
303 

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2013, T. 42, Nr. 4 

An Improved Algorithm for the Approximation of a Cubic Bezier Curve  
and its Application for Approximating Quadratic Bezier Curve 

Aleksas Riškus 

Multimedia Engineering department, Kaunas University of Technology 
Studentų st. 50, LT−51368 Kaunas, Lithuania 

e-mail:aleksas.riskus@ktu.lt 

Giedrius Liutkus 

Multimedia Engineering department, Kaunas University of Technology 
Studentų st. 50, LT−51368 Kaunas, Lithuania 

e-mail:giedrius.liutkus@ktu.lt 

  http://dx.doi.org/10.5755/j01.itc.42.4.1707 

Abstract. In this paper an improved version of an earlier proposed algorithm for approximating cubic Bezier curve 
by a set of circular arcs is presented. It is investigated how the improved algorithm fits for approximation of quadratic 
Bezier curves. These issues occur in CAD/CAM systems during data exchange into data formats which do not support 
Bezier curves. Experimental results on examples, widely used in the sources enlisted in references, are presented. Two 
typographical errors, made in the previous article, are corrected. 
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1. Introduction 
Various data formats (Gerber, GerberX, PDF, DXF, 

HPGL, ODB++, ISO 10303-210 and others), used in 
computer-aided design and manufacturing 
(CAD/CAM), are now standardized. Unfortunately, 
not all types of curves are supported in these formats. 
Therefore, data exchange (import/export) between 
them causes the additional problems [12].  

The tool path for CNC (Computer Numerical 
Control) machinery can use piecewise curves made 
from circular arc and straight line segments only. In 
programming the tool path of CNC machinery, a 
smaller number of arc segments reduce the number of 
instructions and tool motions. Therefore, to improve 
efficiency of the production we need to approximate 
Bezier curves by tangential circular arc  segments with 
fewer arc segments that are as small as possible. 

The high degree Bezier curves are too complex to 
be processed and approximated. Therefore, the 
quadratic and cubic Bezier curves are more common 
to use in CAD/CAM. A cubic Bezier curve can 
estimate a circle but can not perfectly fit a circle. The 
most popular approach is to split a circle into four 
separate arcs [8, 5]. Errors of the approximation of a 

quarter of the circle (90 degree circular arc) have been 
analyzed in [3].  

The algorithm for approximation a cubic Bezier 
spiral (a curve curvature of which varies 
monotonically with arc-length) is given in [7]. It is 
based on a recursive subdivision of the cubic Bezier 
spiral. The subdivision is performed at the point of 
maximum deviation of the spiral from the 
approximating biarc. In [5], a few other techniques of 
subdivision are proposed and their experimental 
characteristics are presented.  

As regards the quadratic Bezier curves, their 
approximation is quite thoroughly investigated in [1, 
6, 9, 10]. Yang [11] generalizes the algorithm 
presented in [10] for approximating arbitrary types of 
smooth parametric curves by arc splines. 
Approximating a planar parametric curve with a G1 
arc spline composed of biarcs is discussed in [4]. 
There the approximated curve is not restricted to 
specially bounded shapes of confined degrees. 

The problems for an opposite task - an 
approximation of circular arcs by Bezier curves of 
high degree are widely analyzed and new algorithms 
are proposed in [13-15].  
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In this paper, a new subdivision technique is 
proposed to approximate cubic Bezier curve. Its 
experimental characteristics are compared with 
previous subdivision techniques [5]. Furthermore, the 
new subdivision technique was applied to approximate 
quadratic Bezier curves and experimentally tested on 
examples from [1, 6, 9, 10, 11]. In both cases the 
approximation aimed to achieve a minimum number 
of approximating arcs.  

The paper is organized as follows. Our previous 
work [5] is shortly overviewed in Section 2. 
Unfortunately, one editing error in [5] was made at the 
end of Section 2 and one in Section 3, respectively. 
These errors are corrected.  Section 3 investigates the 
approximation of a cubic Bezier arc by a set of 
circular arcs. A new subdivision strategy called “long 
arc” for approximating a cubic Bezier arc [5] is 
described here. Experimental comparison with results 
of previous subdivision strategies is presented. Section 
4 shows how this new subdivision strategy works for 
the approximation of a quadratic Bezier curve by a set 
of circular arcs. The section ends with experimental 
results. Finally, some concluding remarks end the 
paper. 

