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Abstract. Feature modelling is a key technique for identifying common and variable features in software (software 
component families). The result of feature modelling is a feature model: a concise specification of product features and 
their relationships. Feature models have been proven to be useful for software variability modelling and management. 
However, there is a wide gap between feature models and program source code. Here we focus on reverse engineering 
of source code to feature models. We present a framework for the automated derivation of feature models from the 
existing software artefacts (components, libraries, etc.), which includes a formal description of a feature model, a 
program-feature relation meta-model, and a method for feature model generation based on feature dependency 
extraction and clustering. Feature models are generated in Feature Description Language (FDL) and as Prolog rules. 
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1. Introduction 
Programming is the process of turning features, 

concepts, aspects, patterns, models and designs into 
source code. The process is performed either 1) 
manually, by a programmer writing source code, 2) 
semi-automatically, e.g., by a code generator genera-
ting code templates from a high-level model and then 
the programmer filling in the missing details, or 3) 
automatically, e.g., by a compiler compiling source 
code into executables.  

The process of discovering higher-level concepts 
(features, patterns, models, etc.) in source code is 
called de-programming [1]. Extracting program 
dependency graphs [2], causal dependencies [3], facts 
[4], detecting code clones [5], finding design patterns 
[6] and architectural models [7], architecture recovery 
[8], reengineering [9], reconstruction [10], ontology 
learning [11], vertical program transformations [12] 
are examples of such activity. More broadly, such 
activity can be understood as a part of reverse 
engineering, i.e., “the process of analyzing a subject 
system to create representations of the system at a 
higher level of abstraction.” [13]. 

In this paper we focus on reverse engineering of 
software to feature models. The activity also has been 
defined as ‘feature model mining’ [14] and ‘product 

line reengineering’ [15]. A feature model is a 
representation of concepts in a domain in terms of 
features, their variabilities and dependencies [16]. 
Feature models can be represented visually using 
Feature Diagrams [17] as well as formally [18] or 
textually [37]. Feature modelling is a key technique 
for identifying common and variable features in a 
software family and formalizing such analysis in the 
form of a feature model.  

Currently, feature models are constructed by a 
domain analyst manually using the top-down approach 
from user requirements for a future system, or from 
feature descriptions of existing software systems. 
However, another approach (‘bottom-up’) can be 
envisioned, when features are identified and feature 
models are constructed from the existing software 
artefacts. Identifying the parts of the source code that 
correspond to a specific functionality is a prerequisite 
to program comprehension and is one of the most 
common activities undertaken by developers. This 
process is called the concept (or feature) location [19]. 
Features are special concepts that are associated with 
the user-visible functionality of the system. The 
shared goal of these techniques is to identify computa-
tional units (e.g., methods, functions, classes, etc.) that 
specifically implement a concept of interest from the 
problem or solution domain of the software. Concept 
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location is an important activity in software evolution 
and software maintenance.  

The problem of feature extraction is known under 
several names in computer science research: feature 
mining [14], fact extraction [4], model extraction [20], 
concept analysis [21], feature location [22, 23], con-
cept location [24], dependency finding [3], concept 
assignment [25], semantic clustering and topic mining 
[26], pattern discovery [27, 28], etc. 

Biggerstaff et al. [25] define a concept assignment 
problem as the problem of “discovering human-
oriented concepts and assigning them to their 
realizations”. The process is difficult to be automated, 
because the concept (feature) and program source 
code are not at the same level of abstraction. To 
perform concept assignment, an expert knowledge of 
the specific domain and a reasoning mechanism are 
needed. Usually, some form of human input is needed 
to enrich source code with additional information in 
order to help tools to extract and arrange higher-level 
concepts. For example, Basten and Klint [4] perform 
fact extraction from Java programs by attaching fact 
extraction annotations to a single syntax rule and 
extracting local facts from parse tree fragments.  

