A Recommender for Choosing Data Systems based on
Application Profiling and Benchmarking

Elton Figueiredo de Souza Soares, Renan Souza, Raphael Melo Thiago,
Marcelo de Oliveira Costa Machado, Leonardo Guerreiro Azevedo

'IBM Research
Rio de Janeiro — RJ — Brazil

{eltons,marcelo.machado}@ibm.com, {rfsouza, raphaelt, lga}@br.ibm.com

Abstract. In our data-driven society, there are hundreds of possible data sys-
tems in the market with a wide range of configuration parameters, making it
very hard for enterprises and users to choose the most suitable data systems.
There is a lack of representative empirical evidence to help users make an in-
formed decision. Using benchmark results is a widely adopted practice, but
like there are several data systems, there are various benchmarks. This ongo-
ing work presents an architecture and methods of a system that supports the
recommendation of the most suitable data system for an application. We also
illustrates how the recommendation would work in a fictitious scenario.

1. Introduction

In our data-driven society, there are hundreds of possible data systems in the market, each
with a large variety of characteristics, i.e., a large variety of configuration parameters to
be adjusted to fit applications requirements. Thus, it is challenging for enterprises and
users to find the most suitable data systems to use [Brahimi et al. 2016]. This problem is
even worse due to the lack of representative empirical evidence to help users to make an
informed decision in their choice of data systems based on their specific requirements.

The use of benchmark results is a widely adopted practice to base
a decision [Gray 1992], but there are several data systems and many bench-
marks [Huppler 2009]. Usually, enterprises and users spend days performing the data
system search, e.g., performing the following steps: (i) Choose a set of data systems;
(i1) Search for a suitable benchmark for evaluation; (iii) For each data system, define the
most suitable configuration; (iv) Run the benchmark to find the most appropriate data
system; (v) Analyze the results. These steps are very time-consuming and error-prone if
not executed in a very systematic way.

In this ongoing work, we propose an architecture and methods of a system that
recommends the most suitable data system and its configuration parameters by means of
benchmark results and application profiling. Our approach: (1) Automatically identifies
and characterizes data systems and benchmarks; (ii) Generates users’ profiles by ana-
lyzing how their applications access the current used data system; (iii) Recommends the
most suitable set of benchmarks’ and candidate data systems’ configurations based on the
application profile; (iv) Iteratively evaluates the minimum set of candidate data systems’
and benchmarks’ configurations required to identify the top-k data systems; (v) Presents
an ordered list of the top-k candidate data systems for the user. The proposal’s primary

goal is to support enterprises and users, saving significant amounts of time, resources, and
effort in finding benchmarks and data systems for their application needs.

In an extensive literature review, we did not find any work that accomplishes this
goal. Existing approaches do not automatically characterize application access patterns
and use data systems and benchmarks configurations. Furthermore, they do not recom-
mend benchmark configurations that best represent a specific user application and tuning
of a particular data system, regardless of the user application.

The remainder of this work is organized as follows. Section 2 presents our pro-
posal architecture and methods. Section 3 illustrates its use in a fictitious application.
Finally, Section 4 concludes this paper. Due to the lack of space, details about the related
work evaluation, background and sub-process are presented in the appendix!.

2. AI-Enhanced Advisor

The system architecture is presented in Figure 1. On the left, it is depicted the
application and the data system accessed by it. The proposed system captures the
data access patterns used by the User Applications. Data access patterns cor-
respond to the percentage of data accesses classified as belonging to a data access
pattern class, e.g., [("Deep Traversal Query", 30%), ("Large Bulk
Insertion", 50%), ("Short Analytical Query", 20%)]. These data
access patterns are used to characterize the user application profile.

The system architecture is composed by the following components:

* User Interface (UI): Supports user interaction features, e.g., create rec-
ommendation request, visualize top-k candidate systems and evidence.

* Application profiler: Generates specific application profiles by analyz-
ing how applications access their data systems.

* Benchmark Advisor: Periodically, characterize benchmarks through crawl-
ing several data sources, e.g., digital libraries of scientific papers, remote git repos-
itories, and websites in general.

* Data System Advisor: Recommends benchmarks’ configurations and can-
didate data systems’ configurations based on the application profile.

The data used by the system is stored in the following databases:

* Application profiles: Stores data access patterns and applications de-
ployment configurations.

* Benchmarks’ characterizations: Stores a set of queries, inserts, up-
dates, and deletes statements used in benchmarks along with their parametriza-
tions, metadata of benchmark metrics, formulas, and any other additional infor-
mation required for running and parameterizing the benchmarks.

* Data Systems’ characterizations: Stores data systems, their config-
urations, and each configuration’s fitness to each data access pattern class.

* Policies: Stores a list of rules and policies that the company uses regarding the
selection of any data system, e.g., “All third-party systems must be open source
and have online support”.

"https://ibm.box.com/v/sbbd-2021-data-system-advisor

e Advisor results: Stores the results of benchmark executions and final
scores generated by the advisor for ranking the top-k data systems recommended
for the given application profile.