2. Corrected formulas: subdivision of Bezier 
curve and converting a circular arc into Bezier 
arc 

1) Editing error in the formula of subdivision of 
Bezier curve 

Bezier curves, introduced by Paul de Casteljau in 
1959, are now widely used in many fields such as 
industrial and computer-aided design, vector-based 
graphics, font design (especially in PostScript font) 
and 3D modeling.  

Let us use the De Casteljau’s algorithm [2, 8]. 
Suppose that a cubic Bezier curve, defined over the 
parameter interval [0, 1], is divided into two new 
cubic Bezier curves with corresponding parameter 
intervals [0, ½] and [½, 1]. Hence, the original control 
points P1 to P4, are used to obtain new control points 
R1 to R4 and S1 to S4 for two Bezier curve segments 
making up the original curve. This process is 
illustrated in Figure 1. 

 
Figure 1. Illustration of the De Casteljau’s algorithm 

The new control points are obtained as follows:  

R1 = P1, 
S1 = R4, 
R2 = (P1+P2)/2, 
R3 = R2/2+(P2+P3)/4,  (1) 
S3 = (P3 + P4)/2,  
S2 = (P2+P3)/4+S3/2, 
R4 = (R3+S2)/2, 
S4 = P4. 
The subdivision can be successfully applied to 

split an original cubic Bezier curve at any point (the 
split point is on the curve) and to calculate control 
points for both new cubic Bezier curves.  

Let us set the parameter t to any value k from the 
interval [0,..,k,….,1]. Suppose that C is a 
corresponding sub-division point of a cubic Bezier 
curve. According to the definition of a cubic Bezier 
curve (2),  

B(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4 (2) 

we have P1 = B(0), P4 = B(1) and C = B(k). Thus, the 
resulting Bezier curves are P1, R2, R3, C and C, S2, S3, 
P4. Their control points, according to the corrected 
formula, are:  

R2 =P1+ k*(P2-P1), 
S3 = P3 + k* (P4-P3), 
C = P2 + k*(P3-P2), (3) 
R3 = R2 + k* (C-R2), 
S2 = C + k*( S3`-C). 
Note. A corrected formula was applied to the 

computational experiments [5]. 
2) Editing error in a formula for converting a 

circular arc into a Bezier arc  
An arc of less than 90 degree and radius r should 

be considered. Assume that we have to approximate it 
by one segment of a cubic Bezier curve. 

One approach of finding Bezier control points, 
when the angle of a circular arc is not included 
directly in the calculation of the “magic number” k, 
was proposed in [5]. 

Let the coordinates of arc start point P1, arc end 
point P4 and arc center point C be (x1, y1), (x4, y4) 
and (xc, yc), respectively. Then: 

ax = x1 – xc, 
ay = y1 – yc, 
bx = x4 – xc, (4) 
by = y4 – yc, 
q1 = ax*ax + ay*ay, 
q2 = q1 + ax*bx + ay*by, 

k2 = 4
3
��2 ∗ q1 ∗ q2 − q2�/(ax ∗ by − ay ∗ bx).  

According to the corrected formula the resulting 
coordinates of the Bezier control points P2 and P3  are 
given below: 
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x2 = xc + ax – k2*ay, 
y2 = yc + ay + k2*ax, 
x3 = xc + bx + k2*by, (5) 
y3 = yc + by – k2*bx. 
The advantage of (5) is control points P2 and P3 

refered to as world coordinates. Any rotations and 
transformations are not needed. For a 
counterclockwise arc, the value of k2 is positive, while 
for a clockwise arc it is negative.  

Despite the error in [5], the correctness of the 
proposed approach to calculate k2 and control points 
P2, P3 has been tested using correct formulas. The 
CircuitCAM software [16] was used for testing.  

