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Abstract. Combining database tuning actions has neither a precise formulation
nor a formal approach to solving it. It is a complex and relevant problem in
database research, both for the DBA manual solutions and automatic ones using
specialized software. This work proposes an automated method for generating
and selecting combined tuning solutions for relational databases. It addresses
how to mix solutions while still preserving both technological constraints and
available computational resources. The results show that our technique can
produce more efficient combined solutions than independent local solutions.

1. Introduction

Database tuning is a task that involves tuning parameters and maintaining structures to
improve database performance. In general, the database administrators (DBAs) identify
some abnormal behavior in the database and interfere with some actions. As a given action
can interfere with the workload, this work starts from the hypothesis that combining fine-
tuning activities through a global analysis of the workload may generate a more significant
benefit than individual actions selected locally.

The research problem identified in this work is that combining fine-tuning ac-
tions in relational databases does not yet have a systematic method independent of the
techniques involved. The question of how to combine tuning strategies remains to be
investigated. The literature has no comprehensive approach for generating combined ac-
tions during a single fine-tuning task. The general objective of this paper is to propose
a method of independent, systematic, and automatic combination of techniques for fine-
tuning actions in relational databases. The test scenarios demonstrate that the variety of
strategies brings efficiency and effectiveness to the tuning process.

The remainder of this paper is organized as follows. Next, Section 2 presents
the fundamental concepts and discusses related literature; in Section 3, we detail our
proposed method. In Section 4, we demonstrate some evaluations performed and discuss
a beneficial form of combination. We make final considerations in Section 5.

2. Background and Related Work

Database tuning is the process of adjusting the physical database schema, rewriting
queries, and refining DBMS parameters to improve performance [Shasha and Bonnet
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2002]. Concerning the physical database schema, DBAs may select and create access
structures (e.g., indexes), determine the partitioning of persistent database objects, force
table denormalization, among other actions. A DBA may count on several tools to help
achieve his goals (e.g. [Bruno 2012, Shasha and Bonnet 2002]).

Our focus is on relational databases and the following access structures, possibly
combined into a single tuning task: indexes, partial indexes, and materialized views. A
complete index (IND) is the traditional index present in any DBMSs. Partial indexes
(PIN) allow defining a subset of the tuples through a conditional expression [Stonebraker
1989]. Indexes improve performances by reducing both the number of logical reads and
the processing cost. We add the term complete to distinguish regular indexes from partial
ones. A complete index can be primary or secondary. Materialized View (MV) is a view
that has its result stored for later use. This strategy may bring a significant gain, as the
query does not need to recalculate its result during execution. However the benefits are
affected by MVs maintenance costs. Changes in base tables incur in mandatory updates
in the related MVs. Therefore we must carefully choose which MV bring the greatest
benefit and the lowest possible costs, for a given workload [Chirkova and Yang 2012].

Branch-and-bound (BnB) is widely used in combinatorial optimization problems
and is a method that may help us in the selection and combination of database tuning ac-
tions. This method is based on the idea of developing an intelligent enumeration of actions
to the optimal solution of a problem. BnB can generate solutions for complex problems
by reducing the search space, especially when it is unfeasible to test all solutions [Lawler
and Wood 1966]. The BnB algorithm has four main components: (i) a branching rule that
defines the way a state (or a node) originates its next-level nodes; (ii) a selection rule that
indicates the order (e.g., depth, width) in which active states will be expanded. (iii) an
elimination rule that is the criterion (e.g. lower-bound) adopted to discard active states.
And finally, (iv) an end condition when all expansion attempts have been constructed.

To achieve both the independence of tuning strategies and deal with the impact of
their combinations, the software agents abstraction is promising. A software agent is a
computer system capable of autonomous actions [Kwon et al. 2011]. The choice to use
this approach is due to the agents’ characteristics of autonomy and intelligence. The agent
is able to follow its goals and adapt to changes in the environment automatically. The
degree of autonomy is defined by the software engineer during agent behavior modeling,
and is sensitive to the domain in which this solution is applied, for example, database
tuning (e.g. [Elfayoumy and Patel 1999, Mrozek et al. 2014]).

