
Journal of Software Engineering Research and Development, 2021, 9:1, doi: 10.5753/jserd.2021.548
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Mining Experts from Source Code Analysis: An Empirical
Evaluation
Johnatan Oliveira [Federal University of Minas Gerais (UFMG) | johnatan.si@dcc.ufmg.br]
Markos Viggiato [University of Alberta | viggiato@ualberta.ca]
Denis Pinheiro [Federal University of Minas Gerais (UFMG) | denisppinheiro@gmail.com]
Eduardo Figueiredo [Federal University of Minas Gerais (UFMG) | figueiredo@dcc.ufmg.br]

Abstract Modern software development increasingly depends on third­party libraries to boost productivity and
quality. This development is complex and requires specialists with knowledge in several technologies, such as the
nowadays libraries. Such complexity turns it extremely challenging to deliver quality software, given the pressure.
For this purpose, it is necessary to identify and hire qualified developers, to obtain a good team, both in open source
and proprietary systems. For these reasons, enterprise and open source projects try to build teams composed of
highly skilled developers in specific libraries. However, their identification may not be trivial. Despite this fact, we
still lack procedures to assess developers skills in widely popular libraries. In this paper, we first argue that source
code activities can identify software developers’ hard skills, such as library expertise. We then evaluate a mining­
based strategy to reduce the search space to identify library experts. To achieve our goal, we selected the 9 most
popular Java libraries and 6 libraries for microservices (i.e., 15 libraries in total). We assessed the skills of more than
1.5 million developers in these libraries by analyzing their commits in more than 17 K Java projects on GitHub. We
evaluated the results by applying two surveys with 158 developers. First, with 137 library expert candidates, they
observed 63% precision for popular Java libraries’ used strategy. Second, we observe a precision of at least 71%
for 21 library experts in microservices. These low precision values suggest space for further improvements in the
evaluated strategy.

Keywords: Library Experts, Software Skills, Expert Identification, Mining Software Repositories.

1 Introduction

Software development has become increasingly complex,
both in open­source and proprietary systems (Damasiotis
et al., 2017). Such complexity makes it extremely challeng­
ing to deliver software with quality in time and may hinder
developers’ participation in worldwide repositories of source
code, such as GitHub (Viggiato et al., 2019). To contribute
to open­source projects or hire developers (in the case of a
company), identifying the developer with the right skills for
a good team is a hard task (Garcia et al., 2007; McCuller,
2012). Besides, in many cases, project managers must build
teams of skilled developers in relevant libraries. However,
decisions made during the hiring process are a well­known
decisive factor to the success of a software project (Tsui
et al., 2016). Providing a more reliable way of identifying
developers’ skills can help project managers make the right
decision when hiring or attracting the right developers for
an open­source project. The task of finding experts in spe­
cific technologies is especially complex, despite the exis­
tence of business­oriented social networks, such as LinkedIn,
where developers write about their attributes and qualifica­
tions. This type of platform is commonly used for the online
recruitment of professionals. However, the reliability and ac­
curacy of the information provided in such media are not
guaranteed (Brown and Vaughn, 2011). For instance, some
individuals can overvalue their skills and omit some skills in
a self­authored curriculum.
The most commonly used strategies to find experts have

their limitations (Tsui et al., 2016; Constantinou and Kapit­
saki, 2016). For instance, the analysis of the curriculum from

LinkedIn or in paper format can omit desirable skills. Be­
sides, developers may have difficulty to express their qual­
ifications (Tsui et al., 2016). Sometimes, the developer has
a specific ability, but s/he considers it irrelevant. In another
situation, the developer cites many skills but does not have
expertise in the technologies mentioned (Constantinou and
Kapitsaki, 2016). Even large companies may rely on cur­
riculum analysis, and this type of research may have inaccu­
rate or outdated information. Besides, even talent recruiters
may incorrectly identify the developer skills or identify other
skills that are not the organization’s focus. Hiring lowly
skilled software developers can lead to additional costs, ef­
forts, and resources for training them, or expending more
time and resources hiring others (Constantinou and Kapit­
saki, 2016; Sommerville, 2015). However, these costs can
be reduced if companies identify with more precision best
developers according to a job opening.
Several software developers have used social coding plat­

forms, such as GitHub and BitBucket, to showcase their
work, hoping that this may help them be hired for a better
job. Developers use these social coding platforms to demon­
strate their skills and create an online profile about their
projects (Constantinou and Kapitsaki, 2016). Some contrib­
utors are even using these platforms’ social aspects to in­
fer project popularity trends and promote themselves more
efficiently through specific projects and collaborations in
other open­source projects (?). In some cases, profiles de­
rived from accounts of social platforms, such as GitHub,
are considered even more reliable than a curriculum from
LinkedIn, concerning the technical qualifications of a job
candidate (Constantinou and Kapitsaki, 2016). Therefore,

mailto:johnatan.si@dcc.ufmg.br
mailto:viggiato@ualberta.ca
denisppinheiro@gmail.com
mailto: figueiredo@dcc.ufmg.br

Presenting the new SBC journal template Oliveira et al. 2020

data exploitation from coding platforms is a promising way
for potential employers to identify and assess several candi­
dates in real situations (Capiluppi et al., 2013).
GitHub has been widely used in several works mainly be­

cause it provides several user­based summary statistics, such
as the number of contributions in the last year, the number of
forked projects, and the number of followers. For instance,
some works have used this platform to identify appropriate
developers for cross­project bugs (Ma et al., 2017), iden­
tification of reuse opportunities (Oliveira et al., 2016) and
collaborations between projects (Dabbish et al., 2012). Dif­
ferent approaches have been used to investigate the skills
of developers from GitHub (Saxena and Pedanekar, 2017;
Mockus and Herbsleb, 2002; Greene and Fischer, 2016). For
instance, prior work conducted interviews with members of
GitHub to understand the hiring process (Marlow and Dab­
bish, 2013). We did not compare the results with other ap­
proaches because our strategy is very different from the oth­
ers. Therefore, our strategy complements related work by au­
tomatically reducing the search space to support library ex­
perts’ identification. This paper is an extension of our previ­
ous work (Oliveira et al., 2019) that proposed and evaluated
a strategy to identify library experts from source code, named
JExpert. Our main goal is to reduce the search space to iden­
tify library experts. We list the following new contributions
to this submission compared to the original paper.

1. We present and analyze data of all identified expert can­
didates by means of new boxplot charts.

2. We include a novel classification and discussion of ex­
perts in four categories.

3. We include additional analysis of the library experts by
proposing a novel heuristic to rank the top experts of
each library.

4. We perform a new identification of experts in microser­
vices libraries.

5. We conducted an additional survey to calculate the strat­
egy precision on identifying experts in microservices.

6. We include additional discussion about the negative re­
sults of the evaluated metrics.

In this paper, we evaluate the feasibility of identifying soft­
ware developers’ hard skills; that is, library expertise from
source code analysis. We rely on GitHub data to support
the identification of the skills of developers based on their
contributions. From each type of developer contribution, we
aim to identify essential developers skills and evaluate the
applicability and precision of the strategy. In the applicabil­
ity evaluation, we performed a mining study with the top­9
most popular Java libraries from GitHub, aiming to identify
library experts in these libraries. In total, we analyzed more
than 16 thousand projects and 1.5 million developers. In the
precision evaluation, we designed and sent a survey to more
than 1 thousand developers identified for these libraries. We
received answers from 158 developers. As a result, we ob­
serve that it is possible to reduce the search space to identify
experts from source code. We also note that the strategy pro­
vides meaningful information to recruiters, such as the his­
tory of written lines of code (LOC) for each library. These
details about the developers can improve the selection of can­
didates.

Our key contributions are threefold:

• we empirically evaluate the applicability and precision
of identifying library experts from source code analysis.
In addition, we propose a tool to support the strategy;

• we identify 1,045 experts in top­9 Java libraries with a
precision of about 63%;

• we identify 136 experts from microservices libraries
with a precision of about 71%.

Low precision values indicate space for future research in
this subject. The remainder of this paper is organized as fol­
lows. In Section 2, we describe our analysis by detailing the
strategy to identify library experts, dataset, and our research
questions. Section 3 presents the results of the applicability
evaluation to identify library experts. Section 4 shows the re­
sults to survey with top­9 library experts. Section 5 shows the
results concerning a survey with library experts in microser­
vices. Section 6 shows details about a tool developed to sup­
port the strategy. Section 7 presents and discusses threats to
validity. Related work is discussed in Section 8. Finally, Sec­
tion 9 discusses the concluding remarks and future work.