3. Subdivision by “long arc” strategy  
An algorithm to approximate an arbitrary cubic 

Bezier curve on the curve with a set of circular arcs is 
described in Section 4 of [5]. “Arbitrary” means the 
angle of a biarc of Bezier arc can be more than 90 
degrees and a Bezier curve can have cusps, loops and 
inflection points. 

The approximation algorithm from Section 4 of [5] 
can be overridden in a more compact six-step 
procedure: 

Step 1: Subdivide the initial Bezier curve at point C 
where its curvature changes (convex segment 
changes into concave or vice versa) and take 
the first curve as the left Bezier curve; 
otherwise take the entire Bezier curve as the 
left Bezier curve. 

Step 2: Subdivide the left Bezier curve in such a way 
that the current Bezier curve is an initial 900 
degree biarc segment; otherwise take the 
entire Bezier curve as a current Bezier curve. 

Step 3: Approximate the current Bezier curve by a 
set of circular arcs with a given error 
tolerance. 

Step 4: If the angle of the left Bezier curve is more 
than 900, take the remaining Bezier curve as a 
new left Bezier curve and proceed Step 2. 

Step 5: If the left Bezier curve is not referred to as the 
entire Bezier curve, take the remaining Bezier 
curve as an initial Bezier curve and go to 
Step 1.  

Step 6: Stop. 

Obviously, Step 3 (“Approximate the current 
Bezier curve by a set of circular arcs with a given 
error tolerance”) constitutes the core of the recursive 
algorithm. In [7], a curve is split at the point of 
maximum deviation of the spiral from the 
approximating biarc. The deviation is measured along 
a radial direction of the biarc. Five subdivision 
strategies (S1-S5) are proposed in [5].  

All these subdivision strategies have the same 
basis: if the maximum deviation of the cubic Bezier 
curve from the approximating circular arc exceeds a 
given error tolerance, the Bezier curve is subdivided 
into two Bezier curves and the approximation 
algorithm is recursively used for both, new left and 
right Bezier curves, respectively. There are differences 
only in: 
• calculation of the approximation arc (center point 

and radius of an arc); 
• selection of the subdivision point (value of 

parameter t from the interval [0.0, 1.0]).  
Two following approaches in calculating the 

approximation arc have been used: 
A1-middle point: The approximation arc starts at 
Bezier start point P1, goes through Bezier “middle 
point” M and ends at Bezier end point P4. 
According to equation (1), P1 = B(0), M = B(0.5), 
P4 = B(1).  
A2-biarc: The approximation arc starts at Bezier 
start point P1, goes through the biarc joining point 
G and ends at Bezier end point P4. 
Three points, which are not collinear (all on the 

same line), uniquely define a circle. We use this 
definition at a circle to calculate the radius and center 
point of the circular arc. 

The experiments showed the best results obtained 
by using S2 (cutting point) and S1 (middle point) 
strategies [5]: 

S1-middle point: The subdivision point is the 
middle point within the interval [0, 1], i.e., t = 0.5. 

S2-cutting point: The subdivision point is a point 
where the Bezier curve intersects the approximation 
arc. If intersection does not occur, then t =0.5. 

The S2 better works with approach A1, while S1 
showed the same results in both approaches. 

The new “long arc” strategy of subdivision is 
based on a simple procedure:  

a) set t = 0.0; 
b) increase t taking interpolation step ∆t (i.e. t = t + 

∆t) and subdivide temporarily the initial Bezier curve 
at point t; 

c) if an approximation error of the left Bezier 
curve is less the given error tolerance, ignore previous 
temporary subdivision and subdivide according to step 
b anew); otherwise proceed with d); 

d) subdivide the initial Bezier curve at point (t - 
∆t), exchange the left Bezier curve by a circular arc, 
take the remaining right Bezier curve as an initial 
Bezier curve and repeat thr procedure from the 
beginning.  

So, the given (t - ∆t) value gives the longest 
circular arc as possible. The procedure stops, when the 
current initial Bezier curve can already be 
approximated by one circular arc with the given 
tolerance. 

