifically using traits in Scala. As illustrated in Figure 2, the current version
of DCoEPinKB implements two entity similarity measures, Jaccard Index and WLM, and three
relationship path ranking measures, PF-ITF, EBR, and PMI.

Finally, DCoEPinKB runs in batch mode, and the user interacts with the framework using the
console. A goal for future work is to improve the framework to run in interactive mode with a graphical
user interface, probably using Apache Livy6. Currently, the user creates a simple text file that contains
the input parameters of the algorithm and that the framework uses to execute the search strategy.
The results are then returned in CSV files.

4. EXPERIMENTAL SETUP

Hardware and Software Configurations. All the experiments were performed on a Linux server
with Ubuntu 16.04.7 LTS system, an Intel® Core™ i7-5820K CPU @ 3.30GHz, and 16GB of memory
dedicated to Spark applications, using Spark v2.4.3 in the Spark Standalone Mode and Redis v3.0.6.
Therefore, as already mentioned in the introduction, the experiments ran on a proof-of-concept stan-
dalone setup. However, the methods used for transforming and partitioning the source datasets in
multiple Parquet files, as well as the data structures used for representing data and the subsequent
execution of our algorithms for finding relevant paths between entity pairs, remain the same regardless
of the architecture used.

Knowledge Bases. We extracted and used two publicly available subsets of the English DBpedia
corpus to form our two experiment knowledge bases. The first source dataset consists of the cleaned
version of high-quality statements with IRI object values extracted by the mappings extraction from
Wikipedia Infoboxes7, and the second dataset consists of data from Wikipedia Infoboxes, as it is, with
some smart automatic parsing; this dataset8 has better fact coverage than the first one but has less
consistency. DBpedia21M contains the statements in the first source dataset, and DBpedia45M
contains the union of the triples in both source datasets. In both cases, we excluded statements
involving literals or blank nodes. For each dataset, Table II shows the total number of triples (#T),
the count of different subjects (#S), properties (#P), and objects (#O), the average out and in node
degrees, the size of the source file in Turtle format, and the size of the file after preprocessing and
transforming it to Parquet format (details in the next paragraph).

Table II: Datasets

Dataset #T #S #P #O AVG Outdegree AVG Indegree Turtle Size Parquet Size
DBpedia21M 21.5 M 5.4 M 632 4.6 M 3.96 4.66 3.1 GB 673 MB
DBpedia45M 45.5 M 6.1 M 13691 6.0 M 7.40 7.53 16.2 GB 1.5 GB

Data Storage and Partitioning. We logically represented each dataset, DBpedia21M and DBpe-
dia45M, using the Statement Table schema, which we recall maps RDF data onto a table with three

6https://livy.apache.org/ (Last accessed on May 26th, 2022)
7https://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-objects/2021.03.01/mappingbased-
objects_lang=en.ttl.bz2 (Last accessed on May 26th, 2022)
8https://downloads.dbpedia.org/repo/dbpedia/generic/infobox-properties/2021.03.01/infobox-
properties_lang=en.ttl.bz2 (Last accessed on May 26th, 2022)

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

278 · J. G. Jiménez et al.

columns (subject, predicate, object), in which each tuple corresponds to an RDF statement. For
our proof-of-concept, using the Data Preprocessor component available in DCoEPinKB, we then
partitioned and converted each Statement Table into 200 Parquet files.

Data partition was adopted to simulate a distributed environment in which fragments of the datasets
reside on different machines. The initial phase of the experiments tested several configurations, in-
cluding different numbers of partitions and partitioning by one or several columns of the data, which
forces the Parquet files to be organized into subdirectories. However, the experiments did not con-
template the evaluation of these different configurations but rather adopted the configuration which
obtained the best performance in these exploratory experiments.

Selected Entity Pairs. We selected 20 entity pairs from the Entity Relatedness Test Dataset [Her-
rera et al. 2017], which contains entities belonging to the movie and music domains, ten entity pairs
from each domain. Table III shows the selected entity pairs and the degree of each entity in the
datasets used for experimentation. Observe that the entities from the music domain have a higher
degree than the entities from the movies domain, which affects the performance of the path search
strategies, as discussed in Experiment 1 reported in Section 5.

Table III: Entity pairs from music and movies domains

Music domain Movies domain

EP Entity Degree in
DBpedia21M

Degree in
DBpedia45M EP Entity Degree in

DBpedia21M
Degree in

DBpedia45M
dbr:Michael_Jackson 442 857 dbr:Elizabeth_Taylor 83 1501 dbr:Whitney_Houston 189 362 11 dbr:Richard_Burton 79 139
dbr:The_Beatles 441 980 dbr:Cary_Grant 83 1532 dbr:The_Rolling_Stones 353 769 12 dbr:Katharine_Hepburn 70 126
dbr:Elton_John 415 945 dbr:Laurence_Olivier 96 1703 dbr:George_Michael 192 402 13 dbr:Ralph_Richardson 55 107
dbr:Led_Zeppelin 135 316 dbr:Errol_Flynn 83 1494 dbr:The_Who 277 550 14 dbr:Olivia_de_Havilland 69 109
dbr:Pink_Floyd 303 560 dbr:William_Powell 96 1745 dbr:David_Gilmour 187 303 15 dbr:Myrna_Loy 105 189
dbr:U2 314 595 dbr:James_Stewart 103 1906 dbr:R.E.M. 250 450 16 dbr:Henry_Fonda 122 220
dbr:Metallica 188 353 dbr:Paul_Newman 99 1757 dbr:Anthrax 129 219 17 dbr:Joanne_Woodward 48 89
dbr:Rihanna 224 446 dbr:Bette_Davis 110 2078 dbr:Nicki_Minaj 261 519 18 dbr:Joan_Crawford 103 197
dbr:Velvet_Revolver 84 117 dbr:John_Wayne 181 2959 dbr:Guns_N’_Roses 259 392 19 dbr:Kirk_Douglas 104 190
dbr:Bob_Dylan 649 1663 dbr:Charlie_Chaplin 184 39510 dbr:The_Band 124 245 20 dbr:Frank_D._Williams 57 109

Average 271 552 Average 97 177
Max 649 1663 Max 184 395
Min 84 117 Min 48 89

Standard Deviation 136,97 353,37 Standard Deviation 35,39 70,02

Configuration parameters. The following parameters were used:

Entity similarity and path ranking measures: as in Table I.
Expansion limit: successively set to λ = 5, 10, 15, 20, 25, that is, to the top 5,. . . , 25 adjacent nodes,

ranked by the entity similarity measure, and to the top 50% of the adjacent nodes, ranked by the
entity similarity measure.

