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Abstract. Active Disturbance Rejection Control (ADRC) tuning employing the LQR approach is applied for 

decoupling uncertain MIMO systems. This is done by considering all the coupling and interference interactions 

between the channels of the system as disturbances, using an Extended State Observer (ESO) to estimate them in real 

time and then canceling its effect employing the estimate as part of the control signal. The ADRC tuning is essentially 

a pole-placement technique and the desired performance is indirectly achieved through the location of the closed-loop 

poles. However, the final choice of these poles becomes a trial-and-error strategy. In contrast with pole-placement, in 

the LQR method, the desired performance objectives are directly and globally addressed by minimizing a quadratic 

function of the state and control input. 
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1. Introduction 

All real world systems comprise multiple 

interacting variables [1]. For this reason, they are 

usually divided into subsystems, so variables can be 

grouped into several sets corresponding to each 

subsystem. These subsystems have some interaction. 

One form of interaction is called interference; here 

some variables of a subsystem influence other 

subsystems. However, these subsystems do not 

influence variables of the first one. In this form of 

interaction there is no return path to the system 

originating the interference. On the other hand, in the 

coupling interaction, there exists a path of cross-

influence so that there is a hidden feedback loop. 

Ignoring it can lead to instability. 

In many industrial plants, the basic extension of 

classical PID controller design, implementation and 

tuning is the decentralized approach, where structural 

concepts are used to decouple the interaction between 

variables. The use of standard equipment and the ease 

of hand-tuning or understanding by non-specialist 

technicians are the main advantages of this approach. 

The control effort is decomposed into two stages: first 

to decouple the different subsystems and then to 

control them. Decoupling or non-interacting control is 

a popular approach to dealing with control loop 

interactions. Here, the objective is to eliminate 

completely the effects of loop interactions. 

Decoupling control was initially developed for 

deterministic linear systems. Typical approaches 

include design of state feedback to reach decoupling 

of state equation [6], decoupling in frequency domain 

through inverse Nyquist array [28], decoupling via 

relative gain array [5, 7, 31], decoupling using 

Singular Value Decomposition of the transfer function 

matrix [21], and designing precompensators that 

transform the controlled transfer function matrix into a 

diagonal matrix or diagonal dominance [1, 26, 32], 

where the precompensator can take the form of: 

dynamic decoupling, steady state decoupling or 

decoupling at one particular frequency. All these 

different approaches separate the controlled 

multivariable system into several Single-Input-Single-

Output (SISO) subsystems through a suitable 

decoupler that depends on accurate process model 

before controller design. But in practice, it is difficult 

to reach decoupling control of complex industrial 
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multivariable processes characterized by strongly 

interactions and uncertainties. 

One of the main issues in control is to deal with 

uncertainties including internal (parameter and 

unmodeled dynamics) and external (disturbances). 

However, most uncertainties are not measurable. 

Hence, how to estimate uncertainties by using the 

control input and output of the system is a significant 

problem. Many approaches such as, disturbance 

accommodation control (DAC) [17, 18], the unknown 

input observer (UIO) [3, 15], the disturbance observer 

(DOB) [4, 27, 29] and the extended state observer 

(ESO) [8, 12, 13, 14] have been proposed to estimate 

uncertainties from the input-output data. In DAC, UIO 

and DOB the external disturbance of a linear time-

invariant system is estimated and then rejected. DAC 

and UIO can be viewed as a special case of DOB [27]. 

The main difference between ESO and DAC, UIO and 

DOB is that ESO was conceived to deal with 

nonlinear systems with mixed uncertainties (i.e. 

unmodeled dynamics and disturbances). 

Active Disturbance Rejection Control (ADRC) [8, 

12, 13, 14] is a robust control method that does not 

require a detailed mathematical description of the 

system. 

It is based on the extension of the system model 

trough a virtual state variable, representing everything 

that it is not included in the mathematical model of the 

plant. An estimate of this state provided by an ESO 

can be used in the control signal to decouple the real 

perturbation in the plant. It is this inherent capacity of 

decoupling of the ADRC method that has been 

employed in the control of MIMO systems. This is 

done by considering all the coupling and interference 

interactions between the channels of the system as 

disturbances, use an ESO to estimate them in real time 

and then canceling its effect employing the estimate as 

part of the control signal. This strategy has been used 

in the control of particular MIMO problems by 

decomposing the global system into several SISO 

subsystems and then designing ADRC for each loop, 

for example: [16, 19, 22, 30, 33], to cite few of them. 