The feature-feature and feature-code relationships 
can be modelled using various mathematical struc-
tures. For example, Sangal et al. [2] use a dependency 
structure matrix. Snelting and Tip [21] use Formal 
Concept Analysis (FCA) to analyze legacy code 
aiming to reconstruct the overall system structure by 
determining which variables (columns) were accessed 
by which modules (rows). Pfaltz [3] describes a 
methodology based on the formal concept analysis 
that uncovers possible causal dependencies in exe-
cution trace streams. Structures used for information 
retrieval include call-graph information to automa-
tically assign features to respective elements in source 
code [29] and complex networks of software depen-
dence [30].  

In the context of feature modelling and product 
line engineering, She et al. [14] use association rule 
mining to retrieve the necessary propositional formu-
las to find feature groups, mandatory features, 
implies/exclude edges, and to construct a probabilistic 
feature model from a set of individual configurations, 
which consist of a list of features defined as system 
properties that a stakeholder is interested in. Yang et 
al. [31] recover domain feature models using FCA, 
concept pruning/merging, structure reconstruction and 
variability analysis. Poshyvanyk and Marcus [32] 
combine an information retrieval based technique with 
scenario-based probabilistic ranking of the execution 
traces to improve the precision of feature location. 
Salah and Mancoridis [33] combine both static 
(dependencies) and dynamic (execution traces) 
information to identify features in Java programs and 
use FCA to relate features together.  

Summarising, though a number of methods exist to 
locate and retrieve higher-level concepts from source 
code such as features, none of them are actually 

automatic and allow building feature models from the 
source code itself. The novelty of this paper is a 
proposed method for the automatic derivation of 
feature models from Java source code.  

2. Framework for automatic derivation of 
feature models 
To define a framework, first, we must define a 

model of domain, specify basic types of program 
dependencies, construct program-feature meta-model, 
and provide a detailed description of the methodology.  

2.1. Domain model 

Our domain of research is programs, which are 
understood in terms of structural programming. A 
program consists of components. Each component has 
variables to store component’s state, computations 
performed on variable values and references to other 
components. Data are passed between components via 
variables. In an object-oriented language such as Java, 
we have a program consisting of multiple classes. 
Each class can have attributes (fields), methods, and 
references to other classes. Each method, in turn, can 
have its own local variables, references to other 
classes and methods. For simplicity reasons, we 
consider both a class and a method as a component, 
though Java does not allow stand-alone methods 
(functions). Also we do not differentiate between 
classes per se, abstract classes and interfaces.  

2.2. Program dependencies 

We follow a detailed taxonomy of relations in Java 
programs, which is presented by [20]. All relation 
types represent a dependency, with the dependency 
direction being the direction of the relation; in this 
way, the extracted relations form a dependency graph. 
In general, dependencies can be direct, transitive, or 
cyclic [34]. A direct dependency exists between two 
items, dependent and dependee. A transitive depen-
dency occurs when two items are linked via one or 
more intermediary nodes. A cyclic dependency is a 
relation between two or more modules which either 
directly or indirectly depend on each other to function. 
Relations and dependencies in Java program entities 
are summarized in Fig. 1.  

 
Figure 1. Relationship of program entities 
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2.3. Feature model 

The feature model consists of a hierarchy of 
features, a set of selection functions (AND, OR, 
CASE) to select a feature, and a set of constraints 
expressed by propositional formulas, which must be 
satisfied in a legal configuration. Formally, a feature is 
a coloured vertex c

ix ( c
ix � )cX  of the total 

coloured feature graph ),( cc VXG , where cX is a set 

of vertices, and cV is a set of edges. A relationship 

between features is a sub-graph ),( c
r

c
rr UXG , where 

c
d

c
p

c
r XxX ��  is a set of vertices, cc

p Xx �  is a 

parent vertex, cc
d XX .  is a set of vertices (grouped 

features) that are descendants (children) of c
px , 

ccc
r VUU ..  is a set of edges that connects c

px  to 

each member of c
dX .  

Feature diagram is a bi-coloured directed graph
),( cc VXG  formed by the composition of the bi-

coloured featured tree ),( cc UXT  and a set of edges 
B  representing constraints between vertices

cc
B XX . , where cU  is a set of directed edges 

representing parent-child relationships of a pair of 
vertices; BUV cc /� .  