User AI-Enhanced Advisor

Application

Data | User Interface
access
patterns
O capturer | | Application Benchmark
Profiler Advisor

Data System Advisor

Application
Data System

Data Layer !

DB1 DB2

Figure 1. Architecture Overview

The method supported by the system is presented in Figure 2. It starts when a Data
system recommendation request is received. Then, the Application Profiler gen-
erates the profile of the application to characterize its data access patterns.

After receiving the application profile from Application Profiler, the
Data System Advisor queries the Advisor Results database using the data
access patterns from the application profile as input. Based on executions of benchmark
configurations, if it finds results generated that simulate similar data access patterns, then
it returns the top-k data system configurations, i.e., instead of going through all interme-
diate steps, it presents the results to the user, and the process ends.

Otherwise, the Benchmark Advisor queries the Benchmarks’
Characterizations database looking for parts of benchmarks’ application
profiles that contain some data access patterns of the target application profile. Both
kinds of profiles have the same structure, i.e., they are composed of a list of data access
pattern percentages. The result is a set of benchmarks that support the evaluation of data
systems considering the application needs. If no match is found, the method ends.

Otherwise, the Data System Advisor gets the data system configurations
that match the application profile from the Data Systems’ characterization
database sorted by fitness values. Then, the Data System Advisor queries the
Policies database to filter data systems that are not under the company policies. Be-
sides, specific policies may also be explicitly defined for a given application, which should
be registered in the Policies database. Examples of policies are: all applications must
be developed using open source technologies; all application licenses must allow com-
mercial use.

Afterwards, the Data System Advisor searches for benchmark config-
urations’ results that can be applied to get the top-k data systems configurations for
the recommendation. If the resulting information is enough, the Data System
Advisor generates the top-k data systems configurations and presents to the

Generate

End process
Data system
e ion —3! application |-——————-;
request received
Search for existing
results that match [€
the application |q-——————————— Send top-k
profile

data system to
> the user

Get data system F
|I(er data systems
configurations that V! Search results by
match the application . puhc = i

igurati
phagessged? ‘*
|
i
o |
Sort benchmark configurations |
and data system configurations }
based on their fitness to the |

application profile
———————— Charac!erlze data Perlodlcallv
sys ems

i
|
i
i
|

Get benchmarks Chaacen
configurations that match - Periodically Execute the best fiting benchmark
the application profile | —_____ EEiELS configuration over the best fitting |- ——————-!

data system configuration

profile

Application
profiler

Generate data
system
configurations

Data System Advisor

Al-enhanced advisor for the most suitable data system using benchmarks

Benchmark
Advisor

Figure 2. Method supported by the system

user. The top-k data system configurations are generated based on the bench-
mark results. Each benchmark configuration execution with each data system
configuration generates one Score. The fitness of this benchmark configuration
weights the score of each benchmark configuration to a data access pattern as
WeightedScore = Score x BenchmarkConfigurationFitness. This
weighted score is then multiplied by the proportion of data accesses that present
a specific data access pattern class weighted by the expected cost of each access
of this class, which is a function of the hardware consumption and average time
of each access, which is DataAccessPatternScore = WeightedScore
* (DataAccessPatternProportion x f (ResourceConsumption,
AverageTime)). Therefore, the final score obtained by a data system configuration
for a given application profile (i.e., DataSystemConfigurationScore, is the sum of the
DataAccessPatternScores of each data access pattern class contained in the
application profile. The top-k data system configurations are identified by sorting the
configurations by DataSystemConfigurationScore in descending order and
filtering the first k configurations retrieved.

If there is not enough information to generate the top-k data systems, the Data
System Advisor sorts the benchmark configurations and data systems configurations
based on their fitness to the application profile. It executes the best appropriate benchmark
configurations over the best fitting data system configurations until it gets the information
needed to generate the top-k data systems configurations or has processed all the bench-
marks. In the last case, less than top-k data system configurations are returned, or no data
system configuration is found. The Data System Advisor generates a set of data
systems that meet the application profile using the benchmark results and the filtered data
system configurations,

The method has sub-processes to collect the required data periodically, giv-
ing support so that the system can work on up-to-date data (Characterize data
systems and Characterize benchmarks), and sub-processes to Generate
application profile and to Get data system configurations that
match the application profile which are not here due to lack of space.

3. Exemplary Scenario

This section illustrates the use of the proposal in a fictitious scenario. Consider a Law
Interpretation Advisor application implemented initially using Oracle 11g. It uses Natural
Language Processing techniques to extract knowledge from legal documents and advises
users to interpret specific legal topics. It supports the update of the knowledge extracted
via advice feedback. The application administrator has to decide if the current data system
is the best suitable option for this application, and uses our proposal for this assessment.

1.

2.

e

10.

11.

12.

The administrator requests a data system recommendation through the User
Interface for the Law Interpretation Advisor application.

The Application Profiler starts the monitoring of the data accesses of
the Law Interpretation Advisor to the Oracle database, by intercepting the API
calls through the network or capturing the database logs from disk, and uses
Al techniques to extract patterns from the data accesses (e.g., query cluster-
ing [Morsey et al. 2011], decision trees [Elnaffar et al. 2009], etc.).