Maximum path length between the entities: set to 4, since this was the limit adopted by previous
works, as REX [Fang et al. 2011], RECAP [Pirrò 2015], and EXPLASS [Cheng et al. 2014].

Maximum entity degree: set to 200. This degree limit was deduced from DBpedia statistics, which
indicate that 90% of the entities have less than 200 links. This criterion is combined with entity
similarity because one can assume that high degree nodes influence the path search process with
potentially very unspecific information [Moore et al. 2012].

Set of ignored properties: about ten properties were ignored during the exploration of the knowledge
base because they describe relationships between entities that are irrelevant to our analysis.

Entity prefix: set to http://dbpedia.org/resource. This prefix was used to expand only to re-
sources considered entities of our interest.

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

A Framework to Compute Entity Relatedness in Large RDF Knowledge Bases · 279

Maximum number of paths: set to 50 because this value suffices to explore the connectivity between
the entities [Cheng et al. 2014; Fang et al. 2011; Hulpuş et al. 2015; Pirrò 2015].

Ranking Quality. We adopted the Normalized Discounted Cumulative Gain (nDCG) to measure the
quality of the rankings obtained. The Discounted Cumulative Gain (DCG) is a well-known measure
used in Information Retrieval to assess ranking quality. This measure accumulates the gain from the
top of a ranked list to the bottom, penalizing lower ranks, and can be parameterized to consider only
the top-k elements of the ranked list. Consider a list with n documents with ratings rel1, . . . , reln, and
let the discounted cumulative gain of the top-k results, with 1 ≤ k ≤ n, denoted DCGk, be defined
as DCGk = rel1 +

∑k
i=2

reli
log2(i+1) . DCGk is normalized by IDCGk, the discounted cumulative gain

for an ideal ranking of the top-k results. Then, nDCGk = DCGk

IDCGk
.

Ground Truth. We needed a ground truth (or ideal ranking) to evaluate the ranking quality of the
path search strategies for different expansion limit values using nDCGk, for k = 1 to 50. We did
not adopt the ranked lists of paths in Herrera et al. [2017] as our ground truth because the subsets
of DBpedia we used were different from those in Herrera et al. [2017] – DBpedia indeed constantly
changes. A new ground truth was then constructed as follows.

Let πi, for i = 1...6, be one of the six path search strategies listed in Table I. Let (ej , fj), for
j = 1...20, be one of the pairs of entities in Table III. Let Dm, for m = 1...2, be one of the DBpedia
subsets adopted, i.e., D1 =DBpedia21M and D2 =DBpedia45M. Let λn, for n = 1...6, be one of
the expansion limits to be tested, i.e., 1, 10, 15, 20, 25 and 50%.

We created a separate ground truth path ranking GTi,j,m for πi and (ej , fj) over Dm as follows:

(1) Execute πi for (ej , fj) over Dm with two different expansion limits, λ = 25 and λ = 50%, obtaining
two sets of paths.

(2) Combine the two sets obtained in the previous step into one set of paths Pi,j,m.

(3) Rank the paths in Pi,j,m using the path ranking measure adopted in πi, and retain the top-50
ranked paths, which is then GTi,j,m.

This process resulted in a dataset9 that contains a total of 240 ranked lists, GTi,j,m, with 50
relationship paths each (240 = 6 path search strategies × 20 pairs of entities × 2 DBpedia subsets).

The reasons for Steps (1) and (2) above are as follows. First, the execution of πi with expansion
limit 25 produces all paths that the executions of πi with expansion limits smaller than 25 produce.
Hence, πi needs not to be executed for expansion limits smaller than 25. Second, the execution of πi

with expansion limit 25 may produce results different from the execution with 50% since the list of
the top 25 nodes may be larger or smaller than the list of the top 50% nodes. Hence, the sets of lists
produced by πi with expansion limits 25 and 50% must be combined (Step (2)). Third, the execution
of πi without any expansion limit proved infeasible, since it generated too many paths in many cases.
Hence, we opted to generate a large yet feasible set of paths containing all sets of paths generated
using each of the expansion limits considered.

This strategy for constructing a ground truth suffices for the group of experiments in Section 5.2,
which evaluate the impact of limiting the expansion limit on the ranking quality.

9The dataset containing the ground truth files is available at https://figshare.com/articles/dataset/Ground_Truth_
for_Entity_Relatedness_Problem_over_DBpedia_datasets/15181086 (Last accessed on May 26th, 2022)

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

280 · J. G. Jiménez et al.

5. EVALUATION

5.1 Experiment 1 - Performance Evaluation

Using DCoEPinKB, the first set of experiments evaluated the performance, in terms of average
execution time, of different path search strategies for increasing values of the expansion limit.

Figure 3a shows the average execution times of the J&E strategy, which achieved the best perfor-
mance for finding relevant relationship paths in Herrera [2017], and the best average execution time
in Jiménez et al. [2021]). For each pair of entities in each dataset, we searched 6 times for the top-50
paths between them, excluded the first run time to avoid the warm-up bias, and calculated the average
time of the last five executions. We refer the reader to Jiménez [2021] for the full set of results.

5 10 15 20 25 50%

0

20

40

·103

Expansion limit

A
ve

ra
ge

ti
m

e
(m

s) Movies in DBpedia21M

Movies in DBpedia45M

Music in DBpedia21M

Music in DBpedia45M

(a) Average execution time

5 10 15 20 25 50%

0

2,000

4,000

6,000

Expansion limit

A
ve

ra
ge

pa
th

s
fo

un
d Movies in DBpedia21M

Movies in DBpedia45M

Music in DBpedia21M

Music in DBpedia45M

(b) Average paths found

Fig. 3: Average execution time and average number of paths found for the J&E strategy varying the expansion limit

Clearly, the execution time increases with higher expansion limits. For the entity pairs from the
movies domain, the implementation of DCoEPinKB kept the time for finding relevant paths, on
average, below 2.0 secs when the expansion limit was set to 25 or below. When the expansion limit
was the top 50% of most similar adjacent nodes, the algorithm took, on average, around 3.3 secs
for DBpedia21M and 4.6 secs for DBpedia45M. For the entity pairs from the music domain, the
time for finding relevant paths remained, on average, below 2.0 secs for DBpedia21M and 5.0 secs
for DBpedia45M. When the expansion limit was the top 50% of most similar adjacent nodes, the
algorithm took, on average, around 11.0 secs for DBpedia21M and 38.4 secs for DBpedia45M.

