
376

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2012, Vol.41, No.4

Automatic Extraction of Features and Generation of Feature Models
from Java Programs

Paulius Paškevi�ius, Robertas Damaševi�ius, Eimutis Kar�iauskas,
Romas Marcinkevi�ius

Software Engineering Department, Kaunas University of Technology, Lithuania
E-mail: paulius.paskevicius@ktu.lt, robertas.damasevicius@ktu.lt, eimutis.karciauskas@ktu.lt,

romas.marcinkevicius@ktu.lt

 http://dx.doi.org/10.5755/j01.itc.41.4.1108

Abstract. Feature modelling is a key technique for identifying common and variable features in software (software
component families). The result of feature modelling is a feature model: a concise specification of product features and
their relationships. Feature models have been proven to be useful for software variability modelling and management.
However, there is a wide gap between feature models and program source code. Here we focus on reverse engineering
of source code to feature models. We present a framework for the automated derivation of feature models from the
existing software artefacts (components, libraries, etc.), which includes a formal description of a feature model, a
program-feature relation meta-model, and a method for feature model generation based on feature dependency
extraction and clustering. Feature models are generated in Feature Description Language (FDL) and as Prolog rules.

Keywords: program analysis, reverse engineering, feature modelling, model generation.

1. Introduction
Programming is the process of turning features,

concepts, aspects, patterns, models and designs into
source code. The process is performed either 1)
manually, by a programmer writing source code, 2)
semi-automatically, e.g., by a code generator genera-
ting code templates from a high-level model and then
the programmer filling in the missing details, or 3)
automatically, e.g., by a compiler compiling source
code into executables.

The process of discovering higher-level concepts
(features, patterns, models, etc.) in source code is
called de-programming [1]. Extracting program
dependency graphs [2], causal dependencies [3], facts
[4], detecting code clones [5], finding design patterns
[6] and architectural models [7], architecture recovery
[8], reengineering [9], reconstruction [10], ontology
learning [11], vertical program transformations [12]
are examples of such activity. More broadly, such
activity can be understood as a part of reverse
engineering, i.e., “the process of analyzing a subject
system to create representations of the system at a
higher level of abstraction.” [13].

In this paper we focus on reverse engineering of
software to feature models. The activity also has been
defined as ‘feature model mining’ [14] and ‘product

line reengineering’ [15]. A feature model is a
representation of concepts in a domain in terms of
features, their variabilities and dependencies [16].
Feature models can be represented visually using
Feature Diagrams [17] as well as formally [18] or
textually [37]. Feature modelling is a key technique
for identifying common and variable features in a
software family and formalizing such analysis in the
form of a feature model.

Currently, feature models are constructed by a
domain analyst manually using the top-down approach
from user requirements for a future system, or from
feature descriptions of existing software systems.
However, another approach (‘bottom-up’) can be
envisioned, when features are identified and feature
models are constructed from the existing software
artefacts. Identifying the parts of the source code that
correspond to a specific functionality is a prerequisite
to program comprehension and is one of the most
common activities undertaken by developers. This
process is called the concept (or feature) location [19].
Features are special concepts that are associated with
the user-visible functionality of the system. The
shared goal of these techniques is to identify computa-
tional units (e.g., methods, functions, classes, etc.) that
specifically implement a concept of interest from the
problem or solution domain of the software. Concept

Automatic Extraction of Features and Generation of Feature Models from Java Programs

377

location is an important activity in software evolution
and software maintenance.

The problem of feature extraction is known under
several names in computer science research: feature
mining [14], fact extraction [4], model extraction [20],
concept analysis [21], feature location [22, 23], con-
cept location [24], dependency finding [3], concept
assignment [25], semantic clustering and topic mining
[26], pattern discovery [27, 28], etc.

Biggerstaff et al. [25] define a concept assignment
problem as the problem of “discovering human-
oriented concepts and assigning them to their
realizations”. The process is difficult to be automated,
because the concept (feature) and program source
code are not at the same level of abstraction. To
perform concept assignment, an expert knowledge of
the specific domain and a reasoning mechanism are
needed. Usually, some form of human input is needed
to enrich source code with additional information in
order to help tools to extract and arrange higher-level
concepts. For example, Basten and Klint [4] perform
fact extraction from Java programs by attaching fact
extraction annotations to a single syntax rule and
extracting local facts from parse tree fragments.

The feature-feature and feature-code relationships
can be modelled using various mathematical struc-
tures. For example, Sangal et al. [2] use a dependency
structure matrix. Snelting and Tip [21] use Formal
Concept Analysis (FCA) to analyze legacy code
aiming to reconstruct the overall system structure by
determining which variables (columns) were accessed
by which modules (rows). Pfaltz [3] describes a
methodology based on the formal concept analysis
that uncovers possible causal dependencies in exe-
cution trace streams. Structures used for information
retrieval include call-graph information to automa-
tically assign features to respective elements in source
code [29] and complex networks of software depen-
dence [30].

