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Abstract. The paper presents the development of dynamic domain decomposition applied to hopper discharge 
simulation by the discrete element method (DEM). Parallel neighbour search algorithm, non-blocking interprocessor 
communication and dynamic load balancing are implemented in the DEM code. Parallel speed-up analysis is per-
formed solving the complex hopper discharge problems containing 100000 and 300000 particles. The influence of the 
granular flow character on the load balance is investigated. 

1. Introduction 

The discrete element method became widely reco-
gnized after the pioneering work published by Cundall 
and Strack [3]. The main advantage of the DEM is a 
possibility to model highly complex particle systems 
using the basic data on individual particles without 
making oversimplifying assumptions. The method al-
lows simulation of motion and interaction between the 
particles, taking into account the microscopic geomet-
ry and various constitutive models. Over the past de-
cade, the DEM was utilised in a variety of industrial 
applications [2]. 

The DEM has been extensively applied to examine 
different phenomena inside the granular materials. The 
granular flow from hoppers and silos has a wide range 
of applications in industry [29]. The conducted re-
search is mainly focused on three aspects: wall stress/ 
pressure, discharge rate and internal properties. The 
study of the bulk material pressure on the walls of a 
hopper is very important for hopper design [7]. The 
prediction of the discharge rate is of importance for 
the effective operation and control of a transport sys-
tem, and is difficult due to inhomogeneous solid dis-
tribution, irregular velocity profile and diverse particle 
size [15]. It is very important to understand the micro-
scopic structure and its relations to the mechanisms 

governing hopper flow [20]. DEM simulation takes 
into account the discrete nature of granular materials, 
and therefore is very effective for this purpose. The 
combined approach of DEM and averaging method 
offers a convenient way to link fundamental under-
standing generated from DEM-based simulations to 
engineering application often achieved by continuum 
modelling [28].  

The main disadvantage of the DEM technique, in 
comparison with the well-known continuum methods, 
is impressive computational resources necessary to 
solve large-scale industrial problems. The complex 
character of hopper flow could require large number 
of particles and short time steps resulting in a long 
computing time. 

Naturally, for the solution of industrial-scale prob-
lems, parallelization becomes an obvious option for 
significantly increasing computational capabilities. 
Early attempts to parallelize particle computations 
were based on two main ideas: force decomposition 
and domain decomposition. In the first class of me-
thods, a pre-determined set of force computations is 
assigned to each processor. Such methods have shown 
good performance for shared memory computers [19, 
23], but the global character of the employed 
algorithms produces interprocessor communication 
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overhead on distributed memory machines. Recent 
attempts to perform straightforward parallelization of 
DEM codes by using OpenMP did not result in very 
high parallel efficiency and scalability [6]. In the 
second class of methods, the domain decomposition 
[21] is employed. The basic idea of this technique is 
the partitioning of the computational domain into 
subdomains, each being assigned to a processor. The 
subdomains exchange data with each other through 
their boundaries [4]. Efficient and scalable shared and 
distributed memory parallelization is achieved in the 
area of molecular dynamics [10, 11], because the 
simple mechanics of interparticle contact is employed. 
Parallel visualization of particle systems on multi-core 
computer clusters is investigated in [13]. 

The design of parallel DEM algorithms presents a 
new challenge to computational scientists. Consider-
able efforts have been expended by scientists to design 
reconfigurable co-processors for DEM simulations 
[24] and even to optimize DEM codes for GPUs [22]. 
Two basic types, static or dynamic domain decom-
position strategies, are extensively used in solving the 
time-dependent problems. Static domain decomposi-
tion works by assuming the fixed interdomain boun-
daries [12, 17]. The influence of material polydispersi-
ty to the performance of static domain decomposition 
is presented in [14]. More flexible, but more comp-
licated dynamic decomposition algorithms [9] allow 
us to move boundaries during the simulation keeping 
load balancing of individual processors.  