As the execution time depends on the number of paths found, we also show in Figure 3b the
average number of paths found for different expansion limits using the J&E strategy. The number
of paths found is closely related to the degree of the entities involved. Hence, by expanding the 50%
most similar adjacent nodes, in the case of entities with a high degree, the framework will carry out
a broader exploration of the graph and increase the probability of finding many more paths to be
ranked, as shown in Figure 3b, which implies that the running time also increases.

Figure 4 presents the average execution times of the other path search strategies.

5.2 Experiment 2 - Impact of the Expansion Limit on the Ranking Accuracy

The second set of experiments evaluated the ranking accuracy of the path search strategies, for different
expansion limit values, as compared to the ground truth, using nDCGk, for k = 1 to 50.

More precisely, as in the construction of the ground truth, let πi, for i = 1...6, be one of the six
path search strategies listed in Table I. Let (ej , fj), for j = 1...20, be one of the pairs of entities in
Table III. Let Dm, for m = 1...2, be one of the DBpedia subsets adopted, i.e., D1 =DBpedia21M

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

A Framework to Compute Entity Relatedness in Large RDF Knowledge Bases · 281

5 10 15 20 25 50%

0

20

40

·103

Expansion limit

A
ve

ra
ge

ti
m

e
(m

s)

(a) J&I strategy

5 10 15 20 25 50%

0

20

40
·103

Expansion limit

A
ve

ra
ge

ti
m

e
(m

s)

(b) J&P strategy

5 10 15 20 25 50%

0

20

40

·103

Expansion limit

A
ve

ra
ge

ti
m

e
(m

s)

(c) W&I strategy

5 10 15 20 25 50%

0

20

40

·103

Expansion limit
A
ve

ra
ge

ti
m

e
(m

s)
(d) W&E strategy

5 10 15 20 25 50%

0

20

40

·103

Expansion limit

A
ve

ra
ge

ti
m

e
(m

s)

Movies in DBpedia21M
Movies in DBpedia45M
Music in DBpedia21M
Music in DBpedia45M

(e) W&P strategy

Fig. 4: Average execution time over all entity pairs in each domain and dataset for different strategies varying the
expansion limit

and D2 =DBpedia45M. Let λn, for n = 1...6, be one of the expansion limits to be tested, i.e.,
1, 10, 15, 20, 25 and 50%.

For each path search strategy πi, for each expansion limit λn, for each dataset Dm, the experiments
in this section will:

(1) for each pair (ej , fj),
(a) Compute a ranked list of paths RLi,j,m,n.
(b) For k = 1 to 50, incrementally by 1, compute the nDCGi,j,m,n@k between RLi,j,m,n and

GTi,j,m.
(2) Compute the average Ai,m,n,k = 1

10 (
∑10

j=1 nDCGi,j,m,n@k), for the music domain (pairs j =
1...10), over Dm.

(3) Repeat the previous step for the movies domain (pairs j = 11...20).

In what follows, let “πi with top-λn" indicate the strategy πi expanding the top-λn most similar
adjacent nodes.

Experiment 2.1 - Ranking Accuracy for the Path Search Strategies using the Jaccard Index

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

282 · J. G. Jiménez et al.

Figure 5 shows the average nDCGk for the J&E strategy for the movies and music domains in DBpe-
dia21M and DBpedia45M. For the movies domain, J&E with top-50% obtained a good performance
in both datasets: the average nDCGk was above 0.80 using DBpedia21M (Figure 5a), and above
0.86 using DBpedia45M (Figure 5b), without a significant loss for higher values of k. J&E with
top-50% also had a good performance for the music domain. In this case, the average nDCGk was
above 0.73 using DBpedia21M (Figure 5c), and above 0.84 using DBpedia45M (Figure 5d).

Note that, although J&E with top-50% had a high average execution time over DBpedia45M, the
difference between the average nDCGk for J&E with top-50% and J&E with top-25 does not justify
saving time in detriment of finding the most relevant paths. The smallest difference in the ranking
accuracy between the two expansion strategies occurs between positions 2 and 8 of the ranking, where
the top-50% strategy reaches an average nDCGk equal to 0.79, while the top-25 reaches a low 0.44.

Figure 6 shows the average nDCGk for the J&I strategy for the movies and music domains in
DBpedia21M and DBpedia45M. Using the PF-ITF measure for ranking the relationship paths
makes it possible to achieve acceptable performance in the movies domain using J&I with the top-25
most similar adjacent nodes. Indeed, the average nDCGk for J&I with top-25 was above 0.67 using
DBpedia21M (Figure 6a), and above 0.73 using DBpedia45M (Figure 6b). Figure 6a shows that
the average nDCGk for J&I with top-25 decreases for higher values of k. But, for k ≤ 20, it had
an average nDCGk of 0.72, which is better than the average nDCGk of 0.52 for J&I with top-50%.
Figure 6b also shows that the average nDCGk for J&I with top-25 is better than the average nDCGk

for J&I with top-50%. Furthermore, for the music domain and DBpedia21M, and for 3 ≤ k ≤ 15,
J&I with top-25 and J&I with top-50% both had an average nDCGk close to 0.62 (Figure 6c).

Furthermore, by using the PMI measure to rank the relationship paths, it is possible to achieve
acceptable performance in the movies domain in DBpedia21M using J&P with the top-25. Indeed,
using DBpedia21M, the average nDCGk for J&P with top-25 was above 0.67 (Figure 7a).

Experiment 2.2 - Ranking Accuracy for the Path Search Strategies using the Wikipedia Link-based
Measure

Very briefly, Figure 8 shows the results for the W&E strategy, which had good performance. Similar to
the J&I with the top-25, in the movies domain, W&I with the top-25 achieves a very good performance.
Indeed, the average nDCGk for W&I with top-25 was above 0.78 using DBpedia21M (Figure 9a), and
above 0.77 using DBpedia45M (Figure 9b). Again, by using the PMI measure to rank the relationship
paths, it is possible to achieve acceptable performance in the movies domain in DBpedia21M using
W&P with the top-25. Indeed, using DBpedia21M, the average nDCGk for W&P with top-25 was
above 0.69 (Figure 10a).