The literature on fine-tuning relational databases is extensive, with many algo-
rithms and heuristics already proposed. However, only few are directly related to our
work, considering combined or integrated solutions. The work in [Agrawal et al. 2000]
presents a two-phase method for automatically generating, selecting, and combining fine-
tuning actions involving indexes and materialized views. In the first phase, activities of
each type are developed independently, and in the second phase, the generated actions
are filtered according to one of their selection policies (MVFIRST and INDFIRST). MV-
FIRST selects the materialized views that maximize benefits according to their cost model
and fit into the available storage space. Then the best indexes are chosen according to the
remaining disk space. INDFIRST differs from MVFIRST in the order of selection of
techniques, selecting indexes before materialized views.
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Figure 1. Steps for Combining and Selecting Automatically Fine Tuning Actions.

Kimura et al. [Kimura et al. 2010] also explore the combination of indexes and
materialized views in the CORADD framework, which correlates attributes to recommend
materialized views and indexes. The proposed tool evaluates the workload and finds a set
of materialized views and indexes to be created in combination according to a storage
limit dedicated for fine-tuning actions. The authors use the same strategy during the
generation phase as [Agrawal et al. 2000]. In the selection phase, they group the workload
SQL commands through the k-means [Hartigan and Wong 1979] algorithm and, for each
cluster, select the best materialized views followed by a set of indexes.

The authors in [de Oliveira et al. 2019] propose a tool that encompasses an ex-
tensible knowledge base (KB) in which it is possible to add new types of tuning actions
and specify heuristics for their combination. The fine-tuning KB defines all the concepts
involved in the fine tuning actions, and formal axioms representing the heuristics for gen-
erating and selecting materialized views and indexes independently. The KB also specify
a theoretical way to generate fine tuning suggestions combining different action types.

We propose an automatic method for combining a broad spectrum of fine-tuning
actions for relational databases, while still respecting the limits of available computational
resources. This differs from the above-mentioned works as they propose specific and fixed
combinations for two types of fine-tuning techniques and do not present an algorithm for
generating the combined actions. In addition, in contrast to our proposal, they do not
provide a systematic method for exploring the fine-tuning actions, since their combination
is only considered in the selection phase.

3. Methods and Strategies

We propose a comprehensive combination method that follows the classic automatic cy-
cle [Bruno 2012] of collecting workload information, generating fine-tuning actions, eval-
uating them, and executing them in the database. The new strategies of generation and
selection of combined actions are the main innovations concerning the state-of-the-art.
Our proposed method has four steps and is illustrated in Figure 1:

1. Workload capture: The workload consists of the data stored in the database and
a set of SQL commands. The method’s execution flow starts with capturing the
workload, which selects those representative elements.

2. Generation of combined solutions: this step uses the £ elements selected in the
previous step and suggest m combined solutions. Note that the number m of
combined solutions may differ from the number of k£ SQL statements.
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Figure 2. Possible scenarios of tuning expert committees.

3. Selection of combined solutions: here we filter the generated m solutions accord-
ing to computational constraints. As a result, we list n combined solutions that
may reduce the execution cost for the considered workload.

4. Execution of combined solutions: this last step is executing the n combined so-
lutions filtered previously. As this execution can interfere with the performance
and database availability in general, DBAs usually perform them at times of low
demand, such as night shifts or maintenance slots.

3.1. Automatic Generation of Fine-Tuning Combined Solutions

There are different fine-tuning techniques in the literature and, for each of them, multiple
generation methods for each type of action. It is possible to rewrite a query to generate
materialized views using different methods (e.g. [Agrawal et al. 2000, Talebian and Ka-
reem 2010, Vijay Kumar et al. 2010, Vijay Kumar and Ghoshal 2009, Vijay Kumar and
Kumar 2013, Vijay Kumar and Kumar 2012, Baralis et al. 1997]), and there are several
ways to propose (complete) indexes [Schnaitter et al. 2006,Bellatreche et al. 2013,Chaud-
huri and Weikum 2006, Chen et al. 2010, Tran et al. 2015].

A tuning expert is an abstraction of a unique algorithm for generating combined
solutions from a specific technique. For example, an algorithm capable of rewriting a
SQL query or generating one or more materialized views. There may be two or more
specialists of the same technique (e.g., MVs) as long as they use different algorithms.

An Experts Committee is a group of specialists who agree to generate solutions
during a database system fine-tuning task. The inspiration came from the natural behavior
of a possible group of human experts. A DBA typically specializes in a subset of tuning
solutions. When in a group, they need to collaborate and negotiate so that they consider
alternatives offered by other experts through an ubiquitous analysis of the problem. So,
we propose the following premises for the formation of this committee:

1. The committee must have two or more experts so that the combination process is
possible.

2. Theoretically, there is no maximum number of specialists, but there is a practical
limit regarding the computational costs to perform the task.