2 Study Settings
This section describes the protocol to evaluate the identifica­
tion of library experts through an empirical study. Section 2.1
presents the aims of our study and the research questions we
address. Section 2.2 shows the steps performed to evaluate
the expert candidates. Section 2.3 describes the used dataset.

2.1 Goal and Research Questions

This study’s primary goal is to evaluate the applicability and
precision of a strategy to reduce the search space to identify li­
brary experts from source code analysis using software repos­
itories. We are interested in whether the strategy can signifi­
cantly reduce the search space to identify experts in a specific
library. We are also concerned with assessing the relevance
of the results provided by the strategy. For this purpose, we
select the 10 most popular and standard Java libraries among
GitHub developers. We also selected 6 popular libraries for
microservices. One library was later excluded (Section 2.3).
Therefore, we evaluate the strategy with the 9 most popu­
lar Java libraries and 6 libraries of microservices. To achieve
this goal, we use the Goal­Question­Metric method to select
measurements of source code. The GQMmethod proposes a
top­down approach to defining measurement; goals lead to
questions that are then answered with metrics (Basili et al.,
1994).
Table 1 shows the GQM with the research questions and

metrics investigated in this study. As mentioned, the goal of
this paper is to reduce the search space to identify library ex­
perts from source code. Therefore, from this goal, we check
if it is feasible to analyze the source code to identify library
experts. Through RQ1, we are interested in investigating the
efficiency of the number of commits (metric) to indicate the
level of activity of a developer in a specific library. In other
words, we aim to analyze the number of commits involving

Presenting the new SBC journal template Oliveira et al. 2020

a specific library performed by a developer to compute their
activity level in the library.
With RQ2, we aim at assessing the knowledge extension

based on the number of imports to a specific library. From
all imports made by a developer at the source code, we in­
vestigate the number related to the particular library. Finally,
the last research question (RQ3) analyzes the knowledge in­
tensity of the developers from the number of LOC related
to the library (metric). In this last question, we aim to evalu­
ate the amount of LOC implemented by a developer using a
specific library. For this purpose, we evaluate the relation of
total LOC and LOC related to a particular library.

Table 1. The Metrics Analysis as GQM method
Questions Metrics

RQ1– How to evaluate the level of
activity of a developer in a library?

Number of commits

RQ2– How to evaluate the knowl­
edge extension of a developer in a
library?

Number of imports

RQ3– How to evaluate the knowl­
edge intensity of a developer in a
library?

Lines of Code

2.2 Evaluation Steps
This section describes the steps to evaluate the identification
of library experts from source code. To answer the research
questions presented in Section 2.1, we designed a mixed­
method study composed of four steps: 1) Library Selection,
2) Dataset Collection, 3) Expert Identification, and 4) Sur­
vey Application. Figure 1 presents the steps of our research,
which are discussed next. For Library Selection (Section 2.3),
we selected the top­10 most popular libraries in the Java pro­
gramming language to identify library experts. We also se­
lected 6 libraries for microservices to favor external validity.
In the Dataset Collection step (Section 2.3), we clone the
projects that contain these libraries from GitHub. For Iden­
tification of Library Experts (Section 3.1), we compute the
skills of developers based on three metrics: Number of Com­
mits, Number of Imports, and Lines of Code. These metrics
are presented in Section 3.1. Finally, we performed two sur­
vey studies. These surveys were conducted to evaluate the
precision of the strategy according to the responses of devel­
opers. Section 4.1 and 5.1 present details about the surveys.

Figure 1. Study Steps

2.3 Dataset
To create our dataset, we select the 10 most popular and com­
mon Java libraries among GitHub developers: Hibernate, Se­
lenium, Hadoop, Spark, Struts, GWT, Vaadin, Primefaces,

Apache Wicket, and JavaServer Faces. This selection was
made based on a survey provided by Stack Overflow1 in
2018 with answers of over 100,000 developers around the
world. Table 2 summarizes the definitions of each library
(top­10). All definitions of the libraries were retrieved from
Stack Overflow and their Web pages. We selected Java be­
cause it is one of the most popular programming languages2
and there are many Java projects available on GitHub.
Microservices have become most popular in the last years,

together with the spread of DevOps practices (Pahl, 2015).
We can see a significant increase in the use of microservices
architectural style since 2014 (Klock et al., 2017), which can
be verified in the service­oriented software industry where
the usage of microservices has been far superior when com­
pared to other software architecture models (Alshuqayran
et al., 2016). Furthermore, a microservice usually runs on
its own process and communicates using standardized inter­
faces. In practice, microservices are widely used by large
Web companies, such as Netflix and Amazon (Alshuqayran
et al., 2016). For these reasons, we aim to identify experts of
microservices in 6 libraries: Apache Karaf, Apache Spark,
JavaEE, Netflix, Spring Boot, and Swagger. Table 3 also
summarizes the definitions of each library, but now con­
cerningmicroservices. These definitions were retrieved from
Stack Overflow and their Web pages.
Figure 2 illustrates the criteria for defining our dataset. To

achieve more realistic results for software development, we
apply the following exclusion criteria. (1) We excluded sys­
tems with less than 1 KLOC because we considered them toy
examples or early­stage software projects. (2) We removed
projects with no commit in the last 3 years because the devel­
opers may forget their code (Krüger et al., 2018). Finally, in
the last exclusion criteria, (3) we removed projects which did
not contain imports related to the selected libraries. Besides,
we excluded all official projects of these libraries because
we assume all library project developers are experts in the
corresponding library. In popular Java libraries, we also re­
moved libraries with less than 100 projects (e.g., JavaServer
Faces). We need a representative number of projects to eval­
uate our strategy. We analyze only files with extension .java.
The same process was made to projects of libraries of mi­
croservices. Therefore, we end up analyzing 15 libraries in
this study.

Figure 2. Steps for Collecting Software Projects from GitHub

Table 4 shows the number of remained projects after each
step in our filtering process. The first part of this table shows
the results for top­10 Java libraries, and the second part

1https://insights.stackoverflow.com/survey/2018#most­popular­
technologies

2https://spectrum.ieee.org/static/interactive­the­top­programming­
languages­2018

Presenting the new SBC journal template Oliveira et al. 2020

Table 2. Library Descriptions

Library Description

Hibernate Hibernate is a library of object­relational mapping
to object­oriented.

Selenium A test suite specifically for automating Web.

Hadoop A library that facilitates the use of the network
from many computers to solve problems involv­
ing massive amounts of data (Tong et al., 2016; Ye,
2017).

Spark A general­purpose distributed computing engine
used for processing and analyzing a large amount
of data

Struts It helps in developing Web­based applications.

GWT It allows Web developers to develop and maintain
complex JavaScript front­end applications in Java.

Vaadin It includes a set of Web components, a Java Web
library, and a set of tools and application starters.
It also allows the implementation of HTML5 web
user interfaces using the Java.

PrimeFaces A library for JavaServer Faces featuring over 100
components.

Apache Wicket A library for creating reusable components and of­
fers an object­oriented methodology to Web devel­
opment while requiring only Java and HTML.

JavaServer Faces A Java view library running on the server machine
which allows you to write template text in client­
side languages (like HTML, CSS, JavaScript, etc.).

shows the results for microservices libraries. The column
#Projects presents the number of projects initially selected.
Next, the column Filtered shows the number of projects re­
moved through the filtering step. Finally, the column Re­
mained presents the number of projects analyzed for each
library.

3 Applicability Evaluation
In this section, we describe how we evaluated the strategy in
terms of its applicability focusing on the top­9 Java libraries.
Section 3.1 presents the steps to identify library experts, for
example, metrics and data about classes. Section 3.2 shows
an overview of our data. Section 3.3 presents the top­10 ex­
perts in each library selected in this study.

3.1 Identification of Library Experts
To evaluate the strategy in terms of its applicability, we
perform three steps in this study. These three steps are
described as follows.

Step 1: Extract data from source code – In this step, we
obtain data from the classes created by developers from a Git
repository. All data, such as added or removed LOC, written
imports, commits, date, email, and developers’ names, are
stored locally.

Table 3. Library Descriptions

Library Description

JavaEE The JavaEE platform is built on top of the Java SE plat­
form. The Java EE platform provides an API and run­
time environment for developing microservices and run­
ning large­scale, multi­tiered, scalable, reliable, and se­
cure network applications.