In the context of feature modelling and product
line engineering, She et al. [14] use association rule
mining to retrieve the necessary propositional formu-
las to find feature groups, mandatory features,
implies/exclude edges, and to construct a probabilistic
feature model from a set of individual configurations,
which consist of a list of features defined as system
properties that a stakeholder is interested in. Yang et
al. [31] recover domain feature models using FCA,
concept pruning/merging, structure reconstruction and
variability analysis. Poshyvanyk and Marcus [32]
combine an information retrieval based technique with
scenario-based probabilistic ranking of the execution
traces to improve the precision of feature location.
Salah and Mancoridis [33] combine both static
(dependencies) and dynamic (execution traces)
information to identify features in Java programs and
use FCA to relate features together.

Summarising, though a number of methods exist to
locate and retrieve higher-level concepts from source
code such as features, none of them are actually

automatic and allow building feature models from the
source code itself. The novelty of this paper is a
proposed method for the automatic derivation of
feature models from Java source code.

2. Framework for automatic derivation of
feature models
To define a framework, first, we must define a

model of domain, specify basic types of program
dependencies, construct program-feature meta-model,
and provide a detailed description of the methodology.

2.1. Domain model

Our domain of research is programs, which are
understood in terms of structural programming. A
program consists of components. Each component has
variables to store component’s state, computations
performed on variable values and references to other
components. Data are passed between components via
variables. In an object-oriented language such as Java,
we have a program consisting of multiple classes.
Each class can have attributes (fields), methods, and
references to other classes. Each method, in turn, can
have its own local variables, references to other
classes and methods. For simplicity reasons, we
consider both a class and a method as a component,
though Java does not allow stand-alone methods
(functions). Also we do not differentiate between
classes per se, abstract classes and interfaces.

2.2. Program dependencies

We follow a detailed taxonomy of relations in Java
programs, which is presented by [20]. All relation
types represent a dependency, with the dependency
direction being the direction of the relation; in this
way, the extracted relations form a dependency graph.
In general, dependencies can be direct, transitive, or
cyclic [34]. A direct dependency exists between two
items, dependent and dependee. A transitive depen-
dency occurs when two items are linked via one or
more intermediary nodes. A cyclic dependency is a
relation between two or more modules which either
directly or indirectly depend on each other to function.
Relations and dependencies in Java program entities
are summarized in Fig. 1.

Figure 1. Relationship of program entities

P. Paškevi�ius, R. Damaševi�ius, E. Kar�iauskas, R. Marcinkevi�ius

378

2.3. Feature model

The feature model consists of a hierarchy of
features, a set of selection functions (AND, OR,
CASE) to select a feature, and a set of constraints
expressed by propositional formulas, which must be
satisfied in a legal configuration. Formally, a feature is
a coloured vertex c

ix (c
ix �)cX of the total

coloured feature graph),(cc VXG , where cX is a set

of vertices, and cV is a set of edges. A relationship

between features is a sub-graph),(c
r

c
rr UXG , where

c
d

c
p

c
r XxX �� is a set of vertices, cc

p Xx � is a

parent vertex, cc
d XX . is a set of vertices (grouped

features) that are descendants (children) of c
px ,

ccc
r VUU .. is a set of edges that connects c

px to

each member of c
dX .

Feature diagram is a bi-coloured directed graph
),(cc VXG formed by the composition of the bi-

coloured featured tree),(cc UXT and a set of edges
B representing constraints between vertices

cc
B XX . , where cU is a set of directed edges

representing parent-child relationships of a pair of
vertices; BUV cc /� .

The process of feature selection for product
implementation can be described as colouring of a
feature diagram. There are two colours to specify the
current state of a feature in a feature graph: white –
unselected, black – selected. There are two colours of
edges defined in terms of modal logic: white and
black. Based on the feature diagram colouring rules,
there are three types of features: mandatory, optional
and alternative. A white-coloured edge means that a
descendant vertex c

dx , c
d

c
d Xx � , may be possibly

selected if its parent vertex c
px is selected, i.e. c

px �0
c
dx . A black-coloured edge means that a descendant

vertex c
dx must be necessarily be selected if its parent

vertex c
px is selected, i.e. c

px �� c
dx .

A descendant feature that is related with its parent
feature by a black-coloured edge is called a mandatory
feature. Optional feature is a member of feature group

cc
d XX . that is related with its parent feature c

px by
a white-coloured edge. Any optional features may be
selected independently from other optional features in
its feature group, i.e., c

px �0 c
ix , c

d
c
i Xx �
 .

Alternative feature is a member of feature group
cc

d XX . that is related with its parent feature c
px by

a white-coloured edge. Exactly one alternative feature

must be selected from its feature group, i.e., c
px ��

c
ix , c

d
c
i Xx � and c

px �10 c
jx , ijXx c

d
c
j ��
 , .

A feature that has no parents is called the root
feature. There is only one root feature in the graph G.
A feature that is a parent of either an optional or an
alternative feature group is called a variant point. A
feature that has no descendants is a variant.