Since the variables are defined in increasing order 
(t values are from the interval [0.0, 1.0] with step ∆t), 
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the binary search method can be used. The number of 
subdivisions of the Bezier curve will not exceed 10 
(i.e. log21000 = 10) with the standard interpolation 
step ∆t = 0.001 (one thousand points in Bezier curve). 
Computational experiments have showed that decrease 
of the interpolation step ∆t (e.g. 0.0001 or 0.00001) 
does not increase the number of resulting circular arcs. 

Step 3 in details (applying the “long arc” strategy 
for a subdivision): 
Input: a cubic Bezier curve with increasing curvature 
and with angle less than 900 , given error tolerance ε  
and interpolation step ∆t. 
Output: a set of circular arcs. 

1) If the current Bezier curve fits a circular arc 
with given error tolerance ε, exchange the Bezier 
curve by one circular arc and proceed with 5). 

2) Use the binary search algorithm and temporary 
subdivisions for the current Bezier curve to define the 
smallest subdivision value t from the interval [0.0, 
1.0] with step ∆t, where the left Bezier curve can not 
already be approximated by one circular arc with 
given error tolerance ε. 

3) Subdivide the current Bezier curve at point t= t 
- ∆t and substitute the left Bezier curve by one circular 
arc. 

4) Take the remaining right Bezier curve as the 
current Bezier curve and proceed with 1). 

5) Stop. 
Experimental results of the “long arc” strategy for 
a subdivision. 

Let’s take two cubic Bezier curves from [5], shown 
in Figure 2. Points P1=(15.9753, 0.7421), 
P2=(18.2203, 2.2238), P3=(21.0939, 2.4017) and 
P4=(23.1643, 1.6148) display the first cubic Bezier 
curve (Example 1), points P1=(17.5415, 0.9003), 
P2=(18.4778, 3.8448), P3=(22.4037, -0.9109) and 
P4=(22.563, 0.7782) represent the second cubic Bezier 
curve (Example 2), respectively: 

 
Example 1 

 
Example 2 

Figure 2. Cubic Bezier curves from [5] 

Dots and squares on the curves show the start-end 
points of the resulting circular arcs. 

Tables 1 and 2 show the results of approximation 
of the cubic Bezier curves, displayed in Figure 2, by 
S1 and a new “long arc” strategy of subdivision, 
respectively. Both, S1 and “long arc” strategies have 
been used considering A1-middle point approach in 
calculation of the arc  approximation. 

Table 1. Results of Example 1 

Error tolerance ε 
(mm) 

Number of circular arcs 

Old S1 New “long arc” 

0,1 1 1 
0,01 3 2 

0,001 6 5 
0,0001 14 10 

0,00001 28 20 
0,000001 57 43 

 

Table 2. Results of Example 2 

Error tolerance ε 
(mm) 

Number of circular arcs 

Old S1 New “long arc” 

0,1 4 4 
0,01 7 7 

0,001 16 13 
0,0001 32 26 

0,00001 71 51 
0,000001 157 110 

 
The complexity of Step_3 with the “long arc” 

strategy of subdivision is N(Mlog2M), where M=1/∆t 
and N is the number of the resulting circular arcs. 

4. Approximation of quadratic Bezier curves 
Approximation of quadratic Bezier curves by 

circular arcs is quite thoroughly investigated in [1, 6, 
9, 10]. Algorithms for approximation of an arbitrary 
quadratic Bezier curve by arc splines and experimental 
results are presented in [1, 6, 9, 10] as well. 

The aim of this section is to adapt and test the 
“long arc” strategy of subdivision for approximation 
of a quadratic Bezier curve. 

As we can see from the description of the 
approximation algorithm, only the term “Bezier 
curve” has been used (but not a “cubic Bezier curve”). 
So, only three minor updates are needed in adapting 
and testing a proposed algorithm for approximation of 
quadratic Bezier curves: 

1. Exchange Bezier end point P4 into Bezier end 
point P3 in whole text explaining the 
approximation algorithm. 

2. In calculation of the approximation error use 
the quadratic Bezier formula (6) instead of 
cubic Bezier formula (2):  

B(t) = (1-t)2P1 + 2t(1-t)P2 + t2P3 . (6) 
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3. For subdivision of the quadratic Bezier curve 
use corresponding formulas to calculate new 
control points. Again, let us set parameter t to 
any value k from the interval [0,..,k,…,1]. 
Suppose that C is a corresponding sub-
division point of the quadratic Bezier curve. 
Under the definition of the quadratic Bezier 
curve (6), we have P1 = B(0), P3 = B(1) and 
C = B(k). So, the resulting quadratic Bezier 
curves are P1, R2, C and C, S2, P3, where their 
control points are: 

R2 = P1+ k*(P2-P1), 
S2 = P2 + k*(P3-P2), (7) 
C = R2 + k*(S2-R2). 