Spring Boot Pivotal solution for implementing cloudbased microser­
vices using the well known Spring Framework.

Netflix Netflix OSS is a set of frameworks and libraries that
Netflix wrote to implement microservices in distributed­
systems.

Swagger Swagger is used to creating documentation for each mi­
croservice.

Karaf Apache project referenced to support microservice im­
plementations.

Spark A lightweight web framework that has been used to im­
plement simple and expressive microservices.

Table 4. Projects Selected for Analysis
Library #Projects Filtered Reimaned

Hibernate 31,134 26,020 5,114
Selenium 19,062 17,648 1,414
Hadoop 11,715 10,778 937
Spark 9,144 7,650 1,494
Struts 4,741 4,127 614
GWT 4,086 2,635 1,451
Vaadin 3,240 2,625 615
PrimeFaces 1,881 1,401 480
Apache Wicket 1,095 896 199
JavaServer Faces 120 120 ­

Total 86,218 73,900 12,318
Microservices

Apache Karaf 264 155 109
Apache Spark 243 120 123
JavaEE 321 190 131
Netflix 653 240 413
SpringBoot 393 246 147
Swagger 357 239 118

Total 2,231 1,190 1,041

Step 2: Search for imports – From the previous step, we
search for specific “imports” related to the chosen library.
The idea is to explore all files that import the name of the
target library. This step is performed as follows. First, the
strategy gets files with all commits, for example, commits to
LOC in general, comments, and mainly the header. Second,
it analyzes the header of Java files containing the name of
the package, all imports necessary to class, and the classes’
names. Consequently, we get the “import” through regular
expression pattern import+“target library”, for example,
“import org.apache.spark”. In this example, the target library
is Spark. Figure 3 shows an example of a file with data
of committers. As we can observe in Figure 3, there are
three attributes in this file: (1) hash code of commit, (2)
name of the developer, and (3) committed source code. At
the beginning of the file, there is the name of a package
and many imports. In this part, our strategy is to use a
regular expression to detect if the line contains the library
we investigate. If the line contains the target library, we
compute the hash of commit, the number of imports to the
specific library, and the total imports without relation to the
target library.

Step 3: Calculate skills – In this last step, we compute the
skills for each developer. We rely on three metrics to identify
library experts. Each metric is calculated concerning the

Presenting the new SBC journal template Oliveira et al. 2020

Figure 3. File Example with Commits of Three Developers

number of commits to a specific library. That is, when
a commit using a library is identified, the metrics were
calculated. In the following, we explain the 3 proposed
metrics.

Number of Commits. This metric calculates the activity
of each developer through the number of commits using
a particular library. Through this metric, we believe it is
possible to measure the library’s amount in a project that a
specific developer works.

Number of Imports. This metric presents the extension of
knowledge in the library. For this metric, we count all im­
ports to the library written by a developer. Repeated imports
are included. If a developer wrote two equals imports, we
would consider 2 imports to the target library. Figure 3 shows
an example of repeated imports. There are four imports to
Apache Hadoop in this figure, so we compute 4 imports for
this library. Besides, if a developer made 3 imports to the
same library, we compute 3 imports, for example, we are sup­
posed to developer made 3 imports.

1 import org . apache . hadoop . i o . LongWritable ;
2 import org . apache . hadoop . i o . LongWritable ;
3 import org . apache . hadoop . i o . LongWritable ;

Lines of Code. To compute this metric, we developed a
heuristic to count the amount of LOC related to a specific
library. First, we obtain the ratio of changed LOC by the
number of all imports in the file. Then, we multiply the ratio
by the number of imports related to the library. Our heuris­
tic considers 3 attributes, the number of library imports, the
number of imports in general, and the number of LOC al­
tered by a commit related to the library. The heuristic is then
computed as follows:

LOC = # of LOC Altered by Commit
of All Imports

X # of Library Imports

From Figure 3, it is possible to compute an ex­
ample for this metric. A developer made a commit
with hash code 75b70c and an import to “import

org.apache.hadoop.io.IntWritable;” (line 2). Therefore,
we compute this metric as presented above and consider
10.67 LOC related to the Hadoop library.

3.2 Overview of Dataset
From the dataset projects, we computed all commits with the
libraries evaluated in this study and identified 1.5 million dif­
ferent developers who made commits. Figure 4 shows the
number of developers for the top­9 popular Java libraries.
The library, with more developers that made commits, was
Selenium. This library has 811,884 developers. In contrast,
Apache Wicket was the library with fewer developers: 5,440.
It is important to say that these developers made at least one
commit for the respective library. However, we cannot con­
sider them all experts since a single library use may not indi­
cate high expertise.

Figure 4. Number of Developers by Library

Figures 5, 6, and 7 show an overview of the metrics
computed to our data set of popular Java libraries. Figure 5
presents the results to the Number of Commits per library.
Figure 6 presents an overview of the metric Number of Im­
ports per library. Finally, Figure 7 shows the results of the
metric Lines of Code per library. In general, LOC (Figure 7)
was the metric that presented more variation in our data
set. For instance, GWT has developers that wrote more than
130 KLOC. Similarly, for Hibernate, it is possible to see an
outlier developer who wrote more than 500 KLOC. In con­

Presenting the new SBC journal template Oliveira et al. 2020

Figure 5. Number of Commits per Library

Figure 6. Number of Imports per Library

Figure 7. Number of LOC per Library

trast, some developers wrote less than 10 lines of code, for
example, to the library PrimeFaces.

3.3 Top Library Experts Selection
In this section, we present the Applicability Evaluation re­
sults to verify the feasibility of library expert identification
focusing on the top­9 popular Java libraries. We analyzed
16,703 software systems mined from GitHub and 9 libraries:
Hibernate, Selenium, Hadoop, Spark, Struts, GWT, Vaadin,
Primefaces, and Apache Wicket. Besides, we analyzed data
frommore than 1.5 million developers who have contributed
to these projects in our dataset.
Table 5 presents the results of top library experts. To ob­

tain these results, we aim to select the top­10 developers, but,
in some cases, it was not possible to select top­10 developers.
For instance, we obtained 3­top developers in library Spark.
Besides, we consider a developer with a library expert only if
this developer obtains high values in at least two metrics, for
example, LOC & # of commit or # of imports & LOC. These
developers are identified concerning their contribution. For
this, we calculate the 90% percentile in each metric, then fil­
tering the developers with any metric below this threshold

(90%). This type of classification is common in other stud­
ies (Joblin et al., 2017; Ferreira et al., 2019). Finally, we sort
developers by LOC (# of Library LOC). The filtering thresh­
old was applied to remove potential false positives (i.e., de­
velopers with high # of Library LOC, but low # of Commits).
In some cases, it resulted in less than 10 experts for some
libraries, such as PrimeFaces (8), Spark (3), Struts (6), and
Wicket (5).

In Table 5, each developer is identified by the start name
of the library, followed by a sequence number (e.g., HAD (1)
means the first developer expert of Hadoop). The column # of
Library Imports refers to the metric of Number of Imports
written by the developer. It counts the number of imports re­
lated to the specific library evaluated in this study. The col­
umn # of All Imports shows the number of imports wrote by
the developer in general. When a developer wrote an import
to a specific library evaluated in this study, they also wrote
imports to other libraries that have not been evaluated. Hence,
this metric counts all imports in relevant commits made by
the developer.
The column # of Commits shows the results for the Num­

ber of Commits metric. This metric indicates the number of
commits made by a specific developer. The column # of LOC

Presenting the new SBC journal template Oliveira et al. 2020

Table 5. Top Library Experts
ID # of Library Imports # of All Imports # of Commits # of LOC Altered by Commit # of Library LOC