Constraint is a predicate of a prescribed type
between two variants c

ix and c
jx in G, i.e.,

� � # $falsetruexxb c
j

c
it ,,: � , cc

j
c
it XxxBb �� ,; . The

predicate evaluates to true, if the constraint exists,
otherwise the predicate evaluates to false. The requires
constraint indicates that the selection of one variant
requires that some another variant must be selected,
i.e., � �� � � �� �blackxcolorblackxcolor c

j
c
i ��� , if

� � truexxb c
j

c
ireq �, . The excludes constraint indicates

that the selection of one variant excludes the selection
of some another variant, i.e.,

� �� � � �� �whitexcolorblackxcolor c
j

c
i ��� , if

� � truexxb c
j

c
iexc �, .

Feature path pT is a sub-graph of G that contains
only black-coloured vertices, i.e. features selected by a
stakeholder. Feature path is a complete feature path, if
it contains no variant points. Complete feature path is
constructed from a feature graph G , when a
stakeholder makes all available selections of features.

Configuration c is a multi-set of all features in the
feature path pT . Configuration c is a valid
configuration, if 1) it is not empty, 2) it contains no
variant points, 3) the multiplicities of elements
belonging to the multi-set are equal to 1, i.e., it
contains only unique features, 4) all features in the
multi-set satisfy a set of constrains B in graph G .
The configuration set C is a set of all valid
configurations of feature graph G .

2.4. Program-Feature Meta-Model

Combining the concepts described in subsection
2.2 and introduced in subsection 2.3, we propose a
program-feature relation meta-model (see Fig. 2). The
concepts of this meta-model are explained as follows.

An atomic feature is a basic unit of computation in
a program such as variable or function (method). A
composite feature is a composition of atomic features.
A software component (class) is a particular
(meaningful) composition of related atomic and/or
composite features. A dependency is a relationship
between atomic or composite features. Feature A
depends on feature B if feature A references feature B.
For example, method A() uses the value of variable B
or calls a method B().

Automatic Extraction of Features and Generation of Feature Models from Java Programs

379

Feature model domain

Program domain

Program

Component Variable

Feature

Composite
Feature

(Cluster)

Atomic
feature

Feature
Tree Relation

Selection Constrain

RequiresOptional
Excludes

(not used)
Mandatory
(not used)

Alternative
(not used)

Figure 2. Program-feature relation meta-model

2.5. Methodology

Our methodology of feature model extraction from
Java programs is as follows:

1) Compile Java source code using a standard Java
compiler

2) Extract feature dependencies from Java class
files

Feature dependencies are modelled using a
dependency graph G. The dependency graph G is a
directed graph that is described formally as follows:

� �DFG ,� , where F – is a set of vertices
representing features, and D is a set of dependencies.
Feature dependencies are extracted by parsing a Java
class file. A class file is a component of a Java
executable corresponding to a single Java class. It
contains tables describing the structure of the class
and virtual machine byte code for the class methods.
Parsing Java class files is a reliable and
straightforward way to find dependencies among Java
classes [35].

3) Construct a feature distance matrix
For further manipulations, the dependency graph

G is expressed as the adjacency matrix A of size F ,
where 1�ija , if feature i depends on feature j . The
adjacency matrix allows to describe only direct
dependencies. To describe indirect dependencies, the
matrix A is converted to the distance (dissimilarity)
matrix M of size F , where ijm

is equal to the shor-

test path distance between feature i and feature j .
Both matrices A and M are asymmetric, because the
dependency graph G is directed. The matrix A is
converted to the matrix M using the Floyd’s all pairs
shortest path algorithm.

4) Cluster features based on their dependency in a
feature tree

Given a dependency graph E) (V, G � , a cluster is
defined as a sub-graph)E,V(G 22�2 , whose nodes are
tightly connected, i.e. cohesive. A cluster tree is a
directed acyclic graph � �RCT ,� , where C is a set of
clusters and R is a set of relations between clusters.
Each cluster corresponds to a subset of atomic and/or
composite features that are more related to each other
than other features. The root of the tree T is a single
cluster that contains all features from F . The nodes of
the tree correspond to the composite features. The
leaves of the cluster tree T correspond to the atomic
features.

To derive composite features, we cluster atomic
features based on their dependency information.
Selection of number of clusters is a separate problem,
because the size of the feature model directly depends
upon the number of discovered clusters. Too fine-
grained clustering leads to overly detailed
specification of features in a feature model, thus
making it incomprehensible and not reusable. To set a
number of clusters, we follow a simple rule of thumb

2/nk + , where n is the number of atomic features,
and k is the number of clusters (composite features).
For clustering, we define class methods as features;
and instantiations of other classes, calls to other
methods, and use of class variables as attributes.

In practice, any clustering algorithm, which can
produce hierarchical dendrogram as a result (e.g., fast
greedy algorithm which maximizes modularity
measure, Girvan-Newman edge betweenness
algorithm and walktrap community detection are some
of the alternatives), can be used at this stage, the ad
hoc recommendation is to use the incremental single-
scan hierarchical clustering algorithms capable of

P. Paškevi�ius, R. Damaševi�ius, E. Kar�iauskas, R. Marcinkevi�ius

380

building balanced trees such as Cobweb [36] from the
WEKA package.