5.3 Summary of the Experiments

To summarize, the path search strategies that use an expansion limit of 50% (the top-50% most
similar adjacent nodes) had very high average execution times and achieved the best ranking quality,
in almost all cases. However, the path search strategies that use an expansion limit equal to 25 (the
top-25 most similar adjacent nodes) had significantly lower execution times, comparable to those of
strategies based on lower expansion limits, and yet achieved acceptable ranking quality, in some cases,
even comparable to or better than the ranking quality of strategies with an expansion limit of 50%.

6. RELATED WORK

This section is organized in four subsections covering the topics related to the article: (1) Entity
relationship discovery and ranking in Knowledge Bases; (2) Processing large RDF datasets in dis-
tributed environments; (3) Similarity-based operations on distributed query processing systems; and
(4) Benchmarks. It ends with a summary of the contributions of the article.

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

A Framework to Compute Entity Relatedness in Large RDF Knowledge Bases · 283

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

(a) Movies domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

50%
25
20
15
10
5

(b) Movies domain in DBpedia45M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

(c) Music domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

50%
25
20
15
10
5

(d) Music domain in DBpedia45M

Fig. 5: Average nDCG@k for the J&E strategy varying the expansion limit

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

(a) Movies domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

50%
25
20
15
10
5

(b) Movies domain in DBpedia45M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

(c) Music domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

50%
25
20
15
10
5

(d) Music domain in DBpedia45M

Fig. 6: Average nDCG@k for the J&I strategy varying the expansion limit

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

284 · J. G. Jiménez et al.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

(a) Movies domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

50%
25
20
15
10
5

(b) Movies domain in DBpedia45M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

(c) Music domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

50%
25
20
15
10
5

(d) Music domain in DBpedia45M

Fig. 7: Average nDCG@k over the movies and music domains for the J&P strategy varying the expansion limit

6.1 Entity Relationship Discovery and Ranking in Knowledge Bases

Several strategies and tools have been proposed to discover the semantic associations between a pair of
entities in a knowledge base. Some approaches identify all possible relationships between two entities,
using SPARQL queries to retrieve paths up to a certain length [Heim et al. 2009; Pirrò 2015; Herrera
et al. 2016], and then rank the results based on predefined informativeness measures. Pathfinding
techniques have also been used to identify entity relationships [Fang et al. 2011; Moore et al. 2012;
De Vocht et al. 2013; Cheng et al. 2014; Herrera 2017].

Heim et al. [2009] proposed an approach that automatically reveals relationships between two known
entities and displays them as a graph. The relationship paths are found by an algorithm based
on the concept of decomposition of an RDF graph [Lehmann et al. 2007] and composed of several
SPARQL queries that search iteratively for paths with increasing length, starting from zero, between
the input entities. The authors presented RelFinder, an implementation of this approach, and
demonstrated its applicability using an example from the DBpedia. However, this approach does not
provide mechanisms for ranking or comparing paths.

REX [Fang et al. 2011] is a system implemented in Python that takes a pair of entities in a
given knowledge base as input and produces a ranked list of relationship explanations. The authors
consider a relationship explanation a constrained graph pattern and its associated graph instances
derivable from the underlying knowledge base. REX implements different algorithms for finding
the relationship explanations, adapted from solutions proposed for the keyword search problem in
databases. The PathEnumBasic algorithm is based on the backward expansion search introduced
in BANKS [Bhalotia et al. 2002] and generates partial paths from input entities concurrently, with
shorter paths being generated first. The second path enumeration algorithm PathEnumPrioritized
is a direct adaption of the bidirectional search by Kacholia et al. [2005], an improved version of
BANKS. Instead of always expanding the shortest partial paths, the degree of the nodes is used as an

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

A Framework to Compute Entity Relatedness in Large RDF Knowledge Bases · 285

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

(a) Movies domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

50%
25
20
15
10
5

(b) Movies domain in DBpedia45M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

(c) Music domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

50%
25
20
15
10
5

(d) Music domain in DBpedia45M

Fig. 8: Average nDCG@k over the movies and music domains for the W&E strategy varying the expansion limit

activation score to prioritize the expansion. The authors also proposed some interestingness measures
for ranking relationship explanations and performed user experiments to demonstrate the effectiveness
of the algorithms.

Moore et al. [2012] proposed an approach that can find informative paths between two specified
nodes. It performs a shortest paths search between the two nodes using a metric that just depends
on the degrees of adjacent nodes and favors paths via low-degree nodes, thus ensuring that the paths
prefer more specific and informative relationships over general ones.

De Vocht et al. [2013] introduced an approach for pathfinding that takes into account the meaning
of the connections and uses a distance metric based on Jaccard. It applies the measure to estimate
the similarity between two nodes and assign a weight based on the random walk, which ranks the
rarest resources higher. De Vocht et al. [2016] proposed an in-depth extension of this algorithm
which reduces arbitrariness by increasing the relevance of links between nodes through additional pre-
selection and refinement steps. The authors also compared and measured the effectiveness of different
search strategies through user experiments.

Explass Cheng et al. [2014] explores a knowledge base searching for associations and provides a
list of the top-k clusters, which are labeled with an association pattern that gives users a conceptual
summary of the associations in the cluster. The clusters are obtained by formulating and solving a
data mining problem, and then the top-k ones are found by formulating and solving an optimization
problem. Explass integrates patterns with facet values, which are classes of entities and relationships
that appear in associations, and that can be used by users to refine the search and better explore
associations. The authors compared Explass with two existing related approaches by conducting
a user study and tested the statistical significance of the results. Cheng et al. [2017] examined
existing techniques for ranking semantic associations and proposed two new techniques based on
the heterogeneity or homogeneity of the constituents of a semantic association. Cheng et al. [2021]

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

286 · J. G. Jiménez et al.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

(a) Movies domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

50%
25
20
15
10
5

(b) Movies domain in DBpedia45M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

(c) Music domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

50%
25
20
15
10
5

(d) Music domain in DBpedia45M

Fig. 9: Average nDCG@k over the movies and music domains for the W&I strategy varying the expansion limit

presented a fast algorithm for semantic associations search by enumerating and joining paths, which
proved a tighter bound and allowed more effective distance-based pruning of the search space than
previous work.