GWT(1) 1,693 6,836 49 637,724 157,938
GWT(2) 5,108 5,951 386 87,303 74,935
GWT(3) 4,019 5,451 452 75,700 55,813
GWT(4) 1,677 1,880 31 56,535 50,430
GWT(5) 2,497 3,714 74 54,865 36,886
GWT(6) 1,564 6,226 66 135,574 34,056
GWT(7) 2,657 6,167 71 71,767 30,920
GWT(8) 1,732 1,956 141 33,272 29,461
GWT(9) 2,249 2,558 105 31,124 27,364
GWT(10) 1,432 3,791 56 71,264 26,919
HAD(1) 15,739 32,391 172 488,882 237,550
HAD(2) 2,083 3,378 14 46,215 28,497
HAD(3) 1,024 27,277 31 476,220 17,877
HAD(4) 1,303 2,628 146 31,440 15,588
HAD(5) 932 1,518 93 16,086 9,876
HAD(6) 625 1,329 52 16,788 7,895
HAD(7) 569 1,843 55 19,899 6,143
HAD(8) 242 599 18 13,051 5,272
HAD(9) 493 617 18 6,110 4,882
HAD(10) 322 973 12 11,842 3,918
HIB(1) 3,401 5,211 155 78,781 51,417
HIB(2) 1,719 2,923 169 25,963 15,268
HIB(3) 180 432 25 24,552 10,230
HIB(4) 552 1,182 15 13,612 6,356
HIB(5) 552 791 44 7,939 5,540
HIB(6) 535 756 51 5,684 4,022
HIB(7) 509 1,281 10 9,250 3,675
HIB(8) 458 898 50 7,060 3,600
HIB(9) 202 395 17 6,880 3,518
HIB(10) 233 387 15 4,617 2,779
PRI(1) 239 16,194 6 245,319 3,620
PRI(2) 177 1,286 6 11,232 1,545
PRI(3) 72 282 15 3,500 893
PRI(4) 37 144 12 2,014 517
PRI(5) 38 545 10 6,374 444
PRI(6) 28 168 6 2,538 423
PRI(7) 28 142 6 1,904 375
PRI(8) 27 102 10 1,374 363
SEL(1) 614 820 61 8,757 6,557
SEL(2) 1,178 1,763 116 9,606 6,418
SEL(3) 707 3,166 27 27,808 6,209
SEL(4) 287 1,436 49 28,355 5,667
SEL(5) 780 1,141 93 7,245 4,952
SEL(6) 491 2,229 73 22,302 4,912
SEL(7) 242 486 18 9,513 4,736
SEL(8) 324 1,027 27 14,084 4,443
SEL(9) 394 1,095 16 12,096 4,352
SEL(10) 178 417 16 9,685 4,134
SPA(1) 757 2,208 36 22,903 7,852
SPA(2) 280 1,253 29 17,940 4,008
SPA(3) 446 834 38 7,344 3,927
STR(1) 670 3,286 3 64,468 13,144
STR(2) 531 2,432 2 24,448 5,337
STR(3) 616 2,771 2 23,419 5,206
STR(4) 175 793 9 14,753 3,255
STR(5) 133 1,076 9 21,477 2,654
STR(6) 278 818 6 7,357 2,500
VAA(1) 3,541 5,960 100 95,786 56,909
VAA(2) 561 761 46 21,537 15,876
VAA(3) 1,265 2,102 203 21,973 13,223
VAA(4) 684 4,208 74 59,710 9,705
VAA(5) 816 1,178 102 12,557 8,698
VAA(6) 510 656 31 8,913 6,929
VAA(7) 451 628 28 9,169 6,584
VAA(8) 740 1,432 30 11,746 6,069
VAA(9) 358 375 28 6,223 5,940
VAA(10) 334 495 59 8,695 5,866
WIC(1) 1,428 1,727 191 16,991 14,049
WIC(2) 1,017 1,212 55 14,255 11,961
WIC(3) 494 543 56 10,104 9,192
WIC(4) 403 451 49 9,549 8,532
WIC (5) 476 651 34 8,439 6,170

Presenting the new SBC journal template Oliveira et al. 2020

Altered by Commit presents the LOC changed by a developer
when s/he made a commit related to the library (i.e., identi­
fied by a specific library import). Finally, the last column #
of Library LOC shows the results for the metric LOC written
by the developer related to the library based on our heuristic.
In this paper, the developers could be classified into

Hard/Soft Committers and Hard/Soft Coders, depending
on the metrics’ numbers. We consider a Hard Committer
when a developer obtains data equal or above 75%. That is,
we use the 3rd quartile as a parameter. Hard Committers
are developers who made several commits (# of Commits)
related to the libraries which are subject of this study. For
example, let us supposed that developer Maike made 10k
commits that include hash to library Y and developer Anna
made 1k commits using a hash to library Y. In this context,
the developer Maike is a Hard Committer in relation to
developer Anna. Similarly, Hard Coders are developers
who wrote several lines of code related to the library (# of
Library LOC). For instance, let us suppose that developer
Mary wrote 8K LOC when made a commit to the library
Y and developer John wrote 1K LOC to library Y when
made a commit to the same library. Therefore, developer
Mary is considered a Hard Coder in relation to developer
John. Nevertheless, a developer could be Hard Committer
and Hard Coder if s/he has a higher number of commits and
LOC related to the library. On the other hand, we classify
a developer as Soft using the same strategy to classify the
Hard developers. However, we use the data below 25%, i.e.,
the 1 st quartile, as a parameter. Then, we discuss the below
reasoning regarding this classification.

Hard Committers and Hard Coders. According to our
metrics, the developer GWT (3) is a Hard Committer and
Hard Coder (see Table 5). This developer made more than
450 commits and wrote more than 55 KLOC for this library.
It could be noted that other developers are Harder Committer
and Harder Coder. For instance, the developer HAD (1)
made 172 commits and wrote more than 237 KLOC. These
are some examples of Harder Committer and Harder Coder
from the calculated metrics.

Hard Committers and Soft Coders. We present now the
results to Hard Committers and Soft Coders. Developers
HAD (1) and HAD (4) in Table 5 can be considered Hard
Committers because they made 172 and 146 commits,
respectively. The difference between HAD (1) and HAD (4)
is only 26 commits. However, developer HAD (4) is
considered as Soft Coder concerning developer HAD (1)
because HAD (1) wrote more than 235 KLOC while the
developer HAD(4) wrote about 15 KLOC. Developer
HAD (4) wrote only 6% LOC of the developer HAD (1).
Therefore, HAD (4) is a Hard Committer and Soft Coder.

Soft Committers and Hard Coders. Concerning the
Soft Committers and Hard Coders, we can observe that
developers PRI (1), PRI (2), SEL (1), and STR (1) in Table 5
are Soft Committers because they made only a few commits.
Developer STR (1), for instance, made only 3 commits, but
s/he wrote more than 13 KLOC. Therefore, this developer is
considered a Soft Committer and Hard Coder.

Soft Committers and Soft Coders. As the name suggests,
this category includes the developers that fewer commits and
made fewer lines of code compared to their peers. For in­
stance, Developers HIB (9), HIB (10), SEL (9), and SEL (10)
are considered Soft Committers because they wrote less
than 20 commits to libraries cited. Besides, these developers
wrote less than 5 KLOC. Therefore, according to our met­
rics, these developers are considered Soft Committers and
Soft Coders.

4 Survey with Top Libraries Experts
This section describes the survey applied to GitHub develop­
ers to evaluate the strategy with respect to the top­9 popular
Java libraries. Section 4.1 presents the details regarding the
survey developed. Section 4.2 presents a summary of some
relevant findings. Section 4.3 presents the results to RQ1 re­
garding the Number of Commits metric. Section 4.4 presents
the results to RQ2 about the Number of Imports metric. Sec­
tion 4.5 presents the results to RQ3 regarding the LOC met­
ric.

4.1 Survey Design
According to Easterbrook et al. (2008), survey studies are
used to identify the characteristics of a population and are
usually associated with the application of questionnaires. Be­
sides, surveys are meant to collect data to describe and com­
pare or explain knowledge (Pfleeger and Kitchenham, 2001).
We selected the library experts with the best values in the
evaluated metrics to validate them through a survey. We de­
signed and applied a survey with the top developers identi­
fied by our strategy. We selected developers with the top­
20% highest values in at least two (out of three) metrics.
We created a questionnaire on Google Forms3 with two

parts: the first one was composed of 5 questions about the
background of the expert candidates; the second part also
had 5 questions about the knowledge of the expert candi­
dates regarding the evaluated libraries. Table 6 contains the
tag <libray name> meaning a specific library, for instance,
Hadoop. Also, this table shows the possible answers to the
survey questions.

