
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2013, Vol.42, No.1

Kaunas University of Technology, Department of Information Systems
-308, LT-51368 Kaunas, Lithuania

e-mail: saulius.pavalkis@nomagic.com, lina.nemuraite@ktu.lt, rita.butkiene@ktu.lt

http://dx.doi.org/10.5755/j01.itc.42.1.2470

. The paper presents a new approach to improving vertical traceability of UML models by defining
derived properties that are calculated by a modeling tool on the fly. The proposed traceability metamodel and
framework is implemented in UML CASE tool MagicDraw. The exploratory case study of applying the approach to a
particular development process has shown that the approach allows validating completeness of the project, analyzing
impact of changes, and, by doing this, avoids typical traceability issues. In contrast to other existing solutions, this
approach does not burden users with additional complexity for defining and maintaining traceability in their projects.
The approach gives a possibility for UML CASE tool developers to adapt their tools for traceability analysis not
overloading them with traceability information, flexibly introducing required derived properties, dynamically
calculating them, and analyzing via dedicated and already existing tool-specific means.

: Traceability; Derived properties; Model-driven development; Impact analysis; Coverage analysis;
Model consistency.

Traceability is gaining an increasing interest in our
life as today’s human activities and their supporting
software become more and more complex. We have
systems of systems where software and other kinds of
systems comprise the united whole. Modern cars have
more lines of code than the spaceship that formerly
has landed man on the moon. In this complex context
it is crucial to assure the reliability and quality of
software and systems granting their integrity, avoiding
redundancy, managing development processes and
changes, and mitigating increased risks and costs of
software projects [7]. Traceability can reduce this
complexity by easing comprehension of design
decisions to stakeholders, decision makers, and
developers.

Traceability is defined as “…the ability to describe
and follow the life of a requirement, in both a forward
and backward direction; i.e., from its origins, through
its development and specification, to its subsequent
deployment and use, and through periods of ongoing
refinement and iteration in any of these phases” [18].
Though this definition refers to the traceability of
requirements, it can be used for other software
artifacts as well. There are other definitions of
traceability; the most of them have much in common
with the presented one.

In current system development processes (e.g.
RUP [23], SCRUM [45]) and CASE tools (e.g. RSA
[21], Visual Paradigm [54], Sparx Enterprise Architect
[48]) traceability is not ensured in a usable way.
Traceability information pollutes models with
additional relationships that introduce dependencies
and tight coupling among project stages; traceability
schemas are hardly customizable and maintainable, so
a care of traceability usually causes additional
overhead. Dedicated tools for traceability analysis
such as Geensoft Reqtify [16] make this process
distributed between tools and even more cumbersome.

One of the largest traceability problems is that it
costs a lot to create and maintain it up to date. Our
viewpoint is that traceability information should be
created, updated and visualized in such a way that it
would not cause more problems than advantages
received. It should not unpredictably increase the
overhead and costs of the project.

The goal of the paper is to show that traceability
can be reached using custom derived properties
dedicated for maintaining traceability. For ensuring
traceability, UML metamodel [35] and other UML-
based metamodels often lack direct relations between
some elements. This is because of principle of
minimalism in conceptual modeling stating that only
essential, non-derivable elements should be included

in models or metamodels; all derivable properties
should be derived from non-derivable ones. Derived
properties are implemented as powerful features in
database systems, where values of derived properties
are computed from SQL expressions on the base of
other properties at a load time. For UML CASE tools,
derived properties and their automatic calculation on
the fly is a new approach capable to improve
traceability of UML models.

Derived Properties Based Traceability Approach
allows to employ derived properties prepared by a
modeling tool beforehand, or define new ones using
OCL [33] expressions and other tool-specific means.
The modeling tool would analyze these properties on
model load time, calculate them from existing model
elements, and dynamically update them according to
model changes. The developers could access derived
properties of selected model elements, navigate to
their specifications or use them in analysis tools such
as dependency matrices, report templates, and
validation rules. Such capabilities are important not
only for appreciation of modeling tools by users; they
could have a crucial value for acknowledgement of
modeling languages as users do not make clear
distinction between modeling languages and their
supporting tools [42].

The paper is structured as follows. Section 2
analyzes related works concentrating on solving
traceability problems. Sections 3 shows illustrative
traceability sample. Section 4 present the method –
Derived Properties Based Traceability metamodel and
expressions for calculating traceability links. Section 5
is devoted for Traceability Framework, Section 6 – for
its realization in CASE tool. Section 7 presents an
exploratory case study of applying the approach.
Finally, section 8 presents conclusions and future
works.

Traceability is classified in different ways, on the
base of different aspects. According to [2], there are
some fundamental classifications: forward [56],
backward [5], horizontal [9, 39], and vertical
traceability [39]. Horizontal traceability analyzes
relations among various artifact groups in the same
project stage for indicating and avoiding possible
conflicts. Vertical traceability is especially important
as it analyzes dependencies between different project
stages e.g. requirements and design. Vertical
traceability has a weak coverage in UML CASE tools.
Therefore, our work concentrates on vertical forward
and backward traceability also covering some cases of
horizontal traceability.