RECAP Pirrò [2015] is a framework to generate different types of relatedness explanations between
entities, possibly combining information from multiple knowledge bases. RECAP goes beyond related
approaches such as REX and Explass. It allows to build different types of explanations (for example,
graphs and sets of paths), thus controlling the amount of information displayed. The author first
formalizes the notion of relatedness explanation and introduces different criteria to build explanations
based on information theory, diversity, and their combinations. The first approach that the author
proposed for ranking paths between a pair of entities is based on the informativeness of a path and
uses the novel PF-ITF measure to calculate the score of a path. The author conducted experiments
to investigate whether RECAP provides useful explanations to the user.

DBpedia Profiler Herrera et al. [2016] is a tool which implements a strategy to generate con-
nectivity profiles for entities represented in DBpedia. The tool uses SPARQL queries to identify
relationship paths that connect the given pair of entities and adopts a strategy based on semantic
annotations, which use a similarity measure, to group and summarize the collected paths. The au-
thors did experiments to compare DBpedia Profiler with RECAP, and the results showed that
DBpedia Profiler outperforms RECAP in terms of performance and usability.

Herrera [2017] introduced a generic search strategy based on the backward search heuristic proposed
in Le et al. [2014] for keyword search, which combines SPARQL queries, activation criteria, similarity,
and ranking measures to find relevant paths between a pair of entities in alternative ways. This
approach expands the paths starting from two source entities and prioritizes certain partial paths over
others until relationship paths between these entities are generated. The activation criteria consider
the degree of the entities and use similarity measures, such as Jaccard Index, WLM, and SimRank.

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

A Framework to Compute Entity Relatedness in Large RDF Knowledge Bases · 287

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

(a) Movies domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

50%
25
20
15
10
5

(b) Movies domain in DBpedia45M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

(c) Music domain in DBpedia21M

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

A
ve

ra
ge

nD
C

G
@

k

50%
25
20
15
10
5

(d) Music domain in DBpedia45M

Fig. 10: Average nDCG@k over the movies and music domains for the W&P strategy varying the expansion limit

For ranking the paths found and selecting those that are relevant, the author used ranking measures,
such as PF-ITF, EBR, and PMI. Finally, the author evaluated the accuracy of the results of the
different strategies with the help of the ground truth proposed in Herrera et al. [2017]. However, this
work lacks an evaluation of the performance, in terms of execution time, of each of the different path
search strategies, and a tool with a graphical user interface that facilitates evaluating these strategies.
The author also identified opportunities for future work, such as developing a framework for the entity
relatedness problem, considering as points of flexibility the similarity measure between entities and
the path-ranking measure to identify relevant paths. This article aimed at filling this gap.

6.2 Processing Large RDF Datasets in Distributed Environments

Many distributed RDF systems have been introduced to overcome the problem of indexing and query-
ing large RDF datasets [Farhan Husain et al. 2009; Rohloff and Schantz 2010; Husain et al. 2011;
Huang et al. 2011; Przyjaciel-Zablocki et al. 2012; De Virgilio and Maccioni 2014; Schätzle et al.
2016; Schätzle et al. 2016; Abdelaziz et al. 2017; Ragab et al. 2019; Ragab et al. 2020; Ragab et al.
2021]. These systems are generally built on top of distributed data processing frameworks, such as
MapReduce [Dean and Ghemawat 2008] or Apache Spark [Zaharia et al. 2010], partition the RDF
graphs among multiple machines to handle big datasets, and parallelize query execution to reduce
query runtime.

SHARD is an open-source, horizontally scalable triplestore system proposed in Rohloff and Schantz
[2010] and built using the Hadoop implementation of MapReduce. SHARD persists graph data as
RDF triples and responds to queries over this data in the SPARQL query language. Husain et al. [2011]
presented HadoopRDF, an scalable and fault-tolerant framework based on Hadoop that supports

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

288 · J. G. Jiménez et al.

data-intensive query processing. The authors proposed a storage schema to store RDF data in HDFS10

and a new greedy algorithm that overcomes the limitations of the algorithm previously introduced by
Farhan Husain et al. [2009]. The algorithm uses the MapReduce programming model and produces
a query plan whose cost, i.e., the number of Hadoop jobs executed to solve the query, is bounded
by the logarithm of the total number of variables in the given SPARQL query. Huang et al. [2011]
presented a scale-out architecture for RDF data management using the Hadoop framework. The
authors described data partitioning and placement techniques that reduced the amount of network
communication at query time and provided an algorithm for automatically decomposing SPARQL
queries into parallelizable Hadoop jobs. RDFPath is a declarative path query language for RDF
proposed in Przyjaciel-Zablocki et al. [2012] that automatically transforms declarative path queries
into MapReduce jobs and supports the exploration of graph properties such as shortest paths between
two nodes in an RDF graph. De Virgilio and Maccioni [2014] presented a distributed approach to
keyword search query over large RDF datasets that exploits the MapReduce paradigm by switching
the problem from graph-parallel to data-parallel processing. This paradigm shift is necessary because
MapReduce is an effective data-parallel paradigm for computing algorithms that require reading the
data only once and, for this reason, it is not efficient to perform join-intensive tasks typical of graph
algorithms.

Schätzle et al. [2016] proposed ExtVP (Extended Vertical Partitioning), a relational partitioning
schema for RDF that extends the vertical partitioning (VP) schema and uses a semi-join based prepro-
cessing. The authors also presented S2RDF (SPARQL on Spark for RDF), a distributed SPARQL
query processor for large-scale RDF data implemented on top of Spark. Schätzle et al. [2016] defined
a property graph representation of RDF for GraphX, the Apache Spark’s API for graphs and graph-
parallel computation. They also introduced S2X (SPARQL on Spark with GraphX), an RDF engine
that combines graph-parallel abstraction of GraphX to implement the graph pattern matching part
of SPARQL with data-parallel computation of Spark to build the results of other SPARQL opera-
tors. The results of the comparison of S2X with PigSPARQL [Schätzle et al. 2013] show that the
combination of both types of computation can be beneficial, when compared to a purely data-parallel
execution.

Abdelaziz et al. [2017] presented a comparative survey of 22 state-of-the-art distributed RDF sys-
tems. They described the execution model and the graph partitioning strategy of each system, dis-
cussed the similarities and differences, explained the various trade-offs, and categorized the systems
based on several characteristics. Then, they selected 12 representative systems and performed a
comprehensive experimental evaluation concerning preprocessing cost, query performance, scalability,
and workload adaptability, using a variety of synthetic and real large datasets. The results suggest
that specialized in-memory systems provide the best performance, assuming the data can fit in the
cumulative memory of the computing cluster.