The parallel DEM algorithms employing the do-
main decomposition differ from analogous parallel 
processing in the continuum approach [4]. During 
hopper discharge moving particles dynamically 
change the workload configuration [16], making paral-
lelization of DEM software much more difficult and 
challenging. The cubic decomposition methods and 
hierarchical trees employ moving boundaries to keep 
optimal shaped subdomains [5, 27]. Dual-level do-
main decomposition reduces the memory size per pro-
cessor of the calculation [11, 26]. As the degree of 
natural algorithmic concurrency inherent in explicit 
time integration procedures is high, dynamic domain 
decomposition can yield high speed-up on different 
hardware configurations [25]. 

In spite of a considerable progress in developing 
parallel DEM software, its application to the solution 
of large-scale problems is rather limited. Only re-
cently, some successful attempts have emerged in 
tackling problems of a similar nature [2, 25]. More-
over, the presented speed-up analyses are rarely per-
formed solving complex applications. In the present 
research, the developed dynamic domain decomposi-
tion is applied to simulate hopper discharge problem. 
A particular manifest of this paper is twofold: to 
measure a parallel speed-up of the developed soft-
ware, and to investigate the influence of the granular 
flow character to the workload balance. 

The paper is organized as follows. In Section 2, 
governing relations and the methodology of the 

discrete element method are described. Section 3 dis-
cusses the developed algorithm of dynamic domain 
decomposition. In Section 4, parallel performance 
analysis and numerical results are presented, while the 
concluding remarks are given in Section 5. 

2. Governing relations and DEM methodology 

The dynamic behaviour of the non-cohesive fric-
tional visco-elastic particle system governed by the 
Newton’s second law is considered. Three translations 
and three independent rotations expressed in terms of 
the forces and torques at the centre of the i-th particle 
are as follows: 
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where mi, and Ii are mass and inertia moments, while 
vectors xi and �i initiate the position of the particle 
centre and the orientation of particle i, respectively. 
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Fi,cont, and gravity force Fi, grav as well as the corres-
ponding torques: 
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where dcij is particle geometry-dependent vector, poin-
ting from the particle center to contact center. 

The employed interparticle contact model consi-
ders a combination of elasticity, viscous damping and 
friction force effects. Actually, the contact between 
two material particles is modelled by a spring and 
dashpot in both the normal and tangential directions 
and an additional slider in tangential direction. Thus, 
the interparticle force vector Fij  describing the contact 
between the particles i and j may be expressed in 
terms of normal and tangential components Fn,ij and 
Ft,ij, respectively. The normal component Fn,ij present-
ing a repulsion force comprises elastic and viscous in-
gredients. The tangential component Ft,ij reflects static 
or dynamic frictional behaviour. The static force de-
scribes friction prior to gross sliding and comprises 
elastic and viscous ingredients, while the dynamic 
force describes friction after gross sliding and is 
expressed by the Coulomb’s law. Interparticle friction 
is defined by internal friction coefficient 
.

For evaluating the contact forces (3)-(4), all con-
tacts between the particles and their neighbours must 
be detected. A cell-based method [8] is used for con-
tact detection to reduce the number of all particle pair 
combinations. A three-dimensional domain of the gra-
nular media is divided into cubic cells of the size 
slightly larger than the diameter of the largest particle. 
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Then contact search is performed only between par-
ticles in neighbouring cells. 

The dynamical state of all particles at the time t,
resulting from the action of the particle forces (3)-(4), 
is obtained by numerical integration of the equations 
of motion (1)-(2). The solution of these equations is 
obtained by the explicit 5th - order Gear’s predictor-
corrector scheme with a constant time increment t� .
The details of these procedures can be found in [1]. 

3. Parallel algorithm and load balancing 

The presented research is focused to the develop-
ment of DEMMMAT_PAR code [17, 18], while pa-
rallel algorithms are extended to support dynamic load 
balancing. Parallelization of software is based on the 
dynamic domain decomposition, considered to be one 
of the most efficient coarse grain strategies for scien-
tific and engineering computations. 