3. There is no fixed expert pool: we may add new elements without needing to mod-
ify the combination method.

4. There is no execution order among experts.

5. There is only one instance of the same expert.
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Figure 2 illustrates possible scenarios for the combination of expert committees
that respect the proposed assumptions. Scenario 1: Two experts (minimum number) come
together in a “virtual meeting room” to plan global fine-tuning solutions. One is special-
ized in materialized views and the other in partial indices. Scenario 2: there are three
specialists, one from each specialty (IND, PIN, MV), at least one from each tuning type;
Finally, Scenario 3 illustrates a case where there are multiple specialists and more than
one specialist of the same type of action (e.g. complete index) where each element repre-
sents a different generation algorithm (Experts 3 and 4).

It is essential to emphasize the complexity of generating a fine-tuning action (both
local and global). It is also worth mentioning that finding the optimal solution for some
particular techniques is, in practice, unfeasible. Selecting an appropriate set of MVs that
minimize the total response time for a given workload is an NP-Hard problem [Agrawal
et al. 2000], as well as the index selection problem [Chaudhuri et al. 2004].

Our approach needs to combine multiple actions that are already complex. The
expert committee is an abstraction that breaks the problem into parts, solving the problem
in a divide-and-conquer based approach. We propose here not only a theoretical method
for the combination of individual tuning actions but, also, a strategy that can be imple-
mented and is viable in practice. The actual implementation of these complex algorithms
in a single integrated block of software would be very difficult, if not unfeasible.

The proposed strategy tries to combine different types of actions through the repre-
sentation of experts as autonomous parts of an intelligent software system. In our case, we
have instantiated them as software agents. However, the strategy of dividing the problem
into independent parts suffers from the classic Control Problem studied in the Artificial
Intelligence (AI) domain [Hayes-Roth 1985]. To solve a problem in a particular domain,
a system with autonomous units performs a series of actions to reach the solution. Each
activity is triggered by previously generated data or solutions and applies some source
of domain knowledge to develop or modify the current solution. Several of these actions
may be possible at each point in the solution process.

Therefore the control problem actually is: among the potential actions, which one
should a system with autonomous units (agents) perform at each point in the problem-
solving process? [Hayes-Roth 1985].

The problem of control is fundamental to all cognitive processes and intelligent
systems. When solving it, a system decides, implicitly or explicitly, what problems it
will try to solve, what knowledge it will bring, and which problem-solving methods and
strategies will be applied. It also decides how it will evaluate alternative problem solu-
tions, know when specific problems will be solved, and under what circumstances it will
stop running for selected issues or sub-problems.

3.2. Combined-solutions Generation Algorithm in Action

Combinations can be relatively complex to generate. We present here the Combined-
solutions Generation (CSG) algorithm (Algorithm 1), which is further detailed in
[Oliveira 2019].

The CSG algorithm prevents solutions that do not go towards the optimal solution
from expanding and, consequently, a more significant reduction in the search space.
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The GSC has the following input data:

* sql: an SQL command captured from the workload for which the DBA wants to
decrease the execution cost;

» experts: a list of independent agents to generate combined solutions capable of
decreasing the executing cost of the SQL command;

* cost_model: to evaluate the combined solutions, generating predictions such as
execution cost and benefits. Each RDBMS may have a specific cost model for
different tuning action types.

The output of GSC is:

¢ selected_solutions: the set of combined solutions that minimize the cost of exe-
cuting the given SQL command.

Algorithm 1: Combined-solutions Generation (CSG)
input : sql, experts, cost_model.
output: best_solution_found

1 begin

2 | Q< {sql};

3 best_solution_found <+ (;

4 | best-C <« {sql};

5 best_cost < oo;

6 while P € () do

7 current_cost < execution cost of sql using P calculated by

cost_model;

8 if current_cost < best_cost then

9 best_cost < current_cost;

10 S < all combinations generated by the experts from P;
11 if S is a valid combination then

12 for C' € Sdo

13 current_cost <— execution cost of sql using C' calculated

by the cost_model,

14 if current_cost < best_cost then

15 best_cost < current_cost;

16 best_C + C,

17 end

18 end

19 end

20 if best_C' ¢ best_solution_found then

21 | best_solution_found < best_solution_found U {best_C'};
22 end

23 if best_C' ¢ () then

24 | Q<+ QU {best_C};

25 end

26 end
27 end
28 return best_solution_found
29 end
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Figure 3. CSG Algorithm in action