5) Convert a feature tree into a feature model
Finally, the cluster tree T is converted to a feature

model MF , where all nodes from a set of clusters C
are mapped to feature nodes, relation between clusters
is described by an optional relationship, and
constraints are added using information from the
adjacency matrix A (f1 <requires> f2 if 1

21, �ffa) .

The problem is how to set feature relationships,
i.e., which features are to be marked as mandatory,
and which optional (alternative). The analyzed
program represents only one possible combination of
program’s features, whereas a feature model
represents a set of possible feature combinations. We
tackle this problem as follows. We denote root node
relations as mandatory and all other relations as
alternative. We however claim that additional
constrains between features should be discovered at a
later stage, i.e., during feature modelling.

6) Generate description of feature model in
FDL/Prolog

The results are saved using a Feature Description
Language (FDL) [37] format for further representation
and usage in the feature modelling environment FD2,
which is currently under development, and in Prolog
as a set of rules [38] for further formal analysis and
calculation of feature model metrics.

The methodology is summarized in Fig. 3.

Java .class
files

Java source
code

Dependency
graph

Extrac-
tion

Distance
matrix

Cluster
dendrogram

Feature
model

Compu-
tation

Cluster
analysis

Transl
ation

Compi-
lation

Figure 3. Summary of methodology for feature model
extraction

3. Case study
For our case study, we have selected the Java

Buffer library, which is a part of JDK 1.5 class library
(package java.nio.*). The Java Buffer library is a
benchmark source code component used by
researchers [39, 40] in the area of program analysis,
generalization and meta-programming research. The

library contains 74 classes describing different buffers.
Below, we briefly describe features of the Buffer
classes and explain how those features are reflected in
the Buffer classes (for a more detailed description, see
[41]).

The class hierarchy of the Buffer library is
organized in 3 levels. At Level 1 in the class hierarchy,
there are seven classes that contain methods for
providing access to buffer functionalities implemented
in the classes at Level 2. At Level 2, classes
implement two memory allocation schemes (direct,
non-direct) and two byte orderings (native, non-native,
Little Endian, Big Endian). Byte ordering matters for
buffers, whose elements consist of multiple bytes.
Twenty classes result from combining memory access
and byte ordering features. Seven Heap classes
implement the non-direct memory access scheme for a
buffer. Classes with suffixes ‘U’ and ‘S’ implement
direct memory access scheme with native and non-
native byte ordering, respectively. At Level 3 in the
class hierarchy, 25 classes implement different access
modes of buffers. Summarizing, the Buffer library
components have multiple features alongside many
dimensions, their features depend upon each other,
thus feature location and identification of feature
locations is not an easy task. We formulate our aim as
the identification of clusters of similar classes as
composite features, and construction of a feature
model consisting of composite and atomic features
(we consider a stand-alone class or method as an
atomic feature, though a class field may be an atomic
feature, too).

Here as an example, we demonstrate the results of
feature model extraction using 4 classes
(DirectIntBufferRS, DirectIntBufferS,
DirectIntBufferU, DirectIntBufferRU) from the Java
Buffer library. The classes describe different direct
buffers for storing integer type elements.

We use JDependencyFinder (http://depfind.source-
forge.net/) as a third-party tool to parse, analyze and
extract dependencies from Java class files. The
dependency graph is represented as a XML file. This
file is used to construct the dissimilarity matrix
automatically and saved using the Attribute-Relation
File Format (ARFF) format. ARFF is a native format
for WEKA (http://www.cs.waikato.ac.nz/ml/weka/), a
suite of machine learning software written in Java,
which we use for further analysis and clustering of
features.

Table 1. Complexity of dependency graph

Metric Value
No. of Inbound Intra-Class Method Dependencies 32
No. of Inbound Intra-Package Method Dependencies 4
No. of Outbound Intra-Class Feature Dependencies 104
No. of Outbound Intra-Package Feature Dependencies 58
No. of Outbound Intra-Package Class Dependencies 50
No. of Outbound Extra-Package Feature Dependencies 32
No. of Outbound Extra-Package Class Dependencies 37

Automatic Extraction of Features and Generation of Feature Models from Java Programs

381

The dependency graph of the analyzed classes
contains two strongly connected components;
therefore, the hierarchical structure of the graph is not
trivial and can not be reduced to a uniquely defined
perfect structure. The graph contains only one weakly
connected component; therefore, features can not be
separated easily. The complexity of the dependency
graph extracted from these 4 classes is summarized in
Table 1.