The “long arc” strategy of subdivision has been 
developed and tested on the benchmarks, used in [1, 6, 
9]. Five quadratic Bezier curves, shown in Figure 3, 
are defined by points: 

(a) P1=(1.0, 1.0), P2=(1.0, 2.0), P3=(3.0, 2.0); 

(b) P1=(1.0, 1.0), P2=(2.0, 1.0), P3=(4.5, 2.75); 
(c) P1=(1.0, 1.0), P2=(5.0, 1.0), P3=(1.0, 2.75); 
(d) P1=(0.54, 3.40), P2=(7.22, 3.61), P3=(7.39, 

3.14); 
(e) P1=(0.54, 3.38), P2=(5.61, 4.13), P3=(6.77, 

3.46). 
Table 3 shows the number of circular arcs, 

obtained when approximating the quadratic Bezier 
curves from Figure 3. The “long arc” strategy of 
subdivision provides less arc segments for all Bezier 
curves. 

Finally, we have compared results from five cases 
of the approximation test, presented in [10, 11], 
including results from our “long arc” strategy of 
subdivision. Three benchmarks (a), (b), (c) have 
already been shown in Figure 3. One new quadratic 
Bezier curve is defined by points: 

(f) P1=(1.3, 2.5), P2=(3.5, 2.2) and P3=(4.0, 1.0).

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 3. Quadratic Bezier curves – benchmarks 

 

Table 3. Approximation results on benchmarks of Figure 3  

Benchmark 
Error  

tolerance ε 
(mm) 

Number of circular arcs by: 

Walton [6] Ahn [1] Yong [9] Our S1 Our “long 
arc” 

(a) 0.0005 14 10 * 8 6 
(b) 0.001 8 6 * 5 4 
(c) 0.001 18 15 10 12 10 
(d) 0.0001 * 29 14 16 12 
(e) 0.0000001 * 158 119 128 101 

(*) No results on this example 
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The obtained numerical results are presented in 
Table 4. 

Table 4. [10, 11] and “long arc” subdivision 

Bench 
mark 

Error 
tolerance ε 

(mm) 

Number of circular arcs: 

Yang 
[10, 11] “long arc” 

(a) 0.0005 7 6 
(b) 0.00001 19 18 
(c) 0.001 11 10 
(f) 0.001 8 5 
(f) 0.0005 10 7 

 

5. Concluding remarks  
In this paper the task of approximation of the 

Bezier curve by as less as possible number of circular 
arcs is discussed. As a result, a new strategy for 
subdivision of a cubic Bezier curve with regard to 
approximation algorithm from [5] is described. This 
modified approximation algorithm is experimentally 
tested on quadratic Bezier curves as well.  

The experiments showed the new “long arc” 
strategy of subdivision provides much better results in 
comparison with the “middle point” (S1) strategy. We 
can see this from the empirical results presented in 
Tables 1 and 2. 

The proposed “long arc” strategy of subdivision 
can be successfully used to approximate quadratic 
Bezier curves. Computational experiments on widely 
used quadratic Bezier curves (benchmarks) showed 
that the best results are achieved by using the “long 
arc” subdivision. Empirical results are presented in 
Table 3 and Table 4. 

The complexity of the approximation algorithm for 
Bezier curve with increasing curvature by a set of 
circular arcs with “long arc” strategy of subdivision is 
N(Mlog2M). Here M=1/∆t and N is the number of the 
resulting circular arc segments. 

Finally, two editing errors, made in our previous 
article [5], have been corrected.  
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