The process of feature selection for product 
implementation can be described as colouring of a 
feature diagram. There are two colours to specify the 
current state of a feature in a feature graph: white – 
unselected, black – selected. There are two colours of 
edges defined in terms of modal logic: white and 
black. Based on the feature diagram colouring rules, 
there are three types of features: mandatory, optional 
and alternative. A white-coloured edge means that a 
descendant vertex c

dx , c
d

c
d Xx � , may be possibly 

selected if its parent vertex c
px  is selected, i.e. c

px �0
c
dx . A black-coloured edge means that a descendant 

vertex c
dx  must be necessarily be selected if its parent 

vertex c
px  is selected, i.e. c

px �� c
dx .  

A descendant feature that is related with its parent 
feature by a black-coloured edge is called a mandatory 
feature. Optional feature is a member of feature group 

cc
d XX .  that is related with its parent feature c

px  by 
a white-coloured edge. Any optional features may be 
selected independently from other optional features in 
its feature group, i.e., c

px �0 c
ix , c

d
c
i Xx �
 . 

Alternative feature is a member of feature group 
cc

d XX .  that is related with its parent feature c
px  by 

a white-coloured edge. Exactly one alternative feature 

must be selected from its feature group, i.e., c
px ��

c
ix , c

d
c
i Xx �  and c

px �10 c
jx , ijXx c

d
c
j ��
 , . 

A feature that has no parents is called the root 
feature. There is only one root feature in the graph G. 
A feature that is a parent of either an optional or an 
alternative feature group is called a variant point. A 
feature that has no descendants is a variant. 

Constraint is a predicate of a prescribed type
between two variants c

ix  and c
jx  in G, i.e.,  

� � # $falsetruexxb c
j

c
it ,,: � , cc

j
c
it XxxBb �� ,; . The 

predicate evaluates to true, if the constraint exists, 
otherwise the predicate evaluates to false. The requires 
constraint indicates that the selection of one variant 
requires that some another variant must be selected, 
i.e., � �� � � �� �blackxcolorblackxcolor c

j
c
i ��� , if 

� � truexxb c
j

c
ireq �, . The excludes constraint indicates 

that the selection of one variant excludes the selection 
of some another variant, i.e., 

� �� � � �� �whitexcolorblackxcolor c
j

c
i ��� , if 

� � truexxb c
j

c
iexc �, . 

Feature path pT is a sub-graph of G  that contains 
only black-coloured vertices, i.e. features selected by a 
stakeholder. Feature path is a complete feature path, if 
it contains no variant points. Complete feature path is 
constructed from a feature graph G , when a 
stakeholder makes all available selections of features. 

Configuration c  is a multi-set of all features in the 
feature path pT . Configuration c  is a valid 
configuration, if 1) it is not empty, 2) it contains no 
variant points, 3) the multiplicities of elements 
belonging to the multi-set are equal to 1, i.e., it 
contains only unique features, 4) all features in the 
multi-set satisfy a set of constrains B  in graph G . 
The configuration set C is a set of all valid 
configurations of feature graph G . 

2.4. Program-Feature Meta-Model 

Combining the concepts described in subsection 
2.2 and introduced in subsection 2.3, we propose a 
program-feature relation meta-model (see Fig. 2). The 
concepts of this meta-model are explained as follows. 

An atomic feature is a basic unit of computation in 
a program such as variable or function (method). A 
composite feature is a composition of atomic features. 
A software component (class) is a particular 
(meaningful) composition of related atomic and/or 
composite features. A dependency is a relationship 
between atomic or composite features. Feature A 
depends on feature B if feature A references feature B. 
For example, method A() uses the value of variable B 
or calls a method B(). 
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Figure 2. Program-feature relation meta-model 

 

2.5. Methodology 

Our methodology of feature model extraction from 
Java programs is as follows:  

1) Compile Java source code using a standard Java 
compiler 

2) Extract feature dependencies from Java class 
files 

Feature dependencies are modelled using a 
dependency graph G. The dependency graph G  is a 
directed graph that is described formally as follows: 

� �DFG ,� , where F  – is a set of vertices 
representing features, and D  is a set of dependencies. 
Feature dependencies are extracted by parsing a Java 
class file. A class file is a component of a Java 
executable corresponding to a single Java class. It 
contains tables describing the structure of the class 
and virtual machine byte code for the class methods. 
Parsing Java class files is a reliable and 
straightforward way to find dependencies among Java 
classes [35].  