Figure 1. Parallel DEM algorithm

The parallel algorithm (Figure 1) is designed as 
follows. Initially, the pre-processor generates particles. 
The master processor divides the three-dimensional 
domain into the approximately equal subdomains 
containing a roughly equal number of particles. Pa-
rallel planes are employed to achieve this purpose. 
Then, the generated particles are assigned to relevant 
processors, while the particle data are distributed by 
using MPI calls. Thus, the initial domain decompo-
sition including interprocessor communication is fi-
nished.  

The main CPU time-consuming computational 
procedures of the DEM software are time integration 
and computation of contact forces, including contact 
detection. These intensive tasks are performed by the 
workers including the zero MPI process, which also 
serves as the master. The implemented domain decom-
position perfectly parallelizes time integration perfor-
med in the time loop without any interprocessor 
communication. Each processor computes Gear’s 
predictor and Gear’s corrector independently by using 
locally stored data. Fast contact detection based on a 
parallel version of the cell algorithm presents more 
challenge because it requires interprocessor communi-
cation. Some neighbouring cells of the processed cell 
may belong to another processor. The processors need 
to exchange the information about the particles, which 
are near the division boundaries in the nearby 
subdomains. 

The communication between workers is designed 
as follows. The initial portion of communications is 
performed after completing the Gear’s predictor step, 
when the processors exchange particles as they move 
from one subdomain to another. This interprocessor 
communication is optional, requiring sending-receiv-
ing a small amount of data. However, it needs exten-
sive manipulation on the data structures. It is worth 
noting that the conventional codes based on the con-
tinuum approach do not perform the described com-
munication. The main portion of communications is 
performed to exchange particle data from the cells 
near the division boundaries. The employed commu-
nication model is created for grid networks. The 
received particle co-ordinates are placed as contiguous 
data directly into the arrays containing local particles. 
No time is spent for rearranging the data, except for 
creating the buffered messages for interprocessor 
communication. The inherent synchronisation of this 
message passing algorithm ensures good performance 
of parallel computation on the distributed memory PC 
clusters. The communications are performed by the 
non-blocking MPI routines MPI_ISEND and MPI_ 
IRECV, which significantly improve parallel efficien-
cy of the code. 

However, during hopper discharge simulation par-
ticles move through the whole computational domain, 
dramatically change the initial workload configuration 
and cause significant load imbalance. Thus, dynamic 
load balancing algorithm becomes necessary in case of 
complex hopper flows. A universal algorithm 
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performing the dynamic load balancing presents some 
challenges due to a complex code structure, program-
ming efforts and computational costs. A fast and 
simple iterative algorithm based on moving planes 
(Figure 2) is implemented to achieve satisfactory load 
balancing. During the analysis, the particles move 
from one subdomain to another. Significantly different 
numbers of particles in the subdomains indicate the 
load imbalance, but the precise load can be evaluated 
measuring time of computations performed by each 
processor. The load coefficients representing the time 
consumed per particle computations are calculated for 
each subdomain. Thus, the global load can be 
evaluated multiplying numbers of particles in subdo-
mains by relevant load coefficients. The user controls 
the allowable load imbalance by specifying predefined 
percentage. New decomposition is performed, when 
the load change in any subdomain reaches a predefi-
ned value. The positions of planes are iteratively ad-
justed in such a way that the number of particles 
multiplied by load coefficients in each subdomain 
would be as close as possible to the average value. 
However, during the dynamic decomposition, particles 
and their data should be exchanged between the pro-
cessors, which insignificantly increases the overall 
communication time. 

Figure 2. Dynamic domain decomposition

4. Numerical results and discussions 

The hopper discharge computations and parallel 
speed-up measurements were performed on Vilnius 
Gediminas Technical University cluster VILKAS 
(Rocks Cluster, CentOS release 5.4, x86_64 architec-
ture) based on multi-core architecture. The cluster 
consists of 23 nodes including Intel® Core2Quad 
Q6600 2.40GHz CPU (2x4MB L2 cache and bus fre-
quency equal 1067 MHz), 4x1GB DDR2 800 RAM, 
320GB HDD (SATA II Extensions and 16 MB cache). 
Nodes are connected to 1Gbps Ethernet LAN by D-
Link DGS 1224T Gigabit Smart Switch (24-Ports 
10/100/1000Mbps Base-T Module). 