The features were clustered using the Cobweb
algorithm and the obtained feature tree was converted
into the feature model. The results of feature model
extraction using the methodology described in sub-
section 2.5 are presented formally (textually) in Fig. 4
(as Prolog rules) and graphically in Fig. 5 (as a
Feature Diagram).

 n0�:� all(n1,�n3,�n5,�n4).�
n1�:��more_of(f7,�f8).�
n2�:��more_of(f43,�f34,�f42,�f33,�f32,�f44,�f31,�f30,��
� � � f41,�f40,�f39,�f29,�f38,�f37,�f28,�f36,�f35).�
n3�:��more_of(f2,�n2).�
n4�:��more_of(f59,�f45,�f57,�f58,�f60,�f51,�f61,�f52,��
� � � f47,�f55,�f46,�f56,�f53,�f48,�f54).�
n5�:��all(n7,�n6).�
n6�:��all(n9,�f9,�f23,�n12,�f5).�
n7�:��more_of(f21,�f22).�
n8�:��more_of(f1,�f3).�
n9�:��all(n8,�f16,�f0).�
n10�:��more_of(f15,�f50,�f49).�
n11�:��more_of(f6,�f12,�f11,�f20,�f10,�f25,�f24,�f27,��
� � � f14,�f26,�f13,�f19,�f18,�f17,�f4).�
n12�:��all(n10,�n11).�

Figure 4. Prolog rules representing the extracted feature
model

Figure 5. Graphical representation (feature diagram) of the extracted feature model of a subset of Buffer classes

The relation of the features in the extracted feature

model to the class methods are summarized in Table 2.
Analysing the results presented in Table 2, we can

note that the proposed method has correctly identified
and located composite features and separated them
from other composite features representing buffer
construction aspects (class constructors, duplication
methods), predicate methods, functionality handling
methods, and made a clear distinction between buffer
classes with native (DirectIntBufferS) and non-native
(DirectIntBufferU) byte ordering as well as read only
buffer classes (DirectIntBufferRS,
DirectIntBufferRU).

Table 3. Metrics of a derived feature model

Metric Value
No. of features 73

No. of solitary features 61
No. of variant points 12
Cognitive complexity 17

Finally, in Table 3 we present some of the
complexity metrics [42] of the derived executable
feature model in Prolog (Fig. 4) computed
automatically using the SWI-Prolog engine
(http://www.swi-prolog.org/).

4. Conclusions and further work
In this paper, we have analysed the problem of

reverse engineering source code to feature models. We
presented a framework for the automated derivation of
feature models from the existing Java programs, and
proposed a method for feature model generation based
on feature dependency extraction and clustering. The
method is fully automatic and allows for generation of
feature model descriptions in Feature Description
Language (FDL) as well as Prolog rules, which can be
further used for feature model validation, computation
of product configuration and evaluation of feature
model properties. The method could be used for: 1)
partial configuration of software systems, when a

�

f7� f8�

n1�

f28�

n2�

f44�

f51�

n4�

f61�f45 f48�

n0

f2

n3�

f21 f22

n7

n5

f14 f17

n11

f20�f11 f24�f6f4 f27f1� f3�

n8� f0� f16�

n9�

f49f15� f50

n10

n12f9f5� f23

n6

P. Paškevi�ius, R. Damaševi�ius, E. Kar�iauskas, R. Marcinkevi�ius

382

Table 2. Summary of composite features in Buffer feature model

Compo
site

feature

Constituent
features

Class methods represented by atomic features Description of
composite feature

n1 f7, f8 DirectIntBufferRS.isDirect, DirectIntBufferRS.isReadOnly Info methods for direct
read-only buffer class
with non-native byte
ordering

n2 f28, f29, f30,
f31, f32, f33,
f34, f35, f36,
f37, f38, f39,
f40, f41, f42,
f43, f44

DirectIntBufferS.compact, DirectIntBufferS.get, DirectIntBufferS.put,
DirectIntBufferS.put(Buffer), DirectIntBufferS.slice, DirectIntBufferS.duplicate,
DirectIntBufferS.address, DirectIntBufferS.cleaner, DirectIntBufferS.ix,
DirectIntBufferS.get, DirectIntBufferS.get, DirectIntBufferS.order,
DirectIntBufferS.isDirect, DirectIntBufferS.isReadOnly, DirectIntBufferS.put,
DirectIntBufferS.put, DirectIntBufferS.viewedBuffer

Buffer functionality
handling methods for
non-native byte ordering

n3 f2, n2 DirectIntBufferS.DirectIntBufferS,
see n2

Buffer class for non-
native byte ordering

n4 f45, f46, f47,
f48, f51, f52,
f53, f54, f55,
f56, f57, f58,
f59, f60, f61

DirectIntBufferU.compact, DirectIntBufferU.get, DirectIntBufferU.put,
DirectIntBufferU.put, DirectIntBufferU.address, DirectIntBufferU.cleaner,
DirectIntBufferU.ix, DirectIntBufferU.get, DirectIntBufferU.get, DirectIntBufferU.order,
DirectIntBufferU.isDirect, DirectIntBufferU.isReadOnly, DirectIntBufferU.put,
DirectIntBufferU.put, DirectIntBufferU.viewedBuffer

Buffer functionality
handling methods for
native byte ordering

n5 n6, n7 see n6, n7 Collection of predicate
methods for read-only
buffer classes

n6 f5, f9, f23, n9,
n12

DirectIntBufferRS.asReadOnlyBuffer, DirectIntBufferRS.order, DirectIntBufferRU.order,
see n9, n12