Table 6. Survey Questions on the Use of the Libraries
ID Questions

SQ1 How do you assess your knowledge in <libray name>?
() 1 () 2 () 3 () 4 () 5

SQ2 How many projects have you worked with <libray name>?
() 1 to 5 () 6 to 10 () 11 to 20 () More than 20 projects

SQ3 How many packages of <library name> have you used?
() A few () A lot

SQ4 How often do your commits include <libray name>?
() A few () A lot

SQ5

How much of your code is related to <libray name>?
() Few of my code is related to <libray name>
() My code is partially related to <libray name>
() Most of my code contains <libray name>

To obtain the email used by the developer to perform the

3https://www.google.com/forms/

Presenting the new SBC journal template Oliveira et al. 2020

commits in the source code, we used the Git­Blame4 tool.
The emails were collected to send the survey. We sent an
email to developers asking them to assess their knowledge of
each library. For instance, the developers were invited to rank
their knowledge (Table 6, SQ1) using a scale from 1 (one) to
5 (five), where (1) means no knowledge about the library;
and (5) means extensive knowledge about the library. Ques­
tions are not mandatory because theymay require knowledge
of the exceptional features of the library. Therefore, partici­
pants are not forced to provide an answer when they do not re­
member a specific library element, such as the time of devel­
opment using the library and the approximate frequency of
commits that contain the library. The survey remained open
for 15 days in January 2019.
In summary, we present the precision evaluation results

based on a survey with expert candidates in each of the top­9
popular Java libraries. The goal of this evaluation is to verify
the precision of the library expert identification. We empir­
ically selected 1,045 developers among the top­20% values
in at least 2 metrics. The questionnaire was sent in January
2019. After 15 days, we obtained 137 responses resulting in
a response rate of about 15%. We asked the 137 develop­
ers about their software development experience in general
(background) and the use of the specific libraries investigated
in this paper.

4.2 Overview
In this section, we present an overview of some relevant find­
ings of the popular Java libraries.
Table 7 presents an overview of the experts’ candidates

contacted to answer our first survey. This table has the fol­
lowing structure. The first column (Library) indicates the
name of the analyzed library. The second column (Emails
sent) shows the number of emails collected and sent to ex­
pert candidates. The third column (Invalid email) presents
the number of invalid emails returned by the server. The
fourth column (Remaining emails) indicates the number of
valid emails. The fifth column shows the number of answers
we obtained for each library. Finally, in the last column, we
show the response rate of each library.

Table 7. Top 20% from Library Experts Selected to Answer the
Survey

Library Emails
sent

Invalid
email

Remaining
email # Answers %

GWT 160 18 142 31 22%
Hadoop 181 33 148 11 7%
Hibernate 155 10 145 16 11%
Spark 138 19 119 11 9%
Struts 42 2 40 9 23%
Vaadin 107 18 89 15 17%
PrimeFaces 30 1 29 9 31%
Wicket 23 2 21 8 38%
Selenium 209 31 178 27 15%
TOTAL 1,045 134 911 137 15%

Concerning the participants’ background and replication
package, we create a Web page with more details (Oliveira
et al., 2020). It is worth mentioning that half of the respon­
dents graduated in Computer Science, and 7% holds a Ph. D.

4https://git­scm.com/docs/git­blame

degree. Concerning time dedicated to software development,
47% has more than 10 years of experience, and only 2% have
less than 1 year of experience. Therefore, we can conclude
that, in general, the participants are not novices.
Our study also shows that a significant amount of expert

candidates makes commits. When writing code related to a
specific library, they perform many imports of particular li­
braries and writes lines of code about the library. We support
this affirmation through metrics that evaluate the amount of
LOC written by a developer when they performed a commit.
Table 8 shows the results of the knowledge that surveyed de­
velopers claim to have in each library. If we analyze the data
about the precision of the strategy from the sum of levels
3, 4, and 5 of the Likert­type scale, we obtain on average
88.49% of precision about the knowledge of the developers,
i.e., identification is correct in more than 88% of the cases.
On the other hand, although a score of three may represent
acceptable knowledge, if we followed more conservative cri­
teria, only classifying as library experts the developers that
informed a higher (≥ 4) knowledge on the libraries obtain
average, 63.31% of precision. This way, we conclude that
less than 2/3 of the identified expert candidates identified by
the strategy contain high knowledge about the evaluated li­
braries.

About 63% of the library experts who answered the survey
have high knowledge about the evaluated libraries.

Table 8. Level of Knowledge in Each Library

Library Likert scale Total 3­4­5 4­51 2 3 4 5
GWT 1 1 4 9 16 31 94% 81%
Hadoop 0 1 3 4 3 11 91% 64%
Hibernate 1 3 6 3 3 16 75% 38%
Spark 0 1 4 2 4 11 91% 55%
Struts 2 2 1 4 0 9 56% 44%
Vaadin 0 2 5 3 5 15 87% 53%
PrimeFaces 0 0 4 4 1 9 100% 56%
Wicket 1 0 2 4 1 8 88% 63%
Selenium 0 1 4 13 9 27 96% 81%

4.3 Level of Activity
In this section, we answer the first research question.
RQ1– How to evaluate the level of activity of a developer in
a library?
To answer this research question, we asked the library ex­

perts the following question. ‘‘How often are your commits
related to the <libray name> library’’? Figure 8 shows the
results of this question in the first line in each chart to each
library. For most libraries, the majority of the participants
answered they made ‘‘few’’ commits using the evaluated li­
braries. This way, if we evaluated the results obtained for
this label, it is possible to see that from 137 experts, 54%
made ‘‘few’’ commits. For instance, in the library Hibernate,
87% of developers said they made few commits related to
this library. Another library that deserves special attention is
Struts. In this library, 88% of the developers responded that
they made few commits. Regarding the label ‘‘a lot’’, only
39% of experts polled said they performed many commits.
GWT was the library with a higher rate of answers to this

Presenting the new SBC journal template Oliveira et al. 2020

label (62%). Therefore, results indicate that the metric Num­
ber of Commits needs to be combined with other metrics to
achieved conclusive results about the skill of developers and
even develop other metrics to identify the level of activity
ability.

Answer to RQ1. A large proportion of library experts
make ‘‘few’’ commits using the library. Therefore, we con­
cluded that the solo use of the number of commits could
not identify library experts.

4.4 Knowledge Intensity
In this section, we answer the second research question.
RQ2– How to evaluate the knowledge intensity of a devel­
oper in a library?
Regarding the number of imports to indicate a library ex­

pert, we ask the developers the following question: ‘‘How
often do you include an import of <libray name> library in
your commits?’’. Figure 8 shows the results of this question
from the second line in each chart to each library. We ana­
lyze the number of imports performed by developers. The
main reason for this analysis is to evaluate the feasibility of
inferring the skills of the developers from the types of written
imports. In general, the label ‘‘few’’ and ‘‘a lot’’ are tied or
with little difference between them. For example, Hibernate,
Spark, and PrimeFaces have practically tied. These libraries
did not show significant differences; the difference was only
1 absolute point in some cases. In only three cases, the label
‘‘a lot’’ remained significantly higher: GWT (83%), Vaadin
(67%), and Selenium (78%).

From 137 experts, 68% said that they made ‘‘a lot of im­
ports’’. However, the number informed by the experts indi­
cates that this metric requires a combination with other met­
rics to achieve better results because 32% of experts said they
made few imports to libraries evaluated. Therefore, from the
survey results, the metric Number of Imports, as well as the
metric Number of Commits, are not able to identify library
experts when we apply one at a time.

Answer to RQ2. The metricNumber of Imports is not able
to identify library experts, when we use it alone.

4.5 Knowledge Extension
In order to evaluate the metric Lines of Code, we present the
third research question as follows.
RQ3– How to evaluate the knowledge extension of a devel­
oper in a library?
In this research question, we analyze the developers skill

from the number of LOC related to the library. We evaluate
the number of LOC implemented by a developer to a specific
library. For this purpose, we asked the library experts from
the survey the following question. ‘‘How much of your code
is related to the <libray name> library when you perform a
commit?’’. Figure 8 shows the results to this question in the
third line in each chart to each library. The libraries GWT,
Wicket, Selenium, and Hadoop, for instance, obtained 74%,
71%, 70%, and 64% respectively to label ‘‘a lot’’.

We noted, however, the label ‘‘a few’’ also remained at
a high level in some cases, for instance, the libraries Struts
(88%) and Spark (55%). In fact, the library Hibernate re­
mained tied to labels ‘‘a few’’ and ‘‘a lot’’. In general, from
137 experts, 39% said they write ‘‘a few’’ LOC and 61%
write ‘‘a lot’’ LOC with respect to libraries. Therefore, it is
possible to infer that the metric Lines of Code alone also does
not provide indications about developer skills, although this
metric achieved better precision than the metric Number of
Commits.