Traceability information can be created and
maintained in manual, semiautomatic and automatic
ways [2], from which the automatic and semi-
automatic ones are of most interest. Main research
directions for the automatic traceability are text
mining [6, 19]; deriving traceability links from

existing ones; monitoring user modifications and
analyzing change history, and creating traceability
information during model transformations [3, 27, 32,
38, 44, 53]. Transformations are especially popular in
Model Driven Engineering (MDE) [1, 10, 25, 26, 28,
44]. Various types of relations may be used for
traceability depending on artifacts, modeling method,
or language [2, 40, 46]. The most important is to have
a flexible way for identifying and using relations
needed for traceability according to development
method applied.

We have chosen the approach based on deriving
traceability links from existing ones by dedicating
custom derived properties for holding information
about traceability links in models thus supporting the
desired flexibility of defining such links. As artifacts
in different stages of development processes often are
received as results of transforming previously created
models, our approach also treats relations created
during model transformations as traceability ones.

Multiple authors have proposed traceability
schemas or metamodels defining what types of
relations between model elements are devoted for
traceability and what semantics they carry [13, 24, 37,
40]. The limitation of these approaches is that types of
relationships are fixed while organization needs and
practices are varying. A suitable solution should allow
customization and extensibility to define new types of
links, artifacts, and transitive relations. Such
capabilities and predefined schemas are provided in
our derived properties based approach.

One of the most important aspects of traceability
supporting tools is their ability to represent results.
Different techniques may be used for representing
traceability relationships: matrices [24, 56], databases
and hypertext links [4], graph-based approaches [37],
formal methods [11], and dynamic schemes [5], from
which Winkler and Pilgrim [56] emphasize matrices,
cross-references, and graph-based representations as
most useful. We cover these methods together with
other visualization and analysis means of UML CASE
tools. Traceability semantics can support change
management [12, 26]; impact analysis and
identification of suspect relations [8, 26, 52] (the last
feature is typical for most of the requirement
management tools e.g. IBM Rational RequisitePro
[22], DOORS [20] etc.); release planning [14];
transformations for navigation, and incremental
updates. Traceability benefits are summarized in [56]:
prioritizing requirements, estimating change impact,
proving system adequateness, understanding the
system, supporting design decisions, validating, and
much more.

The advantages of well managed traceability
activities are widely accepted; however, existing
issues make its adoption difficult on a wide-scale [41].
We summarize the problems targeted with our
approach in Table 1.

Requirements for traceability solution

Criterion Current situation

1 Traceability schema and rules should be easily
customizable using model driven approach

In current UML CASE tools and approaches, the types of
traceability relationships are fixed [13, 24, 37, 45, 48, 54] or
customization is not model driven [16]

2

Usable traceability analysis and visualization
means. Existing UML CASE tool capabilities
of modeling tool should be reusable for
traceability analysis and visualization

Existing tools capabilities are not reused. Dedicated solutions are
implemented for single and multilevel traceability visualization,
analysis and documentation [16, 48, 54]

3 Model should not be polluted by traceability
information

Current model based traceability solutions introduce additional
model level relations for representing traceability information that
pollutes main models

4 Models of different stages of the project
should be loosely coupled

Due to traceability relations models of different stages of project
e.g. requirements and design become tightly related [45, 48, 54]

5 Creation and maintenance of traceability
relations should be automatic and flexible

Automatic establishment and maintenance of traceability links is
still an issue [14, 15, 17, 50]

In this section we will present an example of a
software project, whose traceability will be analyzed.
Let us make an assumption that the project is
developed according to a methodology, which consists
of the following stages: business analysis,
requirements (high level and concrete), architectural
design, implementation, and testing.

In our sample we are developing Training
Organization System by going from business analysis
to implementation through different development
stages (Figure 1). Each development stage is covered
by successive one: business processes are described
with use cases in high level requirements; on their
basis, detailed requirements are created and verified
with test cases and satisfied with architectural
components; components are implemented with code
classes. Traceability relations would be created
between artifacts from different stages in such a way
that finally we would have fully traceable
specification of the Training Organization System
project. The development methodology is based on
combination of several OMG Meta Object Facility
(MOF) [31] based modeling languages, which are the
most suitable for every stage: business analysis uses
BPMN; requirement specification applies UML and
SysML requirements; architectural design,
implementation and testing is based on UML. The
most suitable relations from modeling languages are
used for modeling traceability between stages:
“satisfy” and “verify” relations are dedicated for
SysML requirements coverage, “abstraction”
dependency is the UML relation for connecting
different abstraction levels.

For specifying each stage, a particular role is
responsible, e.g. requirement engineer is responsible
for high and detailed requirements etc. Each role
checks not only artifacts for which he or she is
responsible but also related ones (e.g. requirement
engineer should check business processes, which

should be covered by requirements). The desirable
traceability means should help for doing this by
visualizing relations between artifacts from different
stages, allowing navigating through them, and
automatically analyzing e.g. coverage of particular
artifacts.