3) Construct a feature distance matrix 
For further manipulations, the dependency graph 

G  is expressed as the adjacency matrix A  of size F , 
where 1�ija , if feature i  depends on feature j . The 
adjacency matrix allows to describe only direct 
dependencies. To describe indirect dependencies, the 
matrix A  is converted to the distance (dissimilarity) 
matrix M of size F , where ijm

 
is equal to the shor-

test path distance between feature i  and feature j . 
Both matrices A  and M  are asymmetric, because the 
dependency graph G  is directed. The matrix A  is 
converted to the matrix M  using the Floyd’s all pairs 
shortest path algorithm.  

4) Cluster features based on their dependency in a 
feature tree 

Given a dependency graph E) (V, G � , a cluster is 
defined as a sub-graph )E,V(  G 22�2 , whose nodes are 
tightly connected, i.e. cohesive. A cluster tree is a 
directed acyclic graph � �RCT ,� , where C  is a set of 
clusters and R  is a set of relations between clusters. 
Each cluster corresponds to a subset of atomic and/or 
composite features that are more related to each other 
than other features. The root of the tree T  is a single 
cluster that contains all features from F . The nodes of 
the tree correspond to the composite features. The 
leaves of the cluster tree T  correspond to the atomic 
features.  

To derive composite features, we cluster atomic 
features based on their dependency information. 
Selection of number of clusters is a separate problem, 
because the size of the feature model directly depends 
upon the number of discovered clusters. Too fine-
grained clustering leads to overly detailed 
specification of features in a feature model, thus 
making it incomprehensible and not reusable. To set a 
number of clusters, we follow a simple rule of thumb 

2/nk + , where n  is the number of atomic features, 
and k  is the number of clusters (composite features). 
For clustering, we define class methods as features; 
and instantiations of other classes, calls to other 
methods, and use of class variables as attributes.  

In practice, any clustering algorithm, which can 
produce hierarchical dendrogram as a result (e.g., fast 
greedy algorithm which maximizes modularity 
measure, Girvan-Newman edge betweenness 
algorithm and walktrap community detection are some 
of the alternatives), can be used at this stage, the ad 
hoc recommendation is to use the incremental single-
scan hierarchical clustering algorithms capable of 
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building balanced trees such as Cobweb [36] from the 
WEKA package. 

5) Convert a feature tree into a feature model 
Finally, the cluster tree T  is converted to a feature 

model MF , where all nodes from a set of clusters C  
are mapped to feature nodes, relation between clusters 
is described by an optional relationship, and 
constraints are added using information from the 
adjacency matrix A  (f1 <requires> f2 if 1

21, �ffa ) . 

The problem is how to set feature relationships, 
i.e., which features are to be marked as mandatory, 
and which optional (alternative). The analyzed 
program represents only one possible combination of 
program’s features, whereas a feature model 
represents a set of possible feature combinations. We 
tackle this problem as follows. We denote root node 
relations as mandatory and all other relations as 
alternative. We however claim that additional 
constrains between features should be discovered at a 
later stage, i.e., during feature modelling. 

6) Generate description of feature model in 
FDL/Prolog 

The results are saved using a Feature Description 
Language (FDL) [37] format for further representation 
and usage in the feature modelling environment FD2, 
which is currently under development, and in Prolog 
as a set of rules [38] for further formal analysis and 
calculation of feature model metrics.    

The methodology is summarized in Fig. 3. 