The SPARKSQL RDF Processing Benchmarking11 is a systematic benchmarking project on
the performance of Spark SQL for processing vast RDF datasets. In the first phase of this project,
Ragab et al. [2019] presented an analysis of the execution time of Spark SQL for answering SPARQL
queries over RDF repositories on a centralized single-machine configuration. The authors conducted
experiments on datasets with 100K, 1M, and 10M triples and evaluated the impact of using alternative
relational schemas for RDF (i.e., ST, VT, and PT), various storage backends (i.e., PostgreSQL,
Hive, and HDFS) and different data formats (e.g., CSV, Avro, Parquet and ORC). In the second
phase of the project [Ragab et al. 2020], the experiments include a larger dataset than before in a
distributed environment. The authors evaluated the impact of using different RDF-based partitioning
techniques (i.e., subject-based, predicate-based, and horizontal-based partitioning). Ragab et al.
[2021] extended the previous experiments with new proposed RDF relational schema representations:

10Hadoop Distributed File System
11https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking/ (Last accessed on May 26th, 2022)

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

A Framework to Compute Entity Relatedness in Large RDF Knowledge Bases · 289

Extended Vertically Partitioned Tables (ExtVP) and Wide Property Tables (WPT).

6.3 Similarity-based operations on Distributed Query Processing Systems

Dima [Sun et al. 2017] is a distributed in-memory similarity-based query processing system built
on top of Spark [Zaharia et al. 2010]. Dima extends the Spark SQL programming interface and the
Catalyst optimizer for users to easily invoke similarity selection and similarity join query operations in
their data processing tasks. Similarity selection extends traditional exact selection by tolerating errors,
and similarity join extends traditional exact join by tolerating errors between records. Dima supports
various data sources, such as CSV, JSON, and Parquet, and implements two types of similarity: set-
based similarity, using the Jaccard index, and character-based similarity, using edit distance. The
authors proposed an approach for similarity-based queries that employs offline distributed indexing.

Sun et al. [2019] improved Dima to support additional similarity operations, such as top-k selection
and top-k join. Top-k selection computes the k most similar records, and top-k join computes the k
most similar pairs. To avoid expensive data transmission, the authors proposed Dima+, an approach
that uses a balance-aware signature selection to balance the workload in distributed environments.

Unlike Dima and Dima+, Kim et al. [2020] focused on handling very large datasets that do not fit in
memory. The authors extended Apache AsterixDB, an open-source parallel data management system
for semi-structured data, to allow users to specify a similarity query, either by using a system-provided
function or specifying their logic as a user-defined function. They presented an experimental study
based on several large datasets on a parallel computing cluster to evaluate the proposed techniques
for supporting similarity queries and presented a performance comparison with three other parallel
systems.

6.4 Benchmarks

Herrera et al. [2017] proposed the Entity Relatedness Test Dataset, a ground truth of paths
between pairs of entities in two entertainment domains in the DBpedia that supports the evaluation of
different strategies that address the entity relatedness problem. The authors used information from the
Internet Movie Database (IMDb)12 and last.fm 13 to generate specialized relationship path rankings
between entity pairs in the movies and music domains, respectively. For each domain, the dataset
contains 20 pairs of entities, each with a ranked list with 50 relationship paths based on information
about their entities found in IMDb and last.fm, and on information about their properties, computed
from DBpedia.

However, the authors did not specify which version of the DBpedia they relied on to generate the
ground truth, making it difficult to use their test dataset in our experiments, considering that the
content of the DBpedia has changed since then. Section 5 of this article circumvented this problem
by introducing a strategy to construct ground truths for any given version of the DBpedia.

6.5 Summary

As an extended version of [Guillot Jiménez et al. 2021], the article focuses on the problem of evaluating
the performance of different path search strategies, in terms of execution time, which is lacking in the
related work covered in Section 6.1. To facilitate the evaluation, the article proposes a framework,
built on top of Apache Spark, called DCoEPinKB.

Although the experiments used a standalone implementation, the framework can be retargeted
to a fully distributed environment. By contrast, the CoEPinKB framework [Jiménez et al. 2021]

12https://www.imdb.com/ (Last accessed on May 26th, 2022)
13https://www.last.fm/ (Last accessed on May 26th, 2022)

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

290 · J. G. Jiménez et al.

implements path search strategies using a multi-thread approach. Table IV compares DCoEPinKB
with related systems. As for the RDF knowledge base, only RECAP, CoEPinKB, and DCoEPinKB
are knowledge base independent; CoEPinKB, as RECAP, only requires the availability of a remote
SPARQL query endpoint, while DCoEPinKB preprocesses any RDF dataset and transforms it into
Parquet files. Regarding the architecture, DCoEPinKB is the only approach that is prepared to
address the entity relatedness problem in a distributed manner, in line with systems designed to
process large RDF datasets, summarized in Sections 6.2 and 6.3.

Finally, as pointed out in Section 6.4, to facilitate the experiments, the article also introduces a
strategy to construct ground truths for any given version of DBpedia.

Table IV: Comparison of DCoEPinKB with related systems

System KB Output Filtering Capabilities Local Data Architecture
REX Yahoo! Graph No Yes Centralized

Explass DBpedia Paths Yes Yes Centralized
RECAP Any Graph, Paths Yes No Centralized

DBpedia Profiler DBpedia Graph, Paths No Yes Centralized
CoEPinKB Any Paths Yes No* Centralized

DCoEPinKB Any Paths Yes Yes Cluster
* Local data is only necessary to be used as a cache to speed up queries, but it is not mandatory.

7. CONCLUSIONS

The entity relatedness problem refers to the question of exploring a knowledge base, represented as
an RDF graph, to discover and understand how two entities are connected. Strategies designed to
address this problem typically adopt an entity similarity measure to reduce the path search space and
a path ranking measure to order and filter the list of relevant paths returned.

The main contribution of this article is the proposal and implementation of a framework, called
DCoEPinKB, to empirically evaluate path search strategies that combine entity similarity and path
ranking measures. The framework has some hot spots for developers to easily add new entity similarity
and relationship path ranking measures to generate new path search strategies and work with different
knowledge bases.