Answer to RQ3. According to our analysis, the metric
Lines of Code alone cannot reliably provide indications
about developers’ skills. In general, our metrics are not fea­
sible to identify library experts. However, our strategy is
able to reduce the search space of library experts. There­
fore, a company or project open source can be select a de­
veloper from a group selected by our strategy.

5 Survey with Microservices Experts
In order to favor the generalization of our findings, we did
a second survey with developers of microservices libraries.
For this, we conducted a selection of libraries in this domain.

5.1 Survey Design
We select the library experts to this survey in a similar way
to the survey presented in Section 4.1. We created a ques­
tionnaire on Google Forms5 in order to evaluate the knowl­
edge of the developers about microservices libraries. The
first question request the login of the developer at GitHub.
This login is necessary to map the answer of the developer
with our data. We ask developers about their knowledge in
all six libraries of microservices. For this, we show all li­
braries investigates in this survey (6 libraries of microser­
vices). We request the developer to rank their knowledge in
these libraries in four levels: No knowledge, Low knowledge,
Medium knowledge, and Extensive knowledge. Each level
of knowledge has meaning. No knowledge: this library was
never used in any project I am involved in. Low knowledge:
I never used this library, but it has been used in projects I
am involved in. Medium knowledge: I used this library in
some projects before, but I do not master all its API. Exten­
sive knowledge: I used this library many times, and I know
a lot of its API. Table 9 shows the template of the survey.

Table 9. Level of Knowledge in Microservices Libraries

Library No
knowledge

Low
knowledge

Medium
knowledge

Extensive
knowledge

Apache Karaf ⃝ ⃝ ⃝ ⃝
Apache Spark ⃝ ⃝ ⃝ ⃝
JavaEE ⃝ ⃝ ⃝ ⃝
Netflix ⃝ ⃝ ⃝ ⃝
Spring Boot ⃝ ⃝ ⃝ ⃝
Swagger ⃝ ⃝ ⃝ ⃝

We selected the library experts with the best values in the
evaluated metrics to validate them through a survey. We de­
signed and applied the survey with the top developers iden­

5https://www.google.com/forms/

Presenting the new SBC journal template Oliveira et al. 2020

(a) GWT (b) Hadoop

(c) Hibernate (d) PrimeFaces

(e) Selenium (f) Spark

(g) Struts (h) Vaadin

(i)Wicket
Figure 8. Results of the survey questions for each library

Presenting the new SBC journal template Oliveira et al. 2020

tified by our strategy. That is, we selected developers with
the top­20% highest values in at least two (out of three) met­
rics. Therefore, we choose 136 candidates library experts in
microservices. Figure 9 presents an overview of the number
of developers by the library. The library with more candidate
experts identified was Netflix with 64, and the library with
fewer candidate library experts identified was Karaf with
only 1.

Figure 9. Number of Developers by Library in Microservices

Table 10 presents an overview of the candidate experts
contacted to answer our survey. We sent 136 emails, but 38
was returned with invalid email. Therefore, we sent the sur­
vey to 98 valid emails. The library, with more amount of
respondents, was Netflix with 7 candidate library experts.
On the other hand, the library with fewer participants was
Apache Karaf with 0.

Table 10. Top 20% from Library Experts of Microservice

Library Emails
Send

Invalid
Email

Remaing
Email #Answer %

Apache Karaf 1 0 1 0 0%
Apache Spark 6 1 5 4 80%
JavaEE 9 1 8 1 13%
Netflix 64 18 46 7 15%
SpringBoot 37 11 26 6 23%
Swagger 19 7 12 3 25%

Total 136 38 98 21 21%

5.2 Results
In this section, we present the results about a survey per­
formed with library experts from microservices. Initially, we
perform a pilot survey with 5 developers from Netflix ran­
domly selected among the candidate experts identified. We
received 3 answers for this library. From the pilot, we did
not identify any problem with our survey. Then we apply the
final survey for all top­20% developers with high values in
at least two metrics. Note that the results of the pilot survey
are part of our final results.
Table 11 shows the summary results from our second sur­

vey. The first column shows the name of the library. The sec­
ond column shows the number of developers without knowl­
edge in the library target. The third column indicates the
number of developers with low knowledge in the library tar­
get. The fourth column shows the number of developers with
medium knowledge in the library target. The fifth column

shows the number of developers with extensive knowledge
in the library target. Finally, the two last columns show the
precision for medium and extensive knowledge. The library
Apache Karaf is not presented in Table 11 because we did
not obtain any response for this library.

Table 11. Summary Results

Library No Low Medium Extensive Medium
(precision)

Extensive
(precision)

Apache Spark 2 1 1 25%
JavaEE 1 100%
Netflix 1 1 2 3 29% 43%
SpringBoot 1 5 17% 83%
Swagger 1 2 67%

Total 4 2 4 11 19% 52%

Table 12 presents the overview of the survey applied with
developers from microservices. This table has 8 columns.
The column Developer represents the name of the developer.
We omitted the name of developers to avoid his/her expo­
sure. Next, six columns in the sequence represent the libraries
investigates from the survey. Finally, we have the target li­
brary target name. This column represents the library that
our strategy classified the developer as library experts. In
this table, we have 4 scales for developers to rank her/his
knowledge. The NK represents ‘‘no knowledge’’, LK rep­
resents ‘‘low knowledge’’, MK indicates ‘‘medium knowl­
edge’’, and EK represents ‘‘extensive knowledge’’. Table 12
shows, for instance, developer­D1was identified by our strat­
egy as medium knowledge or extensive knowledge from li­
brary Spark. However, developer D1 answered that he/she
has low knowledge in this library. D1 is an interesting case
because this developer reports low knowledge in the library
they had been recommended, but medium Knowledge and
extensive knowledge for all others. Netflix is also an inter­
esting case since only 3 (out of 8) reported extensive knowl­
edge in the library, while 5 reported extensive knowledge in
JavaEE and 5 in Spring Boot. On the other hand, developer­
D17 was identified by our strategy as medium knowledge or
extensive knowledge from library Spark, and this developer
marked extensive knowledge.
From 21 developers that answered the survey, we observe

that the strategy obtained a precision of 52% on average for
extensive knowledge. Table 11 in the last column shows, for
example, to library SpringBoot a precision of 83%. On the
other hand, for library Netflix, our strategy obtained a pre­
cision of 43%. If we consider the survey results to corre­
late with the results of the strategy concerning only the de­
velopers that answered with extensive knowledge, we ob­
tained 52% precision. However, if we consider developers
who answered the survey with medium knowledge or exten­
sive knowledge to correlate with strategy results, we obtain
71% precision.

6 Tool Support
We developed a prototype tool, named JExpert, to support
the identification of library experts (strategy). We developed
JExpert in Java programming language. JExpert currently
works with Java projects, but the tool can be easily adapted

Presenting the new SBC journal template Oliveira et al. 2020

Table 12. Survey Results: Microservices (Overview)
Developer Apache Karaf Apache Spark JavaEE Netflix Spring Boot Swagger Library

D1 MK LK MK EK EK EK

SparkD2 NK NK NK NK LK NK
D3 NK MK EK MK MK MK
D4 NK NK MK NK MK MK
D5 NK NK EK LK EK MK JavaEE
D6 LK NK EK EK EK EK

Netflix

D7 NK NK EK EK EK MK
D8 MK LK EK MK EK MK
D9 LK LK LK LK EK NK
D10 LK NK LK NK LK MK
D11 NK NK LK EK LK LK
D12 NK NK EK MK MK MK
D13 LK LK EK MK EK EK

SpringBoot

D14 LK LK MK LK EK LK
D15 LK LK MK LK MK EK
D16 NK MK MK MK EK EK
D17 NK MK MK EK EK EK
D18 LK LK EK MK EK EK
D19 LK NK EK LK EK NK

SwaggerD20 LK LK EK EK EK EK
D21 LK EK NK LK LK EK

NK No knowledge LK Low knowledge
MK Medium knowledge EK Extensive knowledge

to identify library experts in other programming languages.
JExpert is a standalone tool and runs in Windows, Linux,
and MAC. JExpert is available in our website (Oliveira et al.,
2020). JExpert uses static analysis to avoid Abstract Syntax
Tree (AST). Therefore, it reduces the response time when
analyzing large systems with hundreds of source elements,
such as LOC, imports, packages, and classes. Our goal is to
support recruiters with a flexible, light­weighted means to
identify library experts from source code.
Figure 10 presents the simplified architecture design of

JExpert. In the first moment, there are two modules: Projects
and Library Name. These two modules are the input of JEx­
pert. In other words, JExpert receives as inputs two items,
(i) projects in Java that contain the target libraries, i.e., sys­
tems from a local directory informed by the user, and (ii) the
names (keywords) of the libraries that a developer wants to
investigate. Module Activity Extractor is responsible for ex­
tracting the code elements necessary for the computation of
activities made by a developer. Besides, this module removes
the old projects, i.e., projects with commits made more than
three years ago, projects with less than 1 KLOC, and projects
without target library.