The structure of the Training Organization System
project

A small excerpt of the project is presented in
Figure 2. The business process “Announce about
training” that will be automated by Training
Organization System software is described by high
level requirements (i.e. use cases): “Add information
about trainings to Internet” and “Inform existing
customers about trainings”.

Training Organization System model (fragment)

Specification of the use case “Inform existing
customers about trainings” is given in Table 2.

Use case details are described in concrete
requirements for notification system: 1) functional
requirements “Edit notification”, “Edit participant
list”, “Send notification”; 2) requirements inspired by
business rules: “Notification method”, “Notification
subscription”; 3) data requirements “Notification
types” (“Notification types” cover requirements for
notifications from other use cases as well).
Requirements are satisfied in the architectural design
by the “Notification” component, and verified by test
cases (e.g. “Subscription for notification” and
“Notification for feedback”).

A model is complete, if: 1) design and test
planning stages are finished; 2) all business processes
to be implemented are covered with use cases; 3) use
cases are covered with concrete requirements; 4) all
leaf requirements are satisfied by components from
the stage of architectural design and verified by test
cases.

The case study described in section 6 shows in
details how the completeness of a design could be

ensured by creating and analyzing traceability
information. A case of applying derived properties for
BPMN [30] traceability is presented in [36]. Next
section presents the proposed Derived Property
Metamodel for ensuring traceability and avoiding
typical traceability issues, described in Table 1.

Use case specification example (shortened)

Use case: Inform existing customers about trainings
Pre-condition: Customer is subscribed to open enrolment
training
Business rules:

It is obligatory that customer is subscribed to get
notifications if customer is subscribed to open enrolment
training.

It is obligatory that notification is sent to e-mail provided
in customer’s profile.
Actor: Manager
Triggering event: Open enrolment training is confirmed or
canceled
Related use cases: include: Send notification
User actions System reaction
1. Choose training 1.1. Show information about

training
1.2. Edit a notification text
2. Choose preview of
participants

2.1. Show list of participants,
who should get the notification

2.2. Edit list of participants
3. Send the notification 3.1. Perform use case “Send

notification”
3.2. Show sent notification
confirmation

Post-condition: Notifications are sent to customers about
confirmed or canceled training

In order to be able to define derived properties in
the modeling environment, we need to extend a
modeling language for specifying derived property
details. UML [35] and other modeling languages
provided by Object Management Group (OMG) have
the standard extension mechanism – profiling.

UML extension for derived properties reuses UML
properties and introduces two stereotypes for
specifying derived properties as presented in Figure 3.

. The stereotype
<<derivedPropertySpecification>> extends UML
Property for specifying derived property, which has
expression, stereotyped as
<<expressionSpecification>>, for defining how this
property is calculated. Derived property specification
uses UML standard properties (own and inherited
ones) as well: a name, a type, multiplicity, isUnique,
isOrdered, isDerived, isReadOnly, and a body of a
comment, each of which plays a role in derived
property specification and calculation [29].

UML metamodel extended with derivedPropertySpecification stereotype for specifying derived properties

.
The heart of the derived property is the expression
according to which it is calculated. The stereotype
<<expressionSpecification>> extends UML metaclass
“OpaqueExpression” having properties “language”
and “body”, which are used to specify expression in
needed language. The stereotype
<<expressionSpecification>> redefines the property
“body” of the metaclass “OpaqueExpression” by our
introduced expression type – a primitive
“ExpressionBody”. In order to meet criteria
established for traceability schema (Table 1), we have
introduced several different types of such expressions:
SimpleExpression, multilevel MetachainExpression,
OCLExpression, and BinaryOrScriptingExpression.
Such expressions may be supported by various UML
CASE tools. Other expression types may be
introduced as needed.

It allows expressing
direct dependencies through UML relationships,
properties and tags, with later filtering according to
directions and properties of relations. An example of
calculating a derived property “Verifies” from the
simple expression type (“Verify” abstraction) is
presented in Figure 4.

A derived property “Verifies” is calculated on the
base of abstraction “verify”

Simple expressions for derived properties may be
defined in specifications of UML model elements.

It allows expressing
multi-step paths through model elements and
properties from context element to target element.
This is a simple and powerful way to define indirect
(transitive) dependencies between elements [46]. An
example of calculating a derived property “Realized in
Architecture” on the base of transitive relation
between the business process and its realizing
component is presented in Figure 5.

A derived property “Realized in Architecture”

A metachain expression links pairs of
metaclasses/stereotypes and properties/tags. For
creating the derived property “Realized in
Architecture” a metachain expression must search for
components indirectly related to BPMN business
process via use cases and requirements. An example of
MetaChain Expression editor is depicted in Figure 6.
It allows defining property chains for navigating from
source elements to target elements.