Figure 3 illustrates a possible execution of the CSG algorithm, with a simple but
realistic example, describing the algorithm step by step. The iterations are detailed at
each stage with actual values from an execution extracted during the experiments using
the PostgreSQL DBMS. The algorithm receives the following variables as its input:

1. SQL_1: a query-type SQL command that summarizes the quantity of items sold
(sum(quantity) as sum_qty) and the value (sum(price) as sum_price) from the table
lineitem that was dispatched on a date equal to or greater than '01/01/2017’ (ship-
date > ’2017-01-01"), shipping mode (shipmode = "MAIL’), grouped and ordered
by item status (GROUP BY status ORDER BY status);

2. ESP_IND_19, ESP PIN_19, ESP_MYV _19: three experts, one for indices, another
in partial indices, and another for materialized views.

3. POSTGRESQL_19: a model for predicting the costs of access structures with
respect to creation and persistency, and the corresponding benefit to the workload.

First iteration: The SQL command generates the state STATE O which has an
execution cost of 203,466 in PostgreSQL [The PostgreSQL Global Development Group
2019] cost units and the computational resources considered by the cost model (in this
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case, secondary memory space). Note that STATE 0 represents the command execution
without any fine-tuning action. This state can also be a final solution if no other step
lowers its execution cost.

Second iteration: The algorithm applies the BnB expansion rule. Each of the
experts listed as input generates combined solutions from the active state STATE 0. This
results in the creation of STATE 1 by the expert ESP_-MV_19 who proposes the action
MV_1 ; STATE 2 by the expert ESP_IND_19 with the action IND_I ; and STATE 3 by the
expert ESP_PIN_19 who suggests two actions: PIN_I and PIN 2 .

The second iteration shows the first combination step, where each expert creates
a sub-tree with their solution as the tree’s root to be expanded in the following iterations.
In this example, we do not select the states STATE 2, and STATE 3 as active states since
the pruning rule of the CSG algorithm only determines the best solution at each iteration;
in this case STATE 1 . It is worth mentioning that if we applied the relaxed pruning rule
of the CSGR algorithm, both STATE 2 and STATE 3 would be expanded, generating a
more significant number of states but, consequently, testing a greater number of possible
combinations.

Third iteration: The only active state STATE [ is expanded to the states STATE
4, STATE 5 and STATE 6 . The state STATE 4 has no fine-tuning action, as the expert
ESP_MV_19 proposed the solution of STATE I in the previous iteration. ESP_IND_19
proposes STATE 5 with the creation of an index IND_2 on the materialized view MV_I ,
and ESP_PIN_19 proposes STATE 6 with the creation of partial indices PIN_3 and PIN 4
on MV_I .

In this iteration, STATE 5 is selected as the active state because it has the lowest
cost. Note that STATE 6 shows a solution with two partial indices PIN_3 and PIN_4
for MV_I where the lowest cost of the solution ( PIN_3) has the same predicted cost as
state STATE 5 (IND_2), but STATE 5 was executed first by the breadth-first selection rule.
Therefore, STATE 5 remains the active state of the iteration.

The fact that costs and benefits are predictions motivated the study of the relaxed
version of the pruning rule and the CSGR algorithm. A full index can be more generic
than a partial index and benefit from a more significant number of queries. However, if
the evaluated command has a high frequency in the workload, we would have missed a
suitable solution such as STATE 6 and all its later variations. In some cases where the
difference between the solutions is tiny, the pruning rule of the CSG algorithm may be
restrictive and not expand states that would possibly bring more significant benefits to the
evaluated query.

Fourth iteration: The expert ESP_MV_19 tries to expand to STATE 7 but is unable
to propose any action, as he has already contributed to this combined solution in STATE
1. The same is true for the expert ESP_IND_19 who contributed to the solution in STATE
5. ESP_PIN_19, the only one that has not yet contributed to this thread, then suggests the
partial index PIN 4.

In the third iteration the expert ESP_PIN_19 suggested the PIN_3 and PIN_4 for the
MYV _1, but in the iteration 4 the shipdate column already has an index proposal (IND_2).
So PIN_3 would be an invalid solution for the current state of the combination, so only
PIN 4 is suggested.
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Stop State: After expansion by all experts in iteration 4, no state is selected as an
active state since the solution proposed in STATE 6 did not decrease the cost of executing
the analyzed SQL command. Therefore, the execution is terminated by the stop condition
in which all possible expansions have been tested, and the active state queue is empty.

4. Evaluation

We carried out experiments to evaluate the effectiveness and efficiency of the proposed
global fine-tuning method in different test scenarios and different DBMSs. Due to lack of
space, we present the results only on a single DBMS (PostgreSQL).