Java .class
files

Java source
code

Dependency
graph

Extrac-
tion

Distance
matrix

Cluster
dendrogram

Feature
model

Compu-
tation

Cluster
analysis

Transl
ation

Compi-
lation

 

Figure 3. Summary of methodology for feature model 
extraction 

3. Case study 
For our case study, we have selected the Java 

Buffer library, which is a part of JDK 1.5 class library 
(package java.nio.*). The Java Buffer library is a 
benchmark source code component used by 
researchers [39, 40] in the area of program analysis, 
generalization and meta-programming research. The 

library contains 74 classes describing different buffers. 
Below, we briefly describe features of the Buffer 
classes and explain how those features are reflected in 
the Buffer classes (for a more detailed description, see 
[41]). 

The class hierarchy of the Buffer library is 
organized in 3 levels. At Level 1 in the class hierarchy, 
there are seven classes that contain methods for 
providing access to buffer functionalities implemented 
in the classes at Level 2. At Level 2, classes 
implement two memory allocation schemes (direct, 
non-direct) and two byte orderings (native, non-native, 
Little Endian, Big Endian). Byte ordering matters for 
buffers, whose elements consist of multiple bytes. 
Twenty classes result from combining memory access 
and byte ordering features. Seven Heap classes 
implement the non-direct memory access scheme for a 
buffer. Classes with suffixes ‘U’ and ‘S’ implement 
direct memory access scheme with native and non-
native byte ordering, respectively. At Level 3 in the 
class hierarchy, 25 classes implement different access 
modes of buffers. Summarizing, the Buffer library 
components have multiple features alongside many 
dimensions, their features depend upon each other, 
thus feature location and identification of feature 
locations is not an easy task. We formulate our aim as 
the identification of clusters of similar classes as 
composite features, and construction of a feature 
model consisting of composite and atomic features 
(we consider a stand-alone class or method as an 
atomic feature, though a class field may be an atomic 
feature, too). 

Here as an example, we demonstrate the results of 
feature model extraction using 4 classes 
(DirectIntBufferRS, DirectIntBufferS, 
DirectIntBufferU, DirectIntBufferRU) from the Java 
Buffer library. The classes describe different direct 
buffers for storing integer type elements.  

We use JDependencyFinder (http://depfind.source-
forge.net/) as a third-party tool to parse, analyze and 
extract dependencies from Java class files. The 
dependency graph is represented as a XML file. This 
file is used to construct the dissimilarity matrix 
automatically and saved using the Attribute-Relation 
File Format (ARFF) format. ARFF is a native format 
for WEKA (http://www.cs.waikato.ac.nz/ml/weka/), a 
suite of machine learning software written in Java, 
which we use for further analysis and clustering of 
features. 

Table 1. Complexity of dependency graph 

Metric Value
No. of Inbound Intra-Class Method Dependencies  32 
No. of Inbound Intra-Package Method Dependencies  4 
No. of Outbound Intra-Class Feature Dependencies  104 
No. of Outbound Intra-Package Feature Dependencies 58 
No. of Outbound Intra-Package Class Dependencies  50 
No. of Outbound Extra-Package Feature Dependencies 32 
No. of Outbound Extra-Package Class Dependencies  37 
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The dependency graph of the analyzed classes 
contains two strongly connected components; 
therefore, the hierarchical structure of the graph is not 
trivial and can not be reduced to a uniquely defined 
perfect structure. The graph contains only one weakly 
connected component; therefore, features can not be 
separated easily. The complexity of the dependency 
graph extracted from these 4 classes is summarized in 
Table 1.  

The features were clustered using the Cobweb 
algorithm and the obtained feature tree was converted 
into the feature model. The results of feature model 
extraction using the methodology described in sub-
section 2.5 are presented formally (textually) in Fig. 4 
(as Prolog rules) and graphically in Fig. 5 (as a 
Feature Diagram). 