A metachain expression for search of indirectly
related components

The aforementioned metachain expression
contains specification of 3 links:
RealizedInArchitecture;MetaChain;
/Customization::BPMNprocess.realizedBy.
UseCase.realizedBy.SysML::
Requirement.SatisfiedBy;

The grammar of metachain expressions mapping
object links to property values is presented in BNF
(Backus–Naur Form):
<Metachain expression>::=<expression
name>";MetaChain;"

<full classified name of the metaclass or
stereotype to be extended with derived
property>";"<Property chain part>";"

<Property chain part>::=<Step>|<Step>"."
<Property chain part>

<Step>::=<Metaclass>"."<Property>|
<stereotype>"."<tag>

The advantage of MetaChain Expression editor is
that it does not require knowing any programming
language (e.g. OCL) to create derived properties with
complex logic.

For specifying indirect dependencies, standard
OCL expressions can be used. E.g. the derived
property „Realized in Architecture” (Figure 6) is
specified by the OCL expression:
context BPMNProcess::
RealizedInArchitecture:Component
derive:self.supplierDependency
select(a|a.oclIsKindOf(Abstraction)).
client exists(b|b.oclIsKindOf(UseCase)).
supplierDependency
select(c|c.oclIsKindOf(Abstraction)).
client exists(d|d.oclIsKindOf
(SysML::Requirement)).supplierDependency
select(e|e.oclIsKindOf

(SysML::Satisfy)).client
exists(f|f.oclIsKindOf(Component))

. Any
scripting language (BeanShell, JRuby, Jython, Groovy,
JavaScript) or programming language as Java
supported by the CASE tool can be used for
calculating a derived property on the base of similarity
between names, types of elements or relations, or a
number of levels between source and target. Property
derivation rules can be any combinations as unions of
the expression types introduced.

The section presents the Derived Property Based
Traceability Framework, intended for calculating
derived properties on the fly: analyzing specifications
of derived properties, calculating them from existing
model elements, and dynamically updating them
according to changes in models (Figure 7).

Derived Property Based Traceability Framework

It consists of three parts: 1) Model-Driven Domain
Specific Language (DSL) engine for extending UML
with derived property specification; 2) traceability
schemas; 3) modeling tool specific visualization,
analysis and navigation capabilities, which can be
used with additional traceability specific means.

. Domain-Specific Languages
are used in many CASE tools. The purpose of DSL is
to increase abstraction in software development,
making it faster and easier [49]. If the general-purpose
language lacks expressiveness that is clear to
implementers but is not a part of the UML standard,
domain-specific modeling can help. For a traceability
framework, CASE tool developers can use their own
DSL engines or create new ones. The size of efforts
for creating or adapting a DSL depends on the
advantages of a tool.

So we can define derived
properties, but we need a “glue” to have them working
for the traceability purpose. Traceability schemas (sets
of traceability relations) are dependent on traceability
context – e.g. modeling language such as BPMN or
software engineering process as described in our case
study, or the purpose of traceability. It is desirable to
implement them as separate modules that could be
loaded and reused in various projects. Derived
properties defined in the loaded module are added to
elements of considered models.

. Derived properties
appear in specifications of corresponding elements
and other places in the same way as regular UML
properties. It is possible to visualize and analyze
traceability information, to perform impact analysis,
and validate model consistency adapting CASE tool
specific visualization, navigation and analysis means.
This is the only framework part dependent on a
particular UML CASE tool.

The framework was implemented in UML CASE
tool MagicDraw in accordance with the overall
conception of MagicDraw development, i.e. reusing
UML extensions and facilities already implemented in
the tool.

One of such extensions is MagicDraw DSL Engine
[29, 47, 51] a customization engine for model driven
tool environment, which allows initializing specific
models; adding semantic rules; creating custom
specification dialogs, smart manipulators and derived
properties.

The MagicDraw DSL Engine is used
by adding a property stereotyped with
<<derivedPropertySpecification>> stereotype into
MagicDraw DSL Customization class (i.e. class
stereotyped as <<Customization>>) (Figure 8). The
definition of the tag „customizationTarget“ (Figure 9)
of this class specifies in which element type (UML or
extended one) the derived property will be created.

Specification of derived properties of a
customization class in MagicDraw CASE tool

The DSL engine also is used for creating
traceability specific derived properties and traceability
schemas. In MagicDraw, a traceability schema is
obtained by grouping customizations of derived
properties into semantic groups (e.g. “Specification”,
“Realization”, and “Other”) (Figure 9), which are
visible in specifications of model elements, and other
places. Various traceability schemas are held in
separate modules and can be loaded in a project
depending on a modeling language, development
process or domain in use.

An example of a traceability schema which can be
used as a module in MagicDraw project is presented
in Figure 9.

The traceability schema “Traceability
customization” as a module

The schema consists of before mentioned
traceability rule groups. Traceability rules
“realizingComponent” and “manifestedInArtifact” are
specified as derived properties of MagicDraw DSL
customization engine classes “Class Realizing
Components” and “Artifact Manifesting Classifiers”,
which are used for elements having derived properties.
More details about traceability framework
implementation in MagicDraw are given in the next
section.

7
In this section we shortly present exploratory case

study research done according to methodology
described in [43]. This case study helps to show the
suitability of the proposed traceability approach. The
sample under analysis is described in section 3.