There are also some contributions that propose a 

general ADRC framework to treat the MIMO systems: 

we can mention in this case: [34] where MIMO 

systems with time delay are considered by viewing the 

system with time delay in the input as a high-order 

system without time delay in the input, [24] where it is 

employed a dynamic decoupling method in the control 

of a performance turbofan engine and [36] where a 

dynamic decoupling control based on SISO- ADRC is 

used for uncertain square MIMO systems with 

predetermined input-output pairs. 
The tuning procedure in ADRC was originally pro-

posed in a nonlinear form [8, 12, 13, 14], but the large 

number of gains made tuning an art. The structure was 

simplified to its linear form [9] and parameterized into 

a few gains. In its linear form, the tuning is essentially 

a pole-placement technique and the desired 

performance is indirectly achieved through the 

location of the closed- loop poles (controller and 

ESO). However, the final choice of these poles 

becomes a trial-and-error strategy that may be difficult 

for practicing engineers to fully understand and to 

competently apply to real systems. Moreover, the 

tuning procedure does not address the problem of 

control effort and in practice all actuators have 

maximal movement constraints in the form of satu-

ration limits on amplitude. LQR [2, 20] is a well-

known design technique in modern optimal control 

theory and has been widely used in many applications. 

In contrast with pole-placement, the desired 

performance objectives are directly addressed by 

minimizing a quadratic function of the state and 

control input. The resulting optimal control law has 

many nice properties, including that of closed-loop 

stability. Furthermore, by the choice of the weighting 

matrices Q and R it is possible to control the tradeoff 

between the requirements of regulating the state and 

the expenditure of control energy. 
In this paper, we propose a LQR solution to 

develop optimal tuning algorithms for decoupling 

uncertain MIMO systems that have been formulated 

into the ADRC framework. The method allows 

computing the gain matrices of the controller and the 

ESO directly and by considering the system in a 

global way avoiding the general standard approach of 

SISO-ADRC design into the MIMO case. 
The article is organized as follows. Section 2 con-

siders a new input disturbance formulation for 

uncertain MIMO system. In section 3, the input 

disturbance model is used to represent the uncertain 

MIMO system into the ADRC framework. Section 4 

addresses the LQR formulation of the MIMO-ADRC 

problem and gives some algorithms for optimal tuning 

the gains of the controller and the ESO. Some 

empirical guidelines for choosing the controller and 

ESO bandwidths are also treated. Section 5 develops 

the application of the method to a heat exchanger. 

Notation: Capital bold typeface letters denote 

matrices and small bold typeface letters denote 

vectors. �̇� = 𝑑𝑎/𝑑𝑡 , �̈� = 𝑑 𝑎/𝑑𝑡 , 𝑎 = 𝑑 𝑎/𝑑𝑡 , 

𝐴 = 𝑡𝑟𝑎𝑛𝑝𝑜𝑠𝑒 𝑜𝑓 𝐴 , ℝ  is the set of real numbers, 

�̂� = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 , 𝑟𝑘(𝐴) = 𝑟𝑎𝑛𝑘 𝑜𝑓 𝐴 , 

𝑑𝑒𝑡(𝐴) = 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴. 

2. Input disturbance model of a MIMO system 

We consider a MIMO nonlinear time varying plant 

described exactly in its operating range by the 

followings implicit coupled input-output equations 

𝑆 (𝑡,𝒘(𝑡), 𝝂 (𝑡), … , 𝝂 (𝑡), 𝒑 (𝑡), … , 𝒑 (𝑡)) = 0,(1) 

where 𝑆 (⋅)  for 𝑖 = 1,…𝑝  is a sufficiently smooth 

function of the external vector disturbance 𝒘(𝑡) =
[𝑤 (𝑡) … 𝑤 (𝑡)] , and the vectors 

𝝂 (𝑡) = [𝑦 (𝑡) �̇� (𝑡) … 𝑦
 

   (𝑡)]
 
 (2) 
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𝒑 (𝑡) = [𝑢 (𝑡) �̇� (𝑡) … 𝑢
 

   (𝑡)]
 
 (3) 

where 𝒖(𝑡) = [𝑢 (𝑡) … 𝑢 (𝑡)]
  is the control 

vector and 𝒚(𝑡) = [𝑦 (𝑡) … 𝑦 (𝑡)]  is the 

controlled output. Assume that for some integer 𝑛 , 

such that 0 < 𝑛 ≤ n  
, it is verified 

   

   ( )
(  )

≠ 0. The 

implicit function theorem yields then locally 

𝑦 (𝑡)
(  ) =

𝑆 
 (𝑡, 𝒘(𝑡), �̅� (𝑡), … , �̅� (𝑡), 𝒑 (𝑡), … , 𝒑 (𝑡)), (4) 

with 

�̅� (𝑡) = [𝑦 (𝑡) �̇� (𝑡) … 𝑦 
    𝑦 

    … 𝑦
 

   ]. 