 n0�:� all(n1,�n3,�n5,�n4).�
n1�:��more_of(f7,�f8).�
n2�:��more_of(f43,�f34,�f42,�f33,�f32,�f44,�f31,�f30,��
� � � f41,�f40,�f39,�f29,�f38,�f37,�f28,�f36,�f35).�
n3�:��more_of(f2,�n2).�
n4�:��more_of(f59,�f45,�f57,�f58,�f60,�f51,�f61,�f52,��
� � � f47,�f55,�f46,�f56,�f53,�f48,�f54).�
n5�:��all(n7,�n6).�
n6�:��all(n9,�f9,�f23,�n12,�f5).�
n7�:��more_of(f21,�f22).�
n8�:��more_of(f1,�f3).�
n9�:��all(n8,�f16,�f0).�
n10�:��more_of(f15,�f50,�f49).�
n11�:��more_of(f6,�f12,�f11,�f20,�f10,�f25,�f24,�f27,��
� � � f14,�f26,�f13,�f19,�f18,�f17,�f4).�
n12�:��all(n10,�n11).�

 

Figure 4. Prolog rules representing the extracted feature 
model 

 

 
Figure 5. Graphical representation (feature diagram) of the extracted feature model of a subset of Buffer classes 

 
The relation of the features in the extracted feature 

model to the class methods are summarized in Table 2. 
Analysing the results presented in Table 2, we can 

note that the proposed method has correctly identified 
and located composite features and separated them 
from other composite features representing buffer 
construction aspects (class constructors, duplication 
methods), predicate methods, functionality handling 
methods, and made a clear distinction between buffer 
classes with native (DirectIntBufferS) and non-native 
(DirectIntBufferU) byte ordering as well as read only 
buffer classes (DirectIntBufferRS, 
DirectIntBufferRU). 

Table 3. Metrics of a derived feature model 

Metric Value 
No. of features 73 

No. of solitary features 61 
No. of variant points 12 
Cognitive complexity 17 

Finally, in Table 3 we present some of the 
complexity metrics [42] of the derived executable 
feature model in Prolog (Fig. 4) computed 
automatically using the SWI-Prolog engine 
(http://www.swi-prolog.org/). 

4. Conclusions and further work 
In this paper, we have analysed the problem of 

reverse engineering source code to feature models. We 
presented a framework for the automated derivation of 
feature models from the existing Java programs, and 
proposed a method for feature model generation based 
on feature dependency extraction and clustering. The 
method is fully automatic and allows for generation of 
feature model descriptions in Feature Description 
Language (FDL) as well as Prolog rules, which can be 
further used for feature model validation, computation 
of product configuration and evaluation of feature 
model properties. The method could be used for: 1) 
partial configuration of software systems, when a  

�

f7� f8�

n1�
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n2�

f44�

f51�

n4�

f61�f45 f48�
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n3�
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f14 f17

n11
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n9�
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Table 2. Summary of composite features in Buffer feature model 

Compo
site 

feature 

Constituent 
features 

Class methods represented by atomic features Description of 
composite feature 

n1 f7, f8 DirectIntBufferRS.isDirect, DirectIntBufferRS.isReadOnly Info methods for direct 
read-only buffer class 
with non-native byte 
ordering 

n2 f28, f29, f30, 
f31, f32, f33, 
f34, f35, f36, 
f37, f38, f39, 
f40, f41, f42, 
f43, f44 

DirectIntBufferS.compact, DirectIntBufferS.get, DirectIntBufferS.put, 
DirectIntBufferS.put(Buffer), DirectIntBufferS.slice, DirectIntBufferS.duplicate, 
DirectIntBufferS.address, DirectIntBufferS.cleaner, DirectIntBufferS.ix, 
DirectIntBufferS.get, DirectIntBufferS.get, DirectIntBufferS.order, 
DirectIntBufferS.isDirect, DirectIntBufferS.isReadOnly, DirectIntBufferS.put, 
DirectIntBufferS.put, DirectIntBufferS.viewedBuffer 