We need to ensure the
consistency of the investigated project after making
changes to its artifacts and avoid typical traceability
issues, described in Table 1.

is to investigate how Derived
Property Based Traceability Approach improves
traceability in software development process using a
particular development methodology and how it helps
for different roles (i.e. business analyst, requirement
engineer, software architect, and quality engineer) in
different development stages.

Research questions that should be answered:
1. Can we ensure that a project of our system is

consistent?
2. Can we know which parts of the system will

be impacted by changes in order to evaluate
risks and costs of changes, and update related
parts for keeping requirements consistent?

3. Can we know what would influence our
implementation if we change project parts
(e.g. business processes) having no direct
relations with implementation (e.g.
components), and vice versa?

4. Can we avoid typical traceability issues,
described in Table 1?

For the research, we
selected a development project of a medium size
application, from business analysis till deployment
stages, by using popular modeling languages such as
BPMN, SysML [34], and UML.

Qualitative data
about results of experiment will be collected by
applying derived properties in modeling tool for
analyzing system specification.

We will analyze a
traceability schema satisfying our project structure,
defined in Fig. 1, by the following steps:

. Specifying traceability rules – derived
properties for each cross development stage relation
including transitive dependencies from business
process to components, and vice versa;

. Grouping derived properties into

traceability information;
. Applying traceability properties for

analyzing system;
. Visualizing traceability information –

derived properties, and using them for change impact
and coverage analysis;

. Analyzing results and checking answers
to research questions.

The SysML, which
was selected as a requirement specification language,
has dedicated elements for requirement definition and
relations between different stages of development.
This allows having a clear schema of traceability. For
other development stages, BPMN and UML languages
were selected (Section 3).

Traceability rules
between structural parts of the project (Figure 2) are
presented in Table 3. Usually, traceability rules are
created for each relation between main artifacts
between which traceability is decided to be created
and tracked. In order to achieve two–way traceability,
derived properties for traceability rules are created for
each last element of traceability relations. If
traceability relation is established between artifacts
from different stages and we are going from business
process to implementation, we can treat traceability
rules as realization ones; if we are going from
implementation to business process, we can consider
them as specification rules, and accordingly group
them into realization and specification groups.

Traceability rules for Training Organization System project

Rule name Source element Expression Target element Description

Forward traceability – realization
1 Realized By Business process Abstraction Use case High level requirement realizing

business process
2 Realized By Use case Abstraction Requirement Concrete requirement realizing high

level requirement
3 Satisfied By Requirement Satisfy Component Architecture component satisfying

requirement
4 Realized In

Architecture
Business process Transitive relation:

Business process>
Abstraction>Use case>
Abstraction>
Requirements>Satisfy>
Component

Component Architecture component realizing
business process

Other
5 Verified by Requirement Verify Test case Test case verifying requirement
6 Verifies Test case Verify Requirement Requirement verified by test case

In Table 3, the column “Rule name” represents a
name of each derived property; “Source element” – its
owner; “Expression” defines how the derived property
is calculated; “Target element” corresponds to a value
of the derived property. For derived properties 1–3, 5,
6 we use simple expression types, because their rules
are based on direct relationships in the model. For
derived property 4, we apply a metachain expression
because we have a transitive relation “Business
process > Abstraction > Use case > Abstraction >
Requirements > Satisfy > Component”.

Derived properties
are grouped and visualized in MagicDraw user
interface with a help of MagicDraw DSL engine. We
can analyze derived property groups in element’s
specification win3dow, property panel, element’s

context menu, note on a diagram, and Relation Map
diagram.

Once derived properties are specified, they
appear in specifications of corresponding elements
and other places in the same way as regular UML
properties. Now, by visualizing and analyzing
traceability information, we can discover related
elements, which will be impacted by changes (i.e. we
can perform impact analysis). Also, we can validate
model consistency by performing coverage analysis
for discovering whether all requirements are satisfied
by design and verified with test cases, or not.
Transitive traceability is visualized by Relation Map
(Figure 10).

Relation Map – graph based visualization enabling analysis of multilevel relations, e.g. from business
analysis stage (1) to high level requirements (2), concrete requirements (3), and architecture (4)

Single level traceability (through direct relations)
can be visualized by various modeling tool means, e.g.
traceability matrix (Figure 11). A traceability matrix
allows performing a coverage analysis between
artifacts of a project. The coverage analysis, supported
by forward and backward traceability properties, gives
coverage information between immediate higher and
lower stages.

Another coverage analysis means is a generic
table, whose empty cells in the rows with leaf
requirements indicate lack of consistency in a project.
Additionally, a coverage analysis report, which is
generated by documentation generation capability,
computes project completeness in percent.

Finally, it is possible to check completeness of
traceability and validate non–existence of cyclic
relationships by using MagicDraw validation feature
that can show invalid elements in Relation Map
(Figure 12), validation result dialog, containment tree,
diagrams, etc.

Furthermore, it is not necessary to create any
diagram or other artifacts visualizing traceability
relations in order to discover uncovered artifacts. They
will automatically be highlighted in all available
views and containment tree.

are another means for
checking traceability relations and getting information
about uncovered parts of the project (Table 4). It is

worth to note that OCL (as well as Binary or Scripting
Expressions) allow specifying more powerful
traceability and validation rules than other traceability
expression types.