By setting 𝑆 
 (⋅) = 𝑓 ̅(⋅) + 𝒃  𝒖(𝑡)  in (2), being 

𝒃  = [
𝑏  , … 𝑏  , ]  a real unknown scaling 

vector of the system that can be approximated by the 

vector 𝒃 ̂ = [
𝑏 ̂ , … 𝑏 ̂ , ], one has 

𝑦 (𝑡)
(  ) = 𝑓 + 𝒃 ̂ 𝒖(𝑡), (5) 

where 𝑓 = 𝑓 ̅(⋅) + (𝒃  − 𝒃 ̂ )𝒖(𝑡)  is the input 

disturbance that represents any difference between the 

model and the real system. That is, 𝑓  includes the 

combined effects of unmodeled dynamics, external 

disturbances and loop interactions. 

3. MIMO-ADRC formulation 

We fix 𝑛 = 𝑛 = 𝑛 = ⋯ = 𝑛  in (5). That is, 

𝑦 (𝑡)
( ) = 𝑓 + 𝒃 ̂ 𝒖(𝑡),

⋮
𝑦 (𝑡)

( ) = 𝑓 + 𝒃 ̂ 𝒖(𝑡).
 (6) 

Equation (6) can be expressed in compact form by 

defining the input matrix of the system 𝑩 ̂ =

[𝒃 ̂ … 𝒃 ̂ ]
 
, the generalized perturbation vector 

𝒇 = [𝑓 … 𝑓 ]  and the n-th derivative order output 

vector 𝒚(𝑡)( ) = [𝑦 (𝑡)
( ) … 𝑦 (𝑡)

( )]
 
, that is 

𝒚(𝑡)( ) = 𝒇 + 𝑩 ̂𝒖(𝑡). (7) 

We can remove the scaling matrix 𝑩 ̂  in (7) by 

doing 𝑩 ̂𝒖(𝑡) = 𝒖 ̂(𝑡) , the plant equation changes 

now to 

𝒚(𝑡)( ) = 𝒇 + 𝒖 ̂(𝑡). (8) 

The real control input is 

𝒖(𝑡) = 𝑩 ̂
 (𝑩 ̂𝑩 ̂

 )
  
𝒖 ̂(𝑡). (9) 

Here it is supposed that 𝑝 ≤ 𝑚  and 𝑟𝑘(𝑩 ̂) = 𝑝 

so that the right inverse of matrix 𝑩 ̂ in (9) exists. 

Remark 1: In the case of square plants 𝑝 = 𝑚 the 

right inverse of 𝑩 ̂  reduces to its inverse. Moreover, 

under the assumption of predetermined input-output 

pairs, it can be defined 𝒃 ̂ = 𝑏   and the inverse of 

𝑩 ̂ would be computed as 

𝑩 ̂
  = 𝑑𝑖𝑎𝑔(𝑏  

  … 𝑏  
  ). 

Let the state vector be 

�̅�(𝑡) = [𝒙 
 (𝑡), 𝒙 

 (𝑡), … , 𝒙 
 (𝑡)] =

[𝒚(𝑡) , �̇�(𝑡) , … , 𝒚(𝑡)(   )
 
]
 
. 

The state space model of (8) can be written as 

{
�̇̅�(𝑡) = �̅��̅�(𝑡) + �̅�(𝒇 + 𝒖 ̂(𝑡))

𝒚(𝑡) = �̅��̅�(𝑡)
, (10) 

where 

�̅� =

[
 
 
 
 
 
𝕆 𝕀 𝕆 … 𝕆 
𝕆 𝕆 𝕀 … 𝕆 
⋮ ⋮ ⋮ ⋱ ⋮
𝕆 𝕆 𝕆 … 𝕀 
𝕆 𝕆 𝕆 … 𝕆 ]

 
 
 
 
 

(       )

  

�̅� =

[
 
 
 
 
 
𝕆 
𝕆 
⋮
𝕆 
𝕀 ]
 
 
 
 
 

(      )

�̅� = [𝕀 𝕆 … 𝕆 ](      ). 