The second contribution is the proposal of a ground truth that supports the evaluation of approaches
that address the entity relatedness problem and specifically permits evaluating the impact of the
expansion limit for a given entity similarity measure and a path ranking measure. This dataset
contains 240 ranked lists, with 50 relationship paths each, between entity pairs in the music and
movies domains.

Finally, a third contribution is an extensive experimental evaluation on the music and movies
domains over real data, collected from DBpedia, to assess the correctness and the performance of a
family of path search strategies using the DCoEPinKB framework. The experiments showed that
reducing the expansion limit when finding the paths between entities with a high degree can improve
the execution time, as expected, and maintain acceptable ranking quality.

As future work, we plan to deploy and test a fully distributed implementation of the framework
along the lines discussed in Section 3 and investigate effective optimization techniques in Spark to
reduce the execution time for path search strategies. We also plan to explore effective optimization
techniques in Spark to reduce the execution time for path search strategies.

REFERENCES

Abdelaziz, I., Harbi, R., Khayyat, Z., and Kalnis, P. A survey and experimental comparison of distributed
SPARQL engines for very large RDF data. Proceedings of the VLDB Endowment 10 (13): 2049–2060, 2017.

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

A Framework to Compute Entity Relatedness in Large RDF Knowledge Bases · 291

Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., and Sudarshan, S. Keyword searching and browsing
in databases using BANKS. In Proceedings 18th International Conference on Data Engineering. IEEE Computer
Society, Los Alamitos, CA, USA, pp. 431–440, 2002.

Cheng, G., Liu, D., and Qu, Y. Fast Algorithms for Semantic Association Search and Pattern Mining. IEEE
Transactions on Knowledge and Data Engineering 33 (4): 1490–1502, 2021.

Cheng, G., Shao, F., and Qu, Y. An Empirical Evaluation of Techniques for Ranking Semantic Associations. IEEE
Transactions on Knowledge and Data Engineering 29 (11): 2388–2401, 2017.

Cheng, G., Zhang, Y., and Qu, Y. Explass: Exploring Associations between Entities via Top-K Ontological Patterns
and Facets. In Proceedings of the 13th International Semantic Web Conference (ISWC 2014), P. Mika, T. Tudorache,
A. Bernstein, C. Welty, C. Knoblock, D. Vrandečić, P. Groth, N. Noy, K. Janowicz, and C. Goble (Eds.). Vol. 8797.
Springer International Publishing, Cham, pp. 422–437, 2014.

Church, K. W. and Hanks, P. Word Association Norms, Mutual Information, and Lexicography. Computational
Linguistics 16 (1): 22–29, 1990.

De Virgilio, R. and Maccioni, A. Distributed Keyword Search over RDF via MapReduce. In The Semantic Web:
Trends and Challenges. Vol. 8465. Springer International Publishing, Cham, pp. 208–223, 2014.

De Vocht, L., Beecks, C., Verborgh, R., Mannens, E., Seidl, T., and Van de Walle, R. Effect of Heuristics on
Serendipity in Path-Based Storytelling with Linked Data. In Human Interface and the Management of Information:
Information, Design and Interaction. Vol. 9734. Springer International Publishing, Cham, pp. 238–251, 2016.

De Vocht, L., Coppens, S., Verborgh, R., Sande, M. V., Mannens, E., and de Walle, R. V. Discovering
Meaningful Connections between Resources in the Web of Data. In Proceedings of the 8th Workshop on Linked Data
on the Web (LDOW 2013). CEUR-WS.org, Rio de Janeiro, 2013.

Dean, J. and Ghemawat, S. MapReduce: simplified data processing on large clusters. Communications of the
ACM 51 (1): 107–113, 2008.

Fang, L., Sarma, A. D., Yu, C., and Bohannon, P. REX: explaining relationships between entity pairs. Proceedings
of the VLDB Endowment 5 (3): 241–252, 2011.

Farhan Husain, M., Doshi, P., Khan, L., and Thuraisingham, B. Storage and Retrieval of Large RDF Graph
Using Hadoop and MapReduce. In Cloud Computing. Vol. 5931. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
680–686, 2009.

Guillot Jiménez, J., P. Paes Leme, L. A., Torres Izquierdo, Y., Batista Neves, A., and Casanova, M. A.
A distributed framework to investigate the entity relatedness problem in large RDF knowledge bases. In Anais do
XXXVI Simpósio Brasileiro de Banco de Dados (SBBD 2021). Sociedade Brasileira de Computação - SBC, Rio de
Janeiro, pp. 121–132, 2021.

Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., and Stegemann, T. RelFinder: Revealing Relationships
in RDF Knowledge Bases. In Semantic Multimedia. Vol. 5887. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
182–187, 2009.

Herrera, J. E. T. On the Connectivity of Entity Pairs in Knowledge Bases. Ph.D. thesis, Pontifícia Universidade
Católica do Rio de Janeiro, 2017.

Herrera, J. E. T., Casanova, M. A., Nunes, B. P., Leme, L. A. P. P., and Lopes, G. R. An Entity Relatedness
Test Dataset. In Proc. of the 16th Int’l Semantic Web Conf. (ISWC’17). Vol. 10588 LNCS. Springer, Cham, Cham,
pp. 193–201, 2017.

Herrera, J. E. T., Casanova, M. A., Nunes, B. P., Lopes, G. R., and Leme, L. DBpedia Profiler Tool: Profiling
the Connectivity of Entity Pairs in DBpedia. In Proceedings of the 5th International Workshop on Intelligent
Exploration of Semantic Data (IESD 2016). Springer-Verlag Berlin Heidelberg, Kobe/Japan, 2016.

Huang, J., Abadi, D. J., and Ren, K. Scalable SPARQL querying of large RDF graphs. Proceedings of the VLDB
Endowment 4 (11): 1123–1134, 2011.

Hulpuş, I., Prangnawarat, N., and Hayes, C. Path-Based Semantic Relatedness on Linked Data and Its Use to
Word and Entity Disambiguation. In The Semantic Web - ISWC 2015. Vol. 9366. Springer International Publishing,
Cham, pp. 442–457, 2015.

Husain, M., McGlothlin, J., Masud, M. M., Khan, L., and Thuraisingham, B. M. Heuristics-Based Query
Processing for Large RDF Graphs Using Cloud Computing. IEEE Transactions on Knowledge and Data Engineer-
ing 23 (9): 1312–1327, 2011.