Order predicates for
read-only buffer classes

n7 f21, f22 DirectIntBufferRU.isDirect, DirectIntBufferRU.isReadOnly Info methods for direct
read-only buffer class
with native byte
ordering

n8 f1, f3 DirectIntBufferRS.DirectIntBufferRS, DirectIntBufferRS.duplicate Construction and
duplication of read-only
buffers with non-native
byte ordering

n9 f0, f16, n8 DirectIntBufferRS.slice, DirectIntBufferU.DirectIntBufferU, see n8 Construction and
duplication of buffers

n10 f15, f49, f50 DirectIntBufferRU.DirectIntBufferRU, DirectIntBufferU.slice, DirectIntBufferU.duplicate Construction and
duplication of buffers
with native byte
ordering

n11 f4, f6, f10, f11,
f12, f13, f14,
f17, f18, f19,
f20, f24, f25,
f26, f27

DirectIntBufferS.asReadOnlyBuffer, DirectIntBufferRS.compact, DirectIntBufferRS.put,
DirectIntBufferRS.put, DirectIntBufferRS.put, DirectIntBufferRS.put,
DirectIntBufferRU.slice, DirectIntBufferRU.duplicate,
DirectIntBufferU.asReadOnlyBuffer, DirectIntBufferRU.asReadOnlyBuffer,
DirectIntBufferRU.compact, DirectIntBufferRU.put, DirectIntBufferRU.put,
DirectIntBufferRU.put, DirectIntBufferRU.put

Buffer functionality
handling methods for
read-only buffers

n12 see n10, n11 Read-only buffers and
buffers with native byte
ordering

leaner version of a system is derived from a richer
system; 2) finding feature patterns; 3) automatic
assembly of new system feature models from parts of
existing system feature models; 4) development of
feature model libraries.

Future work will deal with the following problems:
1) Performance. The computational complexity of

the proposed method is high (i.e., � �3nO as
determined by the Floyd’s algorithm). The perfor-
mance must be improved, e.g., using approximate
shortest path algorithms [43], to deal with large-scale
real-world programs.

2) Empirical research of alternative clustering
algorithms. Clustering is the critical part of the

process of features location, because feature model
has the same structure as clustering dendrogram.
However, different clustering algorithms may produce
different dendrograms on a graph of non-trivial
complexity. This means that more than one clustering
technique can be considered for comparative analysis
and more complex case study organized to show and
compare results of different clustering approaches
with associated interpretations (descriptions of
composite features) to internal nodes of computed
dendrograms.

3) Determination of feature model constraints.
Currently, only a subset of Feature Diagram notation
is supported, which does not include the requires
and excludes constraints. Feature models without

Automatic Extraction of Features and Generation of Feature Models from Java Programs

383

constraints usually have a very large product space,
which has to be reduced at a later modelling stage.
Identification of constraints would greatly reduce the
size of product space thus decreasing the need for
further domain analysis. However, the extraction of
constraints in a feature models will require additional
analysis of source code and software dependencies.

4) Integration. The implementation of the method
will be integrated into an existing feature modelling
environment to allow for combining feature-based
design methods with reverse engineering capabilities.

References
[1] Y. Coppel, G. Candea. Deprogramming Large

Software Systems. Proc. of the Fourth Workshop on
Hot Topics in Systems Dependability, HotDep 2008,
San Diego, CA, USA, December 7, 2008. USENIX
Association, 2008, pp. 3.

[2] N. Sangal, E. Jordan, V. Sinha, D. Jackson. Using
dependency models to manage complex software
architecture. SIGPLAN Notices 40, 10, 167-176.
(2005), http://dx.doi.org/10.1145/1103845.1094824.

[3] J. L. Pfaltz. Using Concept Lattices to Uncover
Causal Dependencies in Software. In R. Missaoui, J.
Schmid (Eds.): Formal Concept Analysis. Proceedings
of 4th International Conference, ICFCA 2006,
Dresden, Germany. LNCS 3874, pp. 233-247. Springer
(2006).

[4] H. J. Basten, P. Klint. DeFacto: Language-Parametric
Fact Extraction from Source Code. Proc. of the 1st Int.
Conf. of Software Language Engineering (SLE 2008),
Toulouse, France, September 2008. LNCS 5452, pp.
265-284. Springer-Verlag (2008)

[5] S. Ducasse, M. Rieger, S. Demeyer. A language inde-
pendent approach for detecting duplicated code. In:
Proceedings of the International Conference on
Software Maintenance (ICSM’99), 109–118 (1999),
http://dx.doi.org/10.1109/ICSM.1999.792593.

[6] R. Ferenc, A. Beszédes, L. J. Fülöp, J. Lele. Design
Pattern Mining Enhanced by Machine Learning. Proc.
of 21st IEEE Int. Conf. on Software Maintenance
(ICSM 2005), Budapest, Hungary, 295-304 (2005),
http://dx.doi.org/10.1109/ICSM.2005.40.