Figure 10. JExpert Architecture Overview

From the next step, the module Developer Data Analyzer
computes all data about each developer. This module is re­
sponsible for separating the number of commits to libraries
and changes made from source code in general, for instance,
the number of lines of code written. This module also com­
putes the number of imports made by developers and verifies
if an import is related to the target library.
The Metric Collector module computes the three metrics,

as mentioned in Section 3.1. Finally, the List of Experts is
generated as output with the sorted list of expert candidates
from our metrics. Such a list prioritizes the library experts
based on a heuristic score, i.e., higher scores come first; cur­
rently, the tool returns a ”.csv” file for each library.

7 Threats to Validity
We based our study on related work to support the evalu­
ation of a strategy to identify library experts. Regarding
the assessment, we conducted a careful empirical study to
assess the efficiency of the strategy from software systems
hosted by GitHub. The strategy evaluated can analyze
source code from platforms that follow the Git architecture.
However, some threats to validity may affect our research
findings. The main threats and respective treatments are
discussed below based on the proposed categories of Wohlin
et al. (Wohlin et al., 2012).

Construct Validity. This validity is related to whether mea­
surements in the study reflect real­world situations (Wohlin
et al., 2012). Before running the strategy, we conducted
careful filtering of software systems from GitHub reposito­
ries. However, some threats may affect the correct filtering
of systems, such as human factors that wrongly lead to a
valid system’s discard to be evaluated. Considering that
the exclusion criteria to system selection were applied in a
manual process, we may have discarded interesting systems
that we identified as non­Java, for instance.

Internal Validity. The validity is related to uncontrolled
aspects that may affect the strategy results (Wohlin et al.,
2012). The strategy may be affected by some threats. To
treat this possible problem, we selected a sample of 5
software systems that contain the library Hadoop from
our dataset, with a diversified number of LOC. Then, we
manually identified the number of commits from the GitHub

Presenting the new SBC journal template Oliveira et al. 2020

repository, the number of imports, and the number of LOC
codified to the specific library. We compared our manual
results with the results provided by the tool and observed a
loss of 5% in metrics terms computed through the automated
process. We believe that this error rate does not invalidate
our main conclusions. In addition, our strategy has the goal
to reduce the search space to identify library experts, that is,
we do not recommend a specific developer.

External Validity. This validity is related to the possibility
of generalizing our results (Wohlin et al., 2012). We evalu­
ated the strategy with a set of 16,703 software projects from
GitHub. Considering that these systems may not include all
existing libraries, our findings may not be generalized. Fur­
thermore, we evaluated the strategy with an online survey
with only 158 developers that implemented projects with the
investigated libraries.We analyzed the data with only 15 Java
libraries. However, we chose the top libraries from the survey
reported by StackOverflow in 2018, with over 100,000 re­
sponses from developers around the world. We also analyzed
microservices libraries. This way, we believe these libraries
can represent a reasonable option to evaluate the strategy.

8 Related Work
The use of data from GitHub to understand how software de­
velopers work and collaborate has become recurrent in soft­
ware engineering studies (Greene and Fischer, 2016; Singer
et al., 2013; Ortu et al., 2015; Destefanis et al., 2016; Ma
et al., 2009; Begel et al., 2010; Moraes et al., 2010). Some
studies seek to understand the behavior of developers con­
cerning an interaction with their peers (Ortu et al., 2015).
For example, a few studies (Ortu et al., 2015, 2016) tried
to understand who are the developers with peaceful behavior
and those with aggressive behavior and if these developers
coexist productively in software development projects (Ortu
et al., 2016). Similar studies also tried to understand if there
is a relationship between bug resolution time and behavior
of developers (Ortu et al., 2015). Also, some studies investi­
gated developers manners (Destefanis et al., 2016) and seek
to understand the emotional behavior of software develop­
ers (Ortu et al., 2016).

Schuler and Zimmermann (2008) investigated developer
expertise based on their commit activities, which manifests
itself whenever developers are using functionality. They
present preliminary results for the Eclipse project. They were
able to create expertise profiles that included data about what
APIs a developer may be an expert in through their use of
those APIs. Wu et al. (2011) proposed DREX, an approach
to bug assignment using k­nearest neighbor search and social
network analysis. This approach performs with the follow­
ing way: 1) finding textually similar bug reports, 2) extract­
ing developers involved in their resolution, and 3) ranking
the developers expertise by analyzing their participation in
resolving similar bugs. An evaluation of bug reports from
the Firefox OSS project shows the social network analysis
of DREX outperforms a purely textual approach, with a pre­
diction accuracy of about 15%.
In closely related work, Greene and Fischer (2016) have

developed an approach to extract technical information from
GitHub developers. The work of these researchers does not
differentiate developers from their level of knowledge of
technical skills since a recruiter has several candidates for the
same job position. Besides, such work only shows the profile
of the users in GitHub, and it does not extract other charac­
teristics of their knowledge and skills. The other limitation
is that they neither provide actual data about the developer’s
knowledge production nor present a survey to evaluate the
results. Singer et al. (2013) investigated the use of profile ag­
gregators in the evaluation of developer skills by developers
and recruiters. However, these aggregators only gather skills
for individual developers, and it is not clear how they support
the identification of relevant developers from a large dataset.
We believe that the strategy evaluated in our study is com­

plementary to the described related work, providing a differ­
ent approach focusing on reducing the search space to iden­
tify possible experts. Our strategy is complementary with
other approaches, such as CVExplorer (Greene and Fischer,
2016). For instance, by combining our results with CVEx­
plorer (Greene and Fischer, 2016) it is possible to select
skills in the language of programming and analyze the met­
rics shown in our paper. To the best of our effort, we did not
find a similar large scale study that evaluates some strategy
able to identify library experts. Hence, we cannot compare
the strategy evaluated with other studies.

9 Conclusion
In this paper, we evaluated a strategy to reduce the search
space to identify library experts in software systems from
source code analysis. We also presented a prototype tool that
implements the strategy. The strategy evaluated is composed
of three metrics: Number of Commits, Number of Imports,
and Lines of Code. We assessed the strategy in two dimen­
sions: applicability and precision. First, Applicability Evalu­
ation analyzed the feasibility of identifying library experts
candidates in large datasets. Second, Precision Evaluation
compared the results provided by a strategy with developers
perceptions from a survey. In total, we analyzed 16k software
systems mined from GitHub, 15 libraries, and a survey with
158 developers. Our findings pointed out that the strategy
was able to identify library experts in different libraries from
the set of input software systems with a precision of 71% on
average.
There are many possible extensions for this work. For in­

stance, we did not consider all available data in our analysis,
such as the number of forks, number of projects belonging to
the developer that have received stars, the number of follow­
ers, number of methods, source code quality, and contribu­
tions to the project discussions. Besides, we did not consider
the number of lines of code added and removed between ver­
sions. Future work can also extend our research to evaluate
the strategy of other programming languages and libraries.

References
Alshuqayran, N., Ali, N., and Evans, R. (2016). A systematic

Presenting the new SBC journal template Oliveira et al. 2020

mapping study in microservice architecture. In 9th Inter­
national Conference on Service­Oriented Computing and
Applications (SOCA), pages 44–51.

Basili, V., Caldiera, G., and Rombach, H. D. (1994). The
Goal Question Metric Approach. Online Technical Re­
port.

Begel, A., Khoo, Y. P., and Zimmermann, T. (2010). Code­
book: discovering and exploiting relationships in software
repositories. In 32nd International Conference on Soft­
ware Engineering (ICSE), pages 125–134.

Brown, V. R. and Vaughn, E. D. (2011). The writing on
the (facebook) wall: The use of social networking sites
in hiring decisions. Journal of Business and psychology,
26(2):219.