4.1. Experiments Specification

Setup. The server consisted of a 3.60GHz Intel Core 17-7700 processor, 32GB RAM,
1TB Hard Disk (HDD) with Windows Server 2016 64-bit. To avoid competition for
resources between the DBMS and the fine-tuning tool, an independent client machine was
used to run the tool. Although the client hardware did not influence the results since the
query processing and relevant statistics are from the server, for reproducibility purposes it
had an Intel 17-7820 2.9GHz processor, 12GB of RAM, 512GB HDD, and Windows 10
64bit.

Metric. Performance was compared using the query execution cost unit of each
DBMS optimizer. Cost unit is an arbitrary value for each DBMS, typically dependent of:
i) the cost of reading the disk pages needed to execute the query, and ii) the CPU cost of
processing data in main memory.

Benchmark. We chose TPC Benchmark™ H (TPC-H) !, which illustrates a de-
cision support system that examines a large volume of data, executes highly complex
queries, and provides answers to critical business questions.

Given the complexity of the queries, we considered 10GB a sufficient data vol-
ume to demonstrate the effectiveness and efficiency of the method, while allowing for
the execution of a large number of tests. Thus, we generated a 10GB database, which
grew to 22GB after inserting data and creating primary and foreign keys. Since different
instantiations from the same query model may have different execution costs due to dif-
ferent constraint values in the attributes of the where clause, the workload consisted of 30
instantiations of each of the 22 models provided by TPC-H, totaling 660 queries.

It is worth noticing in our experiment specification that the workload from the
TPC benchmark is highly unbalanced among the TPC-H query models. The 60 queries
generated from Q17 (37%) and Q20 (62%) models are the most costly and correspond to
99% of the total workload.

Scenarios. We performed tests using the following scenarios:

1. ORIGINAL.: Original costs of all queries (no fine-tuning actions). Database with
the primary indexes, primary and foreign keys suggested by the benchmark.

2. IND: only the complete index specialist is enabled.

3. PIN: only the partial index specialist is enabled.

4. MV: only the materialized view specialist is enabled.

Thttp://www.tpc.org/
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IND+PIN: only the complete and partial indexes specialists are enabled.

6. IND+PIN+MYV: only the complete and partial indexes and materialized view spe-
cialists are enabled.

7. ( MV+IND ): only the materialized view and complete indexes specialists are en-
abled. Only combined solutions that have materialized views indexed by complete
indexes are considered, indexes are not created on structures other than MVs.

8. ( MV+PIN ): only the materialized view and partial indexes specialists are en-
abled. Only combined solutions that have materialized views indexed by partial
indexes are considered, indexes are not created on structures other than MVs.

9. (MV+IND+PIN ): only materialized view, complete indexes, and partial indexes
specialists are enabled. Only combined solutions that have materialized views
indexed by complete and/or partial indexes are considered, indexes are not created
on structures other than MVs.

10. IND + PIN + ( MVs+IND+PIN ): All specialists are considered, and all valid
combined solutions are considered during the generation and selection processes.

Methodology. To evaluate each scenario, the following five steps were performed
(except the ORIGINAL, which executes only the (v) step): (i) the specialist(s) selected for
the fine-tuning task is/are activated; (ii) The 660 queries are executed in random order;
(iii) The specialists observe the workload, generate and select the combined solutions;
(iv) The selected combined solutions are executed on the database; (v) The 660 queries
are executed in random order and the costs of each execution are collected.

4.2. Results and Discussions

This subsection presents the results using PostgreSQL in all the scenarios. We present an
overview comparing the different scenarios, then discuss a solution with combined tuning
strategies.

Figure 4 shows that all combinations of specialists provided benefits to the work-
load. In scenarios with one enabled specialist (IND, PIN, MV) the best performance was
achieved by the complete index specialist (IND), with total execution cost equivalent to
1% of the ORIGINAL scenario (i.e. a benefit of 99%). The second best was the partial
index specialist (PIN) with 37% of the ORIGINAL cost, followed by MV with 73%.

The right part of Figure 4 zooms in the top-3 best scenarios shown in its left
part. As the possibilities of combinations increases, the results improve (lower cost). The
complete index specialist is the most efficient, and combining its solutions with the ones
from the other two specialists benefits the workload even more. It was evidenced that the
best performance was obtained in the IND+PIN+(MV+IND+PIN) scenario - the one that
accepts all types of combinations.