Matrix representing traceability relations among
requirements and design

Validation results below Relation Map inform about uncovered project parts,
e.g. business process and high level re-quirements

Validation rules in OCL to check completeness of traceability (coverage of artifacts)

Rule name Rule header OCL Expression

Forward traceability – realization
1 Realized By Context BPMNProcess::realizedBy:

UseCase
derive:self.realizedBy size()>0

2 Realized By Context UseCase::realizedBy:

Requirement
derive:self.realizedBy size()>0

3 Satisfied By Context Requirement::realizedBy:

Component
derive:self.satisfiedBy size()>0

4 Realized in

Architecture

Context BPMNProcess::realizedBy:

Component

derive:self.realizedInArchitecture

size()>0

Other
5 Verified By Context Requirement::realizedBy:

TestCase
derive:self.verifiedBy size()>0

6 Verifies Context TestCase::realizedBy:

Requirement
derive:self.verifies size()>0

…

The case
study of Training Organization System project,
developed with applying the Derived Property Based
Traceability Approach implemented in the CASE tool
MagicDraw, has provided the following answers to
research questions:

1. We can ensure that a project of our system is
consistent by validating traceability
information about coverage of artifacts in
each stage of the development process using
MagicDraw validation means;

2. We can know which parts of the system will
be impacted by changes, by analyzing
traceability links using Relation Map,
Traceability matrix, Generic table, or
Coverage Analysis Report;

3. We can know what parts of our project would
be affected if we change artifacts (e.g.
business processes) having no direct relations
with implementation (e.g. components), and
vice versa, by defining and using MetaChain
Expressions;

4. We can avoid typical traceability issues,
described in Table 1, as:

Traceability schema and rules are
customizable and model driven via means
of profiling and model-driven DSL engine,
including custom derived properties;
Capabilities of modeling tool are reusable
for traceability analysis and visualization
as derived properties are available in
specifications of model elements in the

same manner as regular properties, and can
be visualized and analyzed using standard
means of the CASE tool;
Model is not polluted by traceability
information as specification of traceability
rules using derived properties does not
affect model. Derived properties are
calculated on the base of existing model
properties and appear only in
specifications and traceability analysis
means;
Models of different stages of the project
avoid tight coupling because derived
properties are calculated from existing
relations and do not require additional
ones. For example, a derived property is
devoted for showing what components
satisfy detailed requirements, but there is
no need to introduce for this new
relations – existing relations from
components to requirements are reused.
Creation and maintenance of traceability
relations is automatic and flexible as
required derived properties can be added
by users themselves and automatically
calculated by the tool on the base of model
information.

8
1. Analysis of current approaches to traceability in

software and system projects has shown that the
major drawbacks of current traceability
implementations are: 1) inflexibility, as
traceability rules are fixed (not customizable, or
customization is not model-driven); 2) pollution of
models with additional model level relations for
defining traceability information; 3) tight coupling
between models of different stages of a project
(e.g. requirements and design) arising due to
additional relations for traceability support; 4)
little or no reuse of capabilities of existing CASE
tools; and, especially, 5) manual creation and
maintenance of traceability relations what usually
causes undesirable overhead.

2. We proposed to solve these problems by Derived
Property Based Traceability Approach via
extending UML metamodel for specifying derived
properties. Derived property expressions may be
simple, using properties of UML metamodel, or
more complex, specifying metaproperty chains,
expressions in OCL or other languages, and
combinations of the previous.

3. The implementation of Derived Property Based
Traceability Approach in CASE tool MagicDraw
was made with reusing previous tool extensions as
MagicDraw DSL and Customization profiles as
well as other existing means (dependency
matrices, report templates, and validation rules).

4. The proposed traceability framework improves
existing traceability approaches with decrease of
overhead as derived properties are calculated by a
modeling tool and dynamically updated according
to changes in models. Derived properties are
defined using OCL expressions and other tool–
specific means, and access visualized traceability
information in an ordinary way.

5. The case study of the Training Organization
System project, covering typical traceability
problems, has shown that developers using
Derived Property Based Traceability approach are
capable to define required traceability relations
including transitive ones; analyze traceability
information using common and specialized
visualization means of the considered CASE tool;
validate completeness of covering requirements by
realizing elements, and know project parts, which
should be updated due to requirement changes.

6. Derived Property Based Traceability Approach
already has been successfully adopted by
companies (including large aerospace and
telecommunication corporations) and academic
institutions (e.g. Kaunas University of
Technology, which has introduced the approach
into Information Systems Development
curriculum). Created derived property expression
specification engine became universal querying
engine in MagicDraw tool; it was reused in
Relation Map, Dependency Matrix, and many
other places.

7. Derived Property Based Traceability Approach
may be implemented in any model-driven UML
CASE tool though implementation efforts depend
on existing tool capabilities: DSL and OCL
support, visualization and analysis means etc. In
this respect advantages of MagicDraw tool
revealed a favorable environment for
implementing the traceability framework. Other
CASE tools might have less suitable means for this
purpose. This will make implementation of the
approach less flexible, but will not forbid
implementing it and benefiting from traceability
solution.