Generated application profile is stored in Application Profiles database.
The Benchmark Advisor gets the application profile and queries the
Advisor Results database looking for results that assessed systems with the
same application profile as the current profile of Law Interpretation Advisor.

. As no result is found, the Benchmark Advisor queries the Benchmark

Configurations, and it finds benchmarks to be used in the analysis, e.g.,
LUBM100 [Guo et al. 2005] and DBPSB [Morsey et al. 2011]).

The Data System Advisor gets the data system configurations that are ex-
pected to provide the best performance of each data system for the given ap-
plication profile from the Data Systems’ characterization database,
e.g., DB2 version 11 with Partitioned Indexes [Zilio et al. 2004], DB2 ver-
sion 11 with Clustered Indexes [Zilio et al. 2004], Oracle 11g with b-tree in-
dexes [Kuhn et al. 2012], and Oracle 11g with bitmap indexes [Kuhn et al. 2012]).
Then, the Data System Advisor gets the policies from Policies
database, e.g., the policy ‘Only data systems with 24h support may be used in
the company’, and filters data systems. In that case, no data system is filtered.
The Data System Advisor identifies that there is not enough information to
get the top-k data system configurations. It sorts the data systems and benchmark
configurations and sends them to the Benchmark Advisor.

The Benchmark Advisor receives the configurations and performs all steps
required for the execution of each benchmark in each Data System configuration,
such as data system deployment (e.g., spawning containers and automated jobs in
a Kubernetes cluster), data set loading, query execution, and performance metric
collection. It stores the generated results in Benchmark Results.

The Data System Advisor checks that it has enough information and
gets the top-k most suitable data system configurations, e.g., DB2 version
11 with Partitioned Indexes [Zilio et al. 2004] and Oracle 11g with b-tree in-
dexes [Kuhn et al. 2012]. This final ranking is performed using techniques like
a weighted average of the scores obtained on each of the benchmarks.

The Data System Advisor stores the top-k data system configurations in
the Advisor Results database, and it sends them to the user.

The user access the User Interface to see the report of the final recommen-
dation and detailed explanation of the whole process executed by the advisors.

4. Conclusion

The deployment of high-performance systems is a requirement in our society. However,
technology evolves, systems are maintained according to new requirements, and the per-
formance usually degrades. A critical aspect of improving performance in modern soft-
ware systems is to use an efficient data system for the application, but choosing one among
several options is not trivial. Often users rely their choices based on benchmark results.
Nevertheless, just like there are many data systems, there are several benchmarks. There-
fore, choosing data systems (with their several configurations) and the proper benchmarks
to evaluate them is a challenge which we addressed in this ongoing work.

Existing works do not automatically characterize application access patterns and
data systems’ and benchmarks’ configurations. They cannot recommend benchmarks’
configurations that best represent a specific user application and focus on automated tun-
ing of a particular data system, regardless of the user application. In contrast, we focus
on optimizing the comparison of multiple data systems. We proposed an architecture
and methods that address these issues and exemplified its use in a representative sce-
nario. With our proposal, enterprises and users would save effort to find the most suitable
benchmark and the best data system — consequently, saving time and resource. As future
work, we are working on the implementation towards its evaluation in a real application.
In an initial implementation, we developed a benchmark executor based on a configura-
tion file. It enables customization for a given application and automatically executes the
benchmark on the available hardware and summarizes the results through charts.

References
Brahimi, L., Bellatreche, L., and Ouhammou, Y. (2016). A recommender system for dbms

selection based on a test data repository. In East European Conference on Advances in
Databases and Information Systems, pages 166—180. Springer.

Elnaffar, S., Horman, R. W., Lightstone, S. S., Martin, P., Schiefer, B. K., and
Van Boeschoten, R. D. (2009). Method for identifying a workload type for a given
workload of database requests. US Patent 7,499,908.

Gray, J. (1992). Benchmark handbook: for database and transaction processing systems.
Morgan Kaufmann Publishers Inc.

Guo, Y., Pan, Z., and Heflin, J. (2005). Lubm: A benchmark for owl knowledge base
systems. Journal of Web Semantics, 3(2-3):158—182.

Huppler, K. (2009). The art of building a good benchmark. In Technology Conference on
Performance Evaluation and Benchmarking, pages 18-30. Springer.

Kuhn, D., Alapati, S., and Padfield, B. (2012). Expert Indexing in Oracle Database 11g:
Maximum Performance for your Database. Springer.

Morsey, M., Lehmann, J., Auer, S., and Ngomo, A.-C. N. (2011). DBpedia SPARQL
Benchmark—Performance Assessment with Real Queries on Real Data. In Interna-
tional semantic web conference, pages 454—469. Springer.

Zilio, D. C., Rao, J., Lightstone, S., Lohman, G., Storm, A., Garcia-Arellano, C., and
Fadden, S. (2004). DB2 Design Advisor: Integrated Automatic Physical Database
Design. In Proceedings of the Thirtieth international conference on Very large data
bases-Volume 30, pages 1087-1097.