4.1. Hopper discharge simulation 

The problems associated with handling flow of 
granular materials in hoppers are of great significance 
in pharmaceutical, food, cement and chemical indust-
ries. The challenges relevant to particle segregation, 
the effects of granular material vibration, attrition, for-
mation of blockage or erratic flow zones, dust ex-
plosions and wall collapses are encountered during the 
operation period of hoppers. The discrete approach 
enables simulation of the dynamical behaviour of 
granular material by direct introspection of physical 
effects of individual particles on the resulting beha-
viour of flowing granular material. 

Figure 3. Geometry of the hopper discharge problem 

The hopper discharge actually means the flow of 
the particles and their falling from the hopper due to 
the opening of the orifice. The configuration of hopper 
is presented in Figure 3. The rigid container walls are 
considered to be fixed frictional boundaries. The di-
mensions of the orifice are 40 x 40 mm. 

Granular material is modelled as the assemblies of 
non-cohesive spherical particles N = 100000 and 
N = 300000. The particle radii Ri varying over the 
range from 1.95 to 2.35 mm are generated with uni-
form distribution. The total volume V of the material 
is equal to V = 5.28�10-4 m3 for N = 1�105 particles and 
V = 1.584�10-3 m3 for N = 3�105 particles. Elasticity 
modulus of the particle is equal to E = 1�106 Pa, the 
restitution coefficient is equal to 0.5. Interparticle fric-
tion is characterized by the friction coefficient � = 0.4. 
Material parameters for particle-wall interactions are 
assumed to be the same as those used for describing 
the interparticle relations. 

The initial state of the particulate material was 
generated numerically by simulating the process of 
filling. The state of hopper at 0.5 s after the opening of 
orifice is showed in Figure 3. The particles were 
initially coloured depending on the layer. The picture 
allows us to follow the entire particles’ flow structure 
and their interlayer migration as well as detecting a 
zone of intensive mixing.  
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4.2. Parallel performance analysis 

The parallel performance of computations was 
evaluated by measuring the speed-up Sp

p
p t

tS 1� , (5) 

where t1 is the program execution time for a single 
processor; tp is the wall clock time for a given job to 
execute on p processors. The benchmark tests are 
repeated up to ten times and the averaged values are 
presented in figures. The parallel performance tests 
carried out on the PC cluster VILKAS are presented in 
Figure 4 and Figure 5. The speed-up (5) gained rela-
tive to a sequential run as a function of the number of 
processors is shown for the systems consisting of 
100000 and 300000 particles.  

Figure 4. Speed-up measured performing static domain 
decomposition and dynamic domain decomposition 

Figure 5. Parallel speed-up measured simulating the large 
system consisting of 300000 particles 

Figure 4 shows quantitative comparison of speed-
ups measured performing static domain decomposi-
tion and dynamic domain decomposition of the hopper 
containing N = 100000 particles. It is well known fact 
that Intel® Core2Quad processors lack sufficient 
parallel performance, when four memory intensive 
processes are executed per node. Thus, speed-ups (5) 
attained executing four processors per node are 