An interesting combination of tuning strategies generated from our proposed
method benefited the instance 10 of query 4 (Q4), and is detailed in Figures 5 and 6.

According to TPC-H, Q4 aims to determine the efficiency of the order system
simulated by the benchmark, filtering out orders that were not delivered late (I_commitdate
< l_receiptdate). The execution plan of this query without any tuning action can be seen
in Figure 8.

Note that the most costly operation is a full scan on lineitem, the largest table in
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Figure 4. a) Execution cost for each scenario relative to the original cost, and, b)
Comparison of the cost of execution between the best tested scenarios

/% Combined Solution for TPC.H Q4_instance_10 =/

/% TPC_H Q4 _instance_10 =/ /% ACTION 1 =/
SELECT o_orderpriority , count(x) AS CREATE materialized VIEW MV_TAP_Q4 AS
order_count SELECT * FROM lineitem WHERE l_commitdate <
FROM orders l_receiptdate;
WHERE o_orderdate >= date ’1998-07-25"
AND o_orderdate < date ’1998-07-25" + /% ACTION 2 =/
interval ’3_month’ CREATE INDEX ID_TAP_S_N914717080 ON
AND EXISTS mv_tap_q4 (l_orderkey );
(SELECT =
FROM lineitem /% ACTION 3 =/
WHERE |_orderkey = o_orderkey CREATE INDEX PID_TAP_N285721920 ON orders
AND 1_commitdate < l_receiptdate ) (o_orderdate)
GROUP BY o_orderpriority WHERE orders.o_orderdate >= ’1998-07-25"
ORDER BY o_orderpriority ; AND orders.o_orderdate < ’1998-10-25";
Figure 5. Example of Query Q4. Figure 6. Combined Solution for

TPC_H Q4._instance_10

the database (67% of its total size), followed by another full scan on the orders table (the
2nd largest table with 18%).

The combined candidate solution generated from our method for Q4 _instance_10
(Figure 5) has three actions. ACTION is a materialized view (MV_TAP_Q4) for the Q4
subquery that filters the items delivered on time from the lineitem table. Note that this
materialized view may benefit any Q4 instance. ACTION 2 suggests the creation of an
index for the materialized view proposed in ACTION 1 on the [_orderkey column. This
column is used as a filter by the outer query, and therefore, an opportunity to obtain tuples
of the MV without the need for a full scan through a complete index. Finally, ACTION 3
suggests the creation of a specific partial index for Q4 _instance_10 where a partial index
indexes the column o_orderdate used by the outer query to filter the table orders.

The execution plan of Q4 instance_10 after the execution of the previous com-
bined solution can be seen in Figure 7. The query optimizer replaced the two full scans
of the original plan with scans using the indexes proposed by the combined solution.

It is important to highlight that the proposed method suggested tuning actions
for both the outer query and the subquery of Q4. In general, existing approaches in the
literature have difficulties in dealing with subqueries.

Furthermore, the strategy of traversing the search space by brute force allows dif-
ferent specialists to test a large number of permutations between their actions in a sys-
tematic way. If, on the one hand, the cost of testing this number of combinations can be
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AGGREGATE

orders.o_orderpriority

10.92

SORT
orders.o_orderpriority

orders.o_orderpriority

AGGREGATE

0

125.87

NESTED LOOP SEQ SC_AI\_‘ - SORT o
Semi public.lineitem (lineitem) orders.o_orderpriority
1,964,158 3,605.09
63,808.82
RESULT
BITMAP HEAP SCAN INDEX SCAN !
public.orders (orders) public.mv_tap_g4 (mv_tap_q4) °
id_tap_s_n9147170801
139,847.39 SEQ SCAN
12.48 public.orders (orders)
BITMAP INDEX SCAN
pid_tap_n285721920 500673
906.83 . .

Figure 8. Execution Plan of
of Q4._instance_10 - Scenario
IND+PIN+(MV+IND+PIN)

Scenario.

expensive and needs to be controlled, on the other hand, it allows complex solutions that
perhaps a human DBA would have difficulties in planning and testing.

5. Conclusions

In this research work we propose a technique-independent fine-tuning action combination
method capable of generating combined actions among different techniques traversing the
search space and applying constraints due to the complexity of testing all alternatives; and
select through a global strategy the set of solutions combinations that minimize the cost
of running the workload and respect the limits of available computing resources.

As future work we plan to insert updates statements in the workload and conse-
quently adapt the cost model. New specialists may be added too with new database tuning
strategies, such as: cluster indexes, query rewritten, horizontal partitioning among others.
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