Jaccard, P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaudoise
Sci Nat vol. 37, pp. 547–579, 1901.

Järvelin, K. and Kekäläinen, J. Cumulated gain-based evaluation of IR techniques. ACM Transactions on Infor-
mation Systems 20 (4): 422–446, 2002.

Jiménez, J. G. Strategies to Understand the Connectivity of Entity Pairs in Knowledge Bases. Ph.D. thesis, Depart-
ment of Informatics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil, 2021.

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

292 · J. G. Jiménez et al.

Jiménez, J. G., Leme, L. A. P. P., and Casanova, M. A. CoEPinKB: A Framework to Understand the Connectivity
of Entity Pairs in Knowledge Bases. In Anais do XLVIII Seminário Integrado de Software e Hardware (SEMISH
2021). Sociedade Brasileira de Computação - SBC, Online, pp. 97–105, 2021.

Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., and Karambelkar, H. Bidirectional
Expansion For Keyword Search on Graph Databases. In Proceedings of the 31st international Conference on Very
Large Data Bases (VLDB 2005). VLDB Endowment, Trondheim, Norway, 2005.

Kim, T., Li, W., Behm, A., Cetindil, I., Vernica, R., Borkar, V., Carey, M. J., and Li, C. Similarity query
support in big data management systems. Information Systems vol. 88, pp. 101455, 2020.

Le, W., Li, F., Kementsietsidis, A., and Duan, S. Scalable Keyword Search on Large RDF Data. IEEE Transactions
on Knowledge and Data Engineering 26 (11): 2774–2788, 2014.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hellmann, S., Morsey,
M., van Kleef, P., Auer, S., and Bizer, C. DBpedia – A large-scale, multilingual knowledge base extracted from
Wikipedia. Semantic Web 6 (2): 167–195, 2015.

Lehmann, J., Schüppel, J., and Auer, S. Discovering Unknown Connections – the DBpedia Relationship Finder. In
Proceedings of the 1st Conference on Social Semantic Web (CSSW 2007). Gesellschaft für Informatik e. V., Bonn,
pp. 99–109, 2007.

Milne, D. and Witten, I. H. An Effective, Low-Cost Measure of Semantic Relatedness Obtained from Wikipedia
Links. In Proc. AAAI 2008 Workshop on Wikipedia and Artificial Intelligence. AAAI Press, Chicago, pp. 25–30,
2008.

Moore, J. L., Steinke, F., and Tresp, V. A Novel Metric for Information Retrieval in Semantic Networks. In
ESWC. Vol. 7117. Springer, Berlin, Heidelberg, pp. 65–79, 2012.

Pereira Nunes, B., Herrera, J., Taibi, D., Lopes, G. R., Casanova, M. A., and Dietze, S. SCS Connector -
Quantifying and Visualising Semantic Paths Between Entity Pairs. In Proceedings of the Satellite Events of the 11th
European Semantic Web Conference (ESWC’14), V. Presutti, E. Blomqvist, R. Troncy, H. Sack, I. Papadakis, and
A. Tordai (Eds.). Springer, Anissaras, Crete, Greece, pp. 461–466, 2014.

Pirrò, G. Explaining and Suggesting Relatedness in Knowledge Graphs. In Proceedings of the 14th International
Conference on The Semantic Web (ISWC 2015). Vol. 9366. Springer International Publishing, Cham, pp. 622–639,
2015.

Przyjaciel-Zablocki, M., Schätzle, A., Hornung, T., and Lausen, G. RDFPath: Path Query Processing on
Large RDF Graphs with MapReduce. In Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 50–64, 2012.

Ragab, M., Tommasini, R., Awaysheh, F. M., and Ramos, J. C. An In-depth Investigation of Large-scale RDF
Relational Schema Optimizations Using Spark-SQL. In Proceedings of the 23rd International Workshop on Design,
Optimization, Languages and Analytical Processing of Big Data (DOLAP 2021). CEUR-WS.org, Nicosia, Cyprus,
pp. 71–80, 2021.

Ragab, M., Tommasini, R., Eyvazov, S., and Sakr, S. Towards making sense of Spark-SQL performance for
processing vast distributed RDF datasets. In Proceedings of The International Workshop on Semantic Big Data.
ACM, Portland, Oregon, pp. 1–6, 2020.

Ragab, M., Tommasini, R., and Sakr, S. Benchmarking Spark-SQL under Alliterative RDF Relational Storage
Backends. In Proceedings of the QuWeDa 2019: 3rd Workshop on Querying and Benchmarking the Web of Data
co-located with 18th International Semantic Web Conference (ISWC 2019). CEUR-WS.org, Auckland, New Zealand,
pp. 67–82, 2019.

Rohloff, K. and Schantz, R. E. High-performance, massively scalable distributed systems using the MapReduce
software framework. In Programming Support Innovations for Emerging Distributed Applications on - PSI EtA’10.
ACM, Reno/USA, pp. 1–5, 2010.

Schätzle, A., Przyjaciel-Zablocki, M., Berberich, T., and Lausen, G. S2X: Graph-Parallel Querying of RDF
with GraphX. In Biomedical Data Management and Graph Online Querying. Vol. 9579. Springer, Cham, pp. 155–168,
2016.

Schätzle, A., Przyjaciel-Zablocki, M., Hornung, T., and Lausen, G. PigSPARQL: A SPARQL Query Pro-
cessing Baseline for Big Data. In Proceedings of the 12th International Semantic Web Conference (ISWC 2013).
CEUR-WS.org, Sydney, Australia, pp. 241–244, 2013.

Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., and Lausen, G. S2RDF: RDF querying with SPARQL on
spark. Proceedings of the VLDB Endowment 9 (10): 804–815, 2016.

Sun, J., Shang, Z., Li, G., Deng, D., and Bao, Z. Dima: a distributed in-memory similarity-based query processing
system. Proceedings of the VLDB Endowment 10 (12): 1925–1928, 2017.

Sun, J., Shang, Z., Li, G., Deng, D., and Bao, Z. Balance-aware distributed string similarity-based query processing
system. Proceedings of the VLDB Endowment 12 (9): 961–974, 2019.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. Spark: Cluster Computing with
Working Sets. HotCloud 10 (10-10): 7, 2010.

Journal of Information and Data Management, Vol. 13, No. 2, September 2022.