compared with those executing two processors per 
node in order to illustrate this phenomenon. The 
curves “DDD-2” and “DDD-4” represent speed-ups of 
dynamic domain decomposition obtained by running 
two processes per node and four processes per node, 
respectively. The curves “SDD-2” and “SDD-4” repre-
sent speed-ups of static domain decomposition measu-
red by executing two processes per node and four 
processes per node, respectively. The special curve 
“Ideal” illustrates the ideal speed-up. The hopper solu-
tion domain can easily be divided to four subdomains 
neglecting the dynamic character of particle flow. 
Therefore, very close values of speed-up are measured 
for four processes. The satisfactory static subdivision 
of the hopper domain to eight or more subdomains is 
more challenging or even impossible. Thus, the dyna-
mic domain decomposition significantly outperforms 
the static decomposition. When the number of proces-
ses is small and two processes run per node (the curve 
“DDD-2”), the measured speed-up is close to linear. 
The reduction of the speed-up owing to communica-
tion overhead is obtained for 16 processes. The paral-
lel speed-up is largely determined by the ratio of local 
computations over interprocessor communications. As 
the number of processors increases, for a fixed prob-
lem size, the communication cost eventually become 
dominant over the local computation cost. 

Figure 5 shows parallel speed-up measured simu-
lating larger system consisting of 300000 particles. It 
is difficult to simulate this system by using one pro-
cess, because of long computing time. A slight reduc-
tion of the speed-up is obtained by using 48 processes, 
because of the limited decomposition topology leading 
to communication overhead. The direct comparison of 
the measured speed-up with the results of other 
authors seems to be complicated, because of different 
hardware platforms and software implementations. 
Despite of that, the parallel speed-up reported in the 
present paper can compete with that reported in the 
overviewed literature. The presented results show that 
the implemented dynamic domain decomposition is 
well designed for simulation of hopper discharge on 
the PC clusters. 

Figure 6. Load balance evaluated measuring                
simulation time of one time step 
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Figure 7. Time variation of the number  of particles  
per processor 

A highly efficient parallel implementation requires 
a well balanced workload among the processors. 
Figure 6 shows the dynamic load balance achieved by 
using four processors. The total workload increases 
slightly while particles rapidly change their positions. 
It can be explained by the fact that, initially, arrays of 
the particle data are ordered according to neighbour-
hood of the particles. This procedure was not repeated 
during computations, therefore, large changes of par-
ticles’ positions lead to the cache miss. Figure 7 plots 
the time variation of the number of particles per pro-
cessor. The workload is well balanced while proces-
sors work on very different numbers of particles. 
Comparison of these figures shows that the workload 
cannot directly be defined by the number of particles. 

The discussed phenomena can be explained by the 
fact that the amount of computations strongly depends 
on the number of contacts between particles. Figure 8 
plots time variation of particles’ contacts, while Figure 
9 illustrates the hopper discharge at different time 
instances. At the beginning of computations, it is dif-
ficult to balance the workload, because particles fall 
from the hopper and reach the bottom (Figure 9a). 
Thus, the number and the character of the contacts 
changes very quickly (Figure 8). At t=0.7s all falling 
particles belong to the upper subdomains (Figure 9b), 
which leads to the small number of contacts and the 
large number of particles. Figure 9c illustrates the 
moment when all particles are in the lower box. It is 
clear that at t=1.2s smaller number of particles and 
larger number of contacts are in the lower 
subdomains. Finally, it can be concluded that the 
number of particles is inversely proportional to the 
number of contacts in the processor, which leads to the 
balanced workload. 

Figure 8. Time variation of particles’ contacts 

a) b) 

c)
Figure 9. Hopper discharge simulated by 4 processors:    

(a) t=0.2s, (b) t=0.7s, (a) t=1.2s 

5. Conclusions  

In this paper, the development of parallel DEM 
software based on dynamic domain decomposition is 
described. The developed dynamic load balancing is 
applied to simulate the complex hopper discharge 
problem on the PC clusters. The quantitative compa-
rison of the speed-ups measured performing static 
domain decomposition and dynamic domain decom-
position is presented. Parallel speed-up analysis re-
veales that the developed dynamic decomposition is 
able to ensure proper load balancing and to simulate 
the challenging hopper discharge problem on the com-
puter clusters based on multi-core architecture. Perfor-
med investigation shows that workload is dependent 
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on the granular flow character. Moreover, the load ba-
lance is significantly influenced by the number of 
contacting particles. 
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