8. In our future work, we will concentrate on
automation of creating and maintaining traceability
relations and measuring the return of investment in
traceability by evaluating the approach with
different groups working on the same project.
Also, we are planning to increase flexibility of
calculating traceability expressions by enabling to
define them in various scripting languages; to
develop possibilities to define scope for
traceability schemas, and to define specific
traceability metamodels for modeling databases,
business processes and enterprise architectures.

The authors would like to thank No Magic, Inc,
especially the MagicDraw product team for
comprehensive support.

The work described in this paper has been carried
out within the framework of the Operational Program
for the Development of Human Resources 2007-2013
of Lithuania „Strengthening of Capacities of Re-
searchers and Scientists" project VP1-3.1-ŠMM-10-V-
02-008 „Integration of Business Processes and
Business Rules on the Base of Business Semantics"
(2013-2015), funded by the European Social Fund
(ESF).

[1] . Discovery of complex
model implementation patterns in source code. In:
Information technology and control, 2010, Vol. 39,
No. 4, pp. 291-300.

[2]
Model traceability. In: IBM

Systems Journal Model-driven software development,
2006, Vol. 45, No.3, pp.

[3] On
Challenges of Model Transformation from UML to
Alloy. Software and Systems Modeling, 9(1), Springer
Berlin / Heidelberg, 2010, pp.

[4]
Chimera: hypermedia for heterogeneous software
development enviroments. In: ACM Trans. Inf. Syst.,
2000, Vol. 18, No. 3, pp.

[5] . IEEE Guide to Software Requirements
Specification, ANSI/IEEE Std 830–1984. IEEE Press,
Piscataway, 1984.

[6]
Recovering traceability links between code

and documentation. In: IEEE Transactions on Software
Engineering, 2002, Vol. 28, No. 10, pp.

[7]
Value-based software engineering.

Springer-Verlag New York, Inc. Secaucus, NJ, USA,
2005.

[8] Software Change Impact
Analysis. IEEE Computer Society Press, Los Alamitos,
California, USA, 1996.

[9] Automated
traceability analysis for UML model refinements. In:
Information and Software Technology, 2009, Vol. 51,
No. 2, pp. 512 527.

[10]
. Challenges and Directions in

Formalizing the Semantics of Modeling Languages.
Computer Science and Information Systems, 2011,
Vol. 8, No. 2, pp. 225–253.

[11] A Formal Development
Framework and Its Use to Manage Software
Production. IEE Colloquium on Tools and Techniques
for Maintaining Traceability During Design, 1991,
pp. 10/1.

[12]
Implementing and Integrating Product Data

Management and Software Configuration
Management. Artech House, London, 2003.

[13] . Rich Traceability. In: Proceedings of the 1st
International Workshop on Traceability in Emerging
Forms of Software Engineering, Edinburgh, Scotland,
2002.

[14] Release Management within Open
Source Projects. In: Proceedings of the 3rd Open
Source Software DevelopmentWorkshop, Portland,
Oregon, USA, May, 2003, pp. 51–55.

[15] Model-driven development of
complex software: a research roadmap. In: FOSE ’07:
Future of Software Engineering Proceedings, IEEE
Computer Society, New York, 2007, pp.

[16] . Reqtify, 2011. [Accessed 10
February 2012] Available at:
http://www.geensoft.com/en/article/reqtify.

[17] Formality and informality in
requirements engineering. In: 2nd International
Requirements Engineering Conference (ICRE’96)
Proceedings, IEEE Computer Society, New York,
1996.

[18] An artifact is of
the Requirements Traceability Problem. In:
Proceedings of the First International Conference on
Requirements Engineering, Utrecht, The Netherlands,
1994, pp. 94–101.

[19] Improving
requirements tracing via information retrieval. In: 11th
IEEE International Requirements Engineering
Conference (RE'03) Proceedings, IEEE Computer
Society, New York, 2003, pp.

[20] . DOORS family, 2012. [Accessed 10
August 2012]. Available at: http://www-
01.ibm.com/software/awdtools/doors/product line/

[21] . IBM Rational Software Architect, 2011.
[Accessed 10 February 2012] Available at:
http://www-01.ibm.com/software/rational/products/
swarchitect.

[22] . Rational RequisitePro, 2011. [Accessed 10
February 2012] Available at: http://www-
306.ibm.com/software/awdtools/reqpro.

[23] The Unified
Software Development Process. Addison-Wesley
Professional, Boston, MA, 1999.

[24] A Framework for Requirements
Traceability in UML-Based Projects. In: Proceedings
of the 1st International Workshop on Traceability in
Emerging Forms of Software Engineering, Edinburgh,

[25]
The main principles of knowledge-based information
systems engineering. In: Elektronika ir
elektrotechnika, 2012, Vol. 4, No. 120, pp. 99–102.