[7] G. Guo, J. Atlee, R. Kazman. A software architecture
reconstruction method. Proc. of the First Working IFIP
Conf. on Software Architecture, San Antonio, TX,
USA, 15-34 (1999).

[8] D. Bojic, D. Velasevic. A use-case driven method of
architecture recovery for program understanding and
reuse reengineering. Proc. of the 4th European Conf.
On Software Maintenance and Reengineering, Zurich,
Switzerland, 23-31 (2000).

[9] P. Bengtsson, J. Bosch. Scenario-based software
architecture reengineering. Proc. of 5th Int. Conf. on
Software Reuse, 2-5 Jun 1998, 308–317 (1998).

[10] C. Riva, J. V. Rodriguez. Combining static and
dynamic views for architecture reconstruction. In:
Proceedings of Sixth European Conference on
Software Maintenance and Reengineering, pp. 47-55
(2002), http://dx.doi.org/10.1109/CSMR.2002.995789.

[11] K. Bontcheva, M. Sabou. Learning Ontologies from
Software Artifacts: Exploring and Combining Multiple
Sources. Proc. of Workshop on Semantic Web Enabled

Software Engineering (SWESE), 2006. Available at:
http://gate.ac.uk/sale/iswc06/tao.pdf.

[12] V. Štuikys, R. Damaševi�ius, A. Targamadz�. A
Model-Driven View to Meta-Program Development
Process. Information Technology and Control, 39(2),
(2010), pp. 89 – 99.

[13] E. J. Chikofsky, J. H. Cross II. Reverse Engineering
and Design Recovery: A Taxonomy. IEEE Software,
7(1), 13–17(1990), http://dx.doi.org/10.1109/52.43044.

[14] S. She, R. Lotufo, T. Berger, A. Wasowski,
K. Czarnecki. Reverse Engineering Feature Models.
Proc. of 33rd Int. Conf. on Software Engineering,
Waikiki, Honolulu, Hawaii, USA, 461-470 (2008).

[15] W. Zhang, S. Jarzabek, N. Loughran, A. Rashid.
Reengineering a PC-Based System into the Mobile
Device Product Line. In: Proceedings of 6th
International Workshop on Principles of Software
Evolution (IWPSE 2003), Helsinki, Finland, 149-160,
http://dx.doi.org/10.1109/IWPSE.2003.1231222.

[16] V. Vrani	. Multi-Paradigm Design with Feature
Modeling. In: Computer Science and Information
Systems, Vol. 2, No. 1, 2005, pp. 79-102,
http://dx.doi.org/10.2298/CSIS0501079V.

[17] K. C. Kang, J. Lee, P. Donohoe. Feature-Oriented
Project Line Engineering. IEEE Software 19, 4 (2002),
58-65, http://dx.doi.org/10.1109/MS.2002.1020288.

[18] M. A. Laguna, J. M. Marques, G. Rodr
guez-Cano.
Feature Diagram Formalization Based on Directed
Hypergraphs. Computer Science and Information
Systems, Vol. 8, No. 3, 2011, pp. 611-633,
http://dx.doi.org/10.2298/CSIS100804016L.

[19] D. Poshyvanyk, Y. Gael-Guéhéneuc, A. Marcus,
G. Antoniol, V. Rajlich. Feature Location using
Probabilistic Ranking of Methods based on Execution
Scenarios and Information Retrieval. IEEE Trans. on
Software Engineering, 33(6), 420-432 (2007),
http://dx.doi.org/10.1109/TSE.2007.1016.

[20] I. T. Bowman, M. W. Godfrey, R. C. Holt. Extrac-
ting Source Models from Java Programs: Parse,
Disassemble, or Profile? In: ACM SIGPLAN Workshop
on Program Analysis for Software Tools and
Engineering, Toulouse, France (1999). Unpublished
paper available at:
http://plg.uwaterloo.ca/~migod/papers/1999/paste99.pd
f.

[21] G. Snelting, F. Tip. Reengineering Class Hierarchies
Using Concept Analysis. Proc. of ACM SIGSOFT 6th
Int. Symp. on Foundations of Software Engineering,
FSE-6, 99–110, Lake Buena Vista, FL (1998).

[22] N. Wilde, M. Buckellew, H. Page, V. Rajlich,
L. Pounds. A Comparison of Methods for Locating
Features in Legacy Software. In: Journal of Systems
and Software, Vol. 65, No. 2, 105-114 (2003),
http://dx.doi.org/10.1016/S0164-1212(02)00052-3.

[23] S. Simmons, D. Edwards, N. Wilde, J. Homan,
M. Groble. Industrial tools for the feature location
problem: an exploratory study. J. of Software
Maintenance: Research and Practice, 18(6) 457-474
(2006), http://dx.doi.org/10.1002/smr.338.

[24] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko,
A. Sergeyev. Static Techniques for Concept Location
in Object-Oriented Code. Proc. 13th IEEE Int.
Workshop on Program Comprehension, 33-42 (2005),
http://dx.doi.org/10.1109/WPC.2005.33.