Buffer functionality 
handling methods for 
non-native byte ordering

n3 f2, n2 DirectIntBufferS.DirectIntBufferS,  
see n2 

Buffer class for non-
native byte ordering 

n4 f45, f46, f47, 
f48, f51, f52, 
f53, f54, f55, 
f56, f57, f58, 
f59, f60, f61 

DirectIntBufferU.compact, DirectIntBufferU.get, DirectIntBufferU.put, 
DirectIntBufferU.put, DirectIntBufferU.address, DirectIntBufferU.cleaner, 
DirectIntBufferU.ix, DirectIntBufferU.get, DirectIntBufferU.get, DirectIntBufferU.order, 
DirectIntBufferU.isDirect, DirectIntBufferU.isReadOnly, DirectIntBufferU.put, 
DirectIntBufferU.put, DirectIntBufferU.viewedBuffer 

Buffer functionality 
handling methods for 
native byte ordering 

n5 n6, n7 see n6, n7 Collection of predicate 
methods for read-only 
buffer classes 

n6 f5, f9, f23, n9, 
n12 

DirectIntBufferRS.asReadOnlyBuffer, DirectIntBufferRS.order, DirectIntBufferRU.order,  
see n9, n12 

Order predicates for 
read-only buffer classes 

n7 f21, f22 DirectIntBufferRU.isDirect, DirectIntBufferRU.isReadOnly Info methods for direct 
read-only buffer class 
with native byte 
ordering 

n8 f1, f3 DirectIntBufferRS.DirectIntBufferRS, DirectIntBufferRS.duplicate Construction and 
duplication of read-only 
buffers with non-native 
byte ordering 

n9 f0, f16, n8 DirectIntBufferRS.slice, DirectIntBufferU.DirectIntBufferU, see n8 Construction and 
duplication of buffers 

n10 f15, f49, f50 DirectIntBufferRU.DirectIntBufferRU, DirectIntBufferU.slice, DirectIntBufferU.duplicate Construction and 
duplication of buffers 
with native byte 
ordering 

n11 f4, f6, f10, f11, 
f12, f13, f14, 
f17, f18, f19, 
f20, f24, f25, 
f26, f27 

DirectIntBufferS.asReadOnlyBuffer, DirectIntBufferRS.compact, DirectIntBufferRS.put, 
DirectIntBufferRS.put, DirectIntBufferRS.put, DirectIntBufferRS.put, 
DirectIntBufferRU.slice, DirectIntBufferRU.duplicate, 
DirectIntBufferU.asReadOnlyBuffer, DirectIntBufferRU.asReadOnlyBuffer, 
DirectIntBufferRU.compact, DirectIntBufferRU.put, DirectIntBufferRU.put, 
DirectIntBufferRU.put, DirectIntBufferRU.put 

Buffer functionality 
handling methods for 
read-only buffers 

n12  see n10, n11 Read-only buffers and 
buffers with native byte 
ordering 

 
leaner version of a system is derived from a richer 
system; 2) finding feature patterns; 3) automatic 
assembly of new system feature models from parts of 
existing system feature models; 4) development of 
feature model libraries. 

Future work will deal with the following problems: 
1) Performance. The computational complexity of 

the proposed method is high (i.e., � �3nO   as 
determined by the Floyd’s algorithm). The perfor-
mance must be improved, e.g., using approximate 
shortest path algorithms [43], to deal with large-scale 
real-world programs. 

2) Empirical research of alternative clustering 
algorithms. Clustering is the critical part of the 

process of features location, because feature model 
has the same structure as clustering dendrogram. 
However, different clustering algorithms may produce 
different dendrograms on a graph of non-trivial 
complexity. This means that more than one clustering 
technique can be considered for comparative analysis 
and more complex case study organized to show and 
compare results of different clustering approaches 
with associated interpretations (descriptions of 
composite features) to internal nodes of computed 
dendrograms.  

3) Determination of feature model constraints. 
Currently, only a subset of Feature Diagram notation 
is supported, which does not include the requires 
and excludes constraints. Feature models without 
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constraints usually have a very large product space, 
which has to be reduced at a later modelling stage. 
Identification of constraints would greatly reduce the 
size of product space thus decreasing the need for 
further domain analysis. However, the extraction of 
constraints in a feature models will require additional 
analysis of source code and software dependencies. 

4) Integration. The implementation of the method 
will be integrated into an existing feature modelling 
environment to allow for combining feature-based 
design methods with reverse engineering capabilities. 
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