Capiluppi, A., Serebrenik, A., and Singer, L. (2013). Assess­
ing technical candidates on the social web. IEEE software,
30(1):45–51.

Constantinou, E. and Kapitsaki, G. M. (2016). Identifying
developers’ expertise in social coding platforms. In 42th
Euromicro Conf. on Software Engineering and Advanced
Applications (SEAA), pages 63–67.

Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. (2012). So­
cial coding in github: Transparency and collaboration in
an open software repository. In 12th Proc. of the Conf.
onComputer Supported CooperativeWork (CSCW), pages
1277–1286.

Damasiotis, V., Fitsilis, P., Considine, P., and O’Kane, J.
(2017). Analysis of software project complexity factors.
In Proc. of the 2017 International Conf. on Management
Engineering, Software Engineering and Service Sciences,
pages 54–58.

Destefanis, G., Ortu, M., Counsell, S., Swift, S., Marchesi,
M., and Tonelli, R. (2016). Software development: do
good manners matter? PeerJ Computer Science, 2(2):1–
10.

Easterbrook, S., Singer, J., Storey, M.­A., and Damian, D.
(2008). Selecting empirical methods for software engi­
neering research. InGuide to advanced empirical software
engineering, pages 285–311.

Ferreira, M., Mombach, T., Valente, M. T., and Ferreira, K.
(2019). Algorithms for estimating truck factors: A com­
parative study. Software Quality Journal, 1(27):1–37.

Garcia, V. C., Lucrédio, D., Alvaro, A., Almeida, E. S. D.,
de Mattos Fortes, R. P., and de Lemos Meira, S. R. (2007).
Towards a maturity model for a reuse incremental adop­
tion. In 7th Brazilian Symposium on Software Compo­
nents, Architectures, and Reuse (SBCARS), pages 61–74.

Greene, G. J. and Fischer, B. (2016). Cvexplorer: Identifying
candidate developers by mining and exploring their open
source contributions. In 31st Int. Conf. on Automated Soft­
ware Engineering (ASE), pages 804–809.

Joblin, M., Apel, S., Hunsen, C., and Mauerer, W. (2017).
Classifying developers into core and peripheral: An em­
pirical study on count and network metrics. In 39th In­
ternational Conference on Software Engineering (ICSE),
pages 164–174.

Klock, S., van derWerf, J.M. E.M., Guelen, J. P., and Jansen,
S. (2017). Workload­based clustering of coherent feature
sets in microservice architectures. In 2017 IEEE Interna­

tional Conference on Software Architecture (ICSA), pages
11–20.

Krüger, J., Wiemann, J., Fenske, W., Saake, G., and Leich,
T. (2018). Do you remember this source code? In 40th
Proc. of the International Conf. on Software Engineering
(ICSE), pages 764–775.

Ma, D., Schuler, D., Zimmermann, T., and Sillito, J. (2009).
Expert recommendation with usage expertise. In Interna­
tional Conference on Software Maintenance (ICSM, pages
535–538.

Ma, W., Chen, L., Zhang, X., and Xu, Y. Z. . B. (2017).
How do developers fix cross­project correlated bugs? a
case study on the GitHub scientific python ecosystem. In
39th International Conference on Software Engineering
(ICSE), pages 1–12.

Marlow, J. and Dabbish, L. (2013). Activity traces and sig­
nals in software developer recruitment and hiring. In 16th
Proc. of the 2013 Conf. on Computer supported coopera­
tive work (CSCW), pages 145–156.

McCuller, P. (2012). How to recruit and hire great software
engineers: building a crack development team. Apress.

Mockus, A. and Herbsleb, J. D. (2002). Expertise browser:
a quantitative approach to identifying expertise. In 24rd
Proc. of the International Conf. on Software Engineering
(ICSE), pages 503–512.

Moraes, A., Silva, E., da Trindade, C., Barbosa, Y., and
Meira, S. (2010). Recommending experts using communi­
cation history. In 2nd International Workshop on Recom­
mendation Systems for Software Engineering, page 41–45.

Oliveira, J., Fernandes, E., Souza, M., and Figueiredo, E.
(2016). A method based on naming similarity to identify
reuse opportunities. In 7th Brazilian Symposium on Infor­
mation Systems on Brazilian Symposium on Information
Systems: Information Systems in the CloudComputing Era
­ Volume 1, pages 41:305–41:312.

Oliveira, J., Pinheiro, D., and Figueiredo, E. (2020). Web
site of the paper. https://johnatan-si.github.io/
JSERD2020/.

Oliveira, J., Viggiato, M., and Figueiredo, E. (2019). How
well do you know this library? mining experts from source
code analysis. In 18th Brazilian Symposium on Software
Quality (SBES), pages 49–58.

Ortu, M., Adams, B., Destefanis, G., Tourani, P., Marchesi,
M., and Tonelli, R. (2015). Are bullies more productive?:
empirical study of affectiveness vs. issue fixing time. In
12th Proc. of theWorkingConf. onMining Software Repos­
itories (MSR), pages 303–313.

Ortu, M., Destefanis, G., Counsell, S., Swift, S., Tonelli, R.,
and Marchesi, M. (2016). Arsonists or firefighters? affec­
tiveness in agile software development. In 18th Interna­
tional Conf. on Agile Software Development (XP), pages
144–155.

Pahl, C. (2015). Containerization and the paas cloud. IEEE
Cloud Computing, 2(3):24–31.

Pfleeger, S. L. and Kitchenham, B. A. (2001). Principles
of survey research: Part 1: Turning lemons into lemonade.
SIGSOFT Softw. Eng. Notes, 26(6):16–18.

Saxena, R. and Pedanekar, N. (2017). I knowwhat you coded
last summer: Mining candidate expertise from GitHub

https://johnatan-si.github.io/JSERD2020/
https://johnatan-si.github.io/JSERD2020/

Presenting the new SBC journal template Oliveira et al. 2020

repositories. In 17th Companion of the Conf. on Com­
puter Supported Cooperative Work and Social Computing
(CSCW), pages 299–302.

Schuler, D. and Zimmermann, T. (2008). Mining usage
expertise from version archives. In Proceedings of the
2008 International Working Conference on Mining Soft­
ware Repositories, pages 121––124.

Singer, L., Filho, F. F., Cleary, B., Treude, C., Storey, M.­
A., and Schneider, K. (2013). Mutual assessment in the
social programmer ecosystem: an empirical investigation
of developer profile aggregators. In 13th Proc. of the Conf.
on Computer supported cooperative work (CSCW), pages
103–116.

Sommerville, I. (2015). Software Engineering. Pearson.
Tong, J., Ying, L., Hongyan, T., and Zhonghai, W. (2016).
Can we use programmer’s knowledge? fixing parameter
configuration errors in hadoop through analyzing q amp;a
sites. In 5th IEEE Int. Congress on Big Data (BigData
Congress), pages 478–484.

Tsui, F., Karam, O., and Bernal, B. (2016). Essentials of soft­
ware engineering. Jones & Bartlett Learning.

Viggiato, M., Oliveira, J., Figueiredo, E., Jamshidi, P., and
Kästner, C. (2019). Understanding similarities and differ­
ences in software development practices across domains.
In 14th International Conference on Global Software En­
gineering (ICGSE), pages 74–84.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Reg­
nell, B., and Wessln, A. (2012). Experimentation in Soft­
ware Engineering. Springer Publishing Company, Incor­
porated.

Wu, W., Zhang, W., Yang, Y., and Wang, Q. (2011). Drex:
Developer recommendation with k­nearest­neighbor
search and expertise ranking. In 18th Asia­Pacific
Software Engineering Conference, pages 389–396.

Ye, C. (2017). Research on the key technology of big data
service in university library. In 13th Int. Conf. on Natu­
ral Computation, Fuzzy Systems and Knowledge Discov­
ery (ICNC­FSKD), pages 2573–2578.

	Introduction
	Study Settings
	Goal and Research Questions
	Evaluation Steps
	Dataset

	Applicability Evaluation
	Identification of Library Experts
	Overview of Dataset
	Top Library Experts Selection

	Survey with Top Libraries Experts
	Survey Design
	Overview
	Level of Activity
	Knowledge Intensity
	Knowledge Extension

	Survey with Microservices Experts
	Survey Design
	Results

	Tool Support
	Threats to Validity
	Related Work
	Conclusion