[25] T. Biggerstaff, B. Mitbander, D. Webster. Program
Understanding and the Concept Assignment Problem.

P. Paškevi�ius, R. Damaševi�ius, E. Kar�iauskas, R. Marcinkevi�ius

384

Communications of the ACM, 37(5), 72-83 (1994),
http://dx.doi.org/10.1145/175290.175300.

[26] A. Kuhn, S. Ducasse, T. Gorba. Semantic clustering:
Identifying topics in source code. In: Information and
Software Technology, Vol.49, No.3, 230-243 (2007),
http://dx.doi.org/10.1016/j.infsof.2006.10.017.

[27] L. Ablonskis, L. Nemurait�. Discovery of Model
Implementation Patterns in Source Code. Information
Technology and Control, 39(1), 68 - 76 (2010).

[28] L. Ablonskis, L. Nemurait�. Discovery of Complex
Model Implementation Patterns in Source Code.
Information Technology and Control, 39(4), 291-300
(2010).

[29] W. Zhao, L. Zhang, Y. Liu, J. Sun, F. Yang.
SNIAFL: Towards a Static non-interactive Approach
to Feature Location. ACM Trans. on Software
Engineering and Methodologies, 15(2), 195-226
(2006), http://dx.doi.org/10.1145/1131421.1131424.

[30] C. Mao. Structure visualization and analysis for
software dependence network. IEEE Int. Conf. on
Granular Computing (GrC), 439-444 (2011).

[31] Y. Yang, X. Peng, W. Zhao. Domain Feature Model
Recovery from Multiple Applications Using Data
Access Semantics and Formal Concept Analysis. Proc.
of 16th Working Conf. on Reverse Engineering, WCRE
2009, Lille, France, 215-224 (2009).

[32] D. Poshyvanyk, A. Marcus. Combining Formal
Concept Analysis with Information Retrieval for
Concept Location in Source Code. Proc. of the 15th
IEEE Int. Conf. on Program Comprehension (ICPC
'07), Washington, DC, USA, 37-48 (2007),
http://dx.doi.org/10.1109/ICPC.2007.13.

[33] M. Salah, S. Mancoridis. A hierarchy of dynamic
software views: from object-interactions to feature
interactions. Proc. 20th IEEE Int. Conf. on Software
Maintenance, Chicago, IL, USA, 72-81 (2004),
http://dx.doi.org/10.1109/ICSM.2004.1357792.

[34] K. Kittilä. Analysing and Managing Software
Dependencies with a Dependency Structure Matrix
Tool. Master’s Thesis, University of Oulu (2008).
Available at: http://web.sysart.fi/dtangler/_media/kitti
la_dsmtoolthesis.pdf.

[35] L. A. Barowski, J. H. Cross II. Extraction and Use of
Class Dependency Information for Java. In: Proc. of
9th Working Conf. on Reverse Engineering (WCRE
2002), Richmond, VA, USA, 309-318 (2002),
http://dx.doi.org/10.1109/WCRE.2002.1173088.

[36] D. H. Fisher. Knowledge acquisition via incremental
conceptual clustering. Machine Learning 2: 139–172
(1987), http://dx.doi.org/10.1007/BF00114265.

[37] A. van Deursen, P. Klint. Domain-Specific Language
Design Requires Feature Descriptions. Journal of
Computing and Information Technology, 10(1), 1-17
(2002), http://dx.doi.org/10.2498/cit.2002.01.01.

[38] P. Paškevi�ius, M. Bindokas, A. Kasperavi�ius,
R. Damaševi�ius. Executable models and model
transformations: a framework for research. Proc. of
17th Int. Conf. on Information and Software
Technologies, IT 2011, 76-83 (2011).

[39] S. Jarzabek, S. Li. Unifying clones with a generative
programming technique: a case study. In: Journal of
Software Maintenance and Evolution: Research and
Practice, Vol. 18, No. 4, pp. 267-292 (2006)
http://dx.doi.org/10.1002/smr.333.

[40] D. C. Rajapakse, A. H. Basit, S. Jarzabek. An
Empirical Study on Limits of Clone Unification Using
Generics. Proc. 17th Int. Conference on Software
Engineering and Knowledge Engineering, SEKE'05,
Taipei, Taiwan, 109-114 (2005).

[41] R. Damaševi�ius. Analysis of Components for
Generalization using Multidimensional Scaling.
Fundamenta Informaticae, 91(3-4), 507-522, (2009).

[42] V. Štuikys, R. Damaševi�ius. Measuring complexity
of domain models represented by feature diagrams.
Information Technology and Control, 38(3), 179-187,
(2009).

[43] L. Roditty, U. Zwick. Dynamic approximate all-pairs
shortest paths in undirected graphs. In: Proceedings of
45th Annual IEEE Symposium on Foundations of
Computer Science, pp. 499-508 (2004),
http://dx.doi.org/10.1109/FOCS.2004.22.

Received February 2012.