[26]
Supporting fine-grained generative model-driven
evolution. In: Software and Systems Modeling, 2010,
Vol. 9, No. 3, pp.

[27] A taxonomy of model
transformation. In: Electronic Notes in Theoretical
Computer Science (ENTCS), 2005, Vol. 152,
pp. 125-142.

[28] Enterprise Knowledge
Based Software Requirements Elicitation. In:

Information Technology and Control, 2011, Vol. 40,
No. 3, pp. 181-190.

[29] . UML Profiling and DSL, 2011.
[Accessed 12 February 2012] Available at:
https://secure.nomagic.com/files/manuals/UML%
20Profiling%20and%20DSL%20UserGuide.pdf..

[30] . Business Process Model and Notation (BPMN),
Version 2.0. OMG Document Number: formal/2011-
01-03, 2010.

[31] . Meta Object Facility (MOF) Core
Specification, Version 2.0. OMG Document Number:
formal/06-01-01, 2006.

[32] . Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Version
1.0. OMG Document Number: formal/2008-04-03,
2008.

[33] . Object Constraint Language, Version 2.2.
OMG Document Number: formal/2010-02-01, 2010.

[34] OMG Systems Modeling Language (OMG
SysML), Version 1.2. OMG Document Number:
formal/2010-06-01, 2010.

[35] OMG Unified Modeling Language (OMG
UML), Version 2.3. OMG Document Number:
formal/2010-05-05, 2010.

[36] Towards
Traceability Metamodel for Business Process
Modeling Notation. In: Building the e-World
Ecosystem, I3E 2011, IFIP AICT 353, 2011, 177–188.

[37] . An Object-Oriented
Tool for Tracing Requirements. In: IEEE Software,
1996, Vol. 13, No. 2, pp.

[38] Rule-based update transformations and their
application to model refactorings. In: Software and
Systems Modeling, 2005, Vol. 4, No. 4, pp.

[39] Issues in the development
of a requirements traceability model. In: Proceedings
of the IEEE International Symposium on Requirements
Engineering, IEEE Computer Society, New York,
1993, pp. 256–259.

[40] . Toward reference models for
requirements traceability. In: IEEE Transactions on
Software Engineering, 2001, Vol. 27, No. 1,
pp.

[41]
Implementing requirements traceability: a case study.
In: 2nd IEEE International Symposium on
Requirements Engineering (RE’95) Proceedings, IEEE
Computer Society, New York, 1995, pp. 89–95.

[42] “Modeling with tools is easier, believe
me’’ cts of tool functionality on modeling
grammar usage beliefs. In: Information Systems, 2012,
Vol. 37, pp. 213–226.

[43] Guidelines for conducting and
reporting case study research in software engineering.
In: Empirical Software Engineering, 2009, Vol. 14,
No. 2, pp. 131–164.

[44] . Model-Driven Engineering. In: IEEE
Computer, 2006, Vol. 39, No. 2, pp. 25–31.

[45] The Enterprise and Scrum. Microsoft
Press, Redmond, WA, USA, 2007.

[46] A
Framework for Mapping Traceability Relationships.
In: Proceedings of the 2nd International Workshop on
Traceability in Emerging Forms of Software
Engineering at 18th IEEE International Conference
on Automated Software Engineering, Montreal,
Canada, 2003, pp. 32 39.

[47]
Domain-specific modeling

environment based on UML profiles. In: Information
Technologies' 2009: proceedings of the 15th
International Conference on Information and Software
Technologies, IT 2009, Kaunas, Lithuania, April
23-24, Kaunas University of Technology,
Technologija, Kaunas, 2009, pp.

[48] . Enterprise Architect, 2011. [Accessed
10 February 2012] Available at:
http://www.sparxsystems.com/.

[49]
Guest Editors' Introduction: What Kinds of Nails Need
a Domain-Specific Hammer? In: IEEE Software, 2009,
Vol. 26, No. 4, pp. 15–18.

[50] UML
formalization is a traceability problem. In: TEFSE ’05:
Proceedings of the 3rd International Workshop on
Traceability in Emerging Forms of Software
Engineering, ACM, New York, 2005, pp. 31–36.

[51] Towards Implementing a
Framework for Modeling Software Requirements in
MagicDraw UML. In: Information Technology and
Control, 2009, Vol. 38, No. 2, pp. 153–164.

[52] Dynamic Traceability Links
Supported by a System Architecture Description. In:
Proceedings of the IEEE International Conference on
Software Maintenance, Bari, Italy, 1997, pp.

[53] Write once,
deploy N: a performance oriented MDA case study. In:
Proceedings of the IEEE International Conference on
Enterprise Distributed Object Computing, 2004,
pp.

[54] . Visual Paradigm for UML, 2011.
[Accessed February 2012] Available at:
http://www.visual-paradigm.com.

[55] . Quality Function Deployment in Software
Development. In: IEE Colloquium on Tools and
Techniques for Maintaining Traceability During
Design

[56] A survey of traceability in
requirements engineering and model-driven
development. In: Software and Systems Modeling,
2010, Vol. 9, No. 4, pp. .

Received September 2012.