Here 𝕆  and 𝕀  are zero and identity matrices 

respectively. Let the vector 𝒙   = 𝒇, the state vector 

is now 𝒙 = [�̅� , 𝒇 ] ∈ ℝ(   )  and the state space 

model of the plant becomes 

{
�̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖 ̂(𝑡) + 𝑬�̇�(𝑡))

𝒚(𝑡) = 𝑪𝒙(𝑡)
 (11) 

𝑨 = [
�̅� �̅�

𝕆      𝕆 
]
 (   )    (   )

 𝑩 = [
�̅�
𝕆 
]
(   )     

 

𝑪 = [�̅� 𝕆 ]     (   ) 𝑬 = [
𝐎     
𝕀 

]
 (   )    

 

For system (11) the ESO is designed as follows 

{
�̇�(𝑡) = 𝑨𝒛(𝑡) + 𝑩𝒖 ̂(𝑡) + 𝑳(𝒚(𝑡) − �̂�(𝑡))

�̂�(𝑡) = 𝑪𝒛(𝑡)
, (12) 

where 𝒛 = [�̂� , �̂� ]
 
∈ ℝ(   )  is an estimate of the 

state vector 𝒙(𝑡)  and the generalized perturbation 𝒇 

and 𝑳 = [𝑳 , 𝑳 , … , 𝑳   ]
  is the observer gain matrix 

with 𝑳 ∈ ℝ
      (computation of matrix 𝑳  will be 

considered in the next section). As the vector 

𝒛   (𝑡) → 𝒇(⋅), it is used to actively cancel 𝒇(⋅)in (8) 

by applying 

𝒖 ̂(𝑡) = [𝒖 (𝑡) − 𝒛   (𝑡)]. (13) 

This control law decouples the system into a set of 

𝑝 parallel 𝑛 integrator systems 
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𝒚(𝑡)( ) = 𝒖 (𝑡). (14) 

A Proportional-Derivative (PD) type multivariable 

controller can now be used, that is 

𝒖 (𝑡) = 𝑲 (𝒓 − 𝒛 (𝑡)) − 𝑲 𝒛 (𝑡) − ⋯−

𝑲 𝒛 (𝑡). (15) 

where 𝒓 = [𝑟 
 … . 𝑟 

 ]  is the desired set point for 

the vector output 𝒚(𝑡) and 𝑲 = [𝑲 , 𝑲 , … ,𝑲 ] is the 

controller gain matrix with 𝑲 ∈ ℝ
      (computation 

of matrix 𝑲 will be considered in the next section). 

Now, we demonstrate the separation principle for 

MIMO-ADRC closed-loop system. 

Theorem 1: If the estimation error in the ESO is 

defined as 

𝒆(𝑡) = 𝒙(𝑡) + 𝒛(𝑡), (16) 

  then for the augmented vector [�̇̅� 𝒆 ]
  

the closed-loop MIMO-ADRC is 

described as 

[
�̇̅�(𝑡)

�̇�(𝑡)
] = [�̅� − �̅�𝑲 𝑩(̅̅̅̅ 𝑲 𝕆

𝕆 𝑨 − 𝑳𝑪
] [
�̅�(𝑡)

𝒆(𝑡)
] 

+[�̅�𝑲 
𝕆
]𝒓 + [

𝕆
𝑬
] �̇�. (17) 

Proof. Using (11) and (12), the estimation error 

Dynamics of the ESO is given as 

�̇�(𝑡) = (𝑨 − 𝑳𝑪)𝒆(𝑡) + 𝑬�̇�(𝑡). (18) 

By replacing (15) in (13), we can express 𝐮 ̂(t) as  

𝒖 ̂(𝑡) = 𝑲 𝒓 − [𝑲      𝕀 ]𝒛(𝑡). (19) 

Then combining (10), (18) and (19) yields the closed-

loop MIMO-ADRC (17). 

From (17), it is straightforward to verify that the 

eigenvalues of the system matrix of the closed-loop 

MIMO-ADRC equations are given by the eigenvalues 

of (�̅� − �̅�𝑲)  and (𝑨 − 𝑳𝑪) . Since it can be shown 

that the pair (�̅�, �̅�) is controllable and the pair (𝑨, 𝑪) 
is observable, the stability of (17) can always be 

ensured by placing the controller and observer poles 

appropriately. Moreover, under the assumption of 

boundedness of �̇�(⋅) ,the BIBO stability of (17) is 

assured [35]. This is the case when �̇�(⋅) = 0 or its rate 

of change is small. If the rate of change is not 

negligible, one can design a generalized extended state 

observer (GESO) of p-th order [25] to estimate the 

state together with 𝒇, �̇�, �̈�, … , 𝒇(   ) . If 𝒇( )  is 

negligible, the closed-loop MIMO-ADRC system (17) 

will be BIBO stable, enabling to deal the problem of 

fast varying generalized perturbation within the 

ADRC framework. 

4. LQR formulation of the MIMO-ADRC 

problem 

In order to develop the LQR formulation of the 

MIMO-ADRC problem we first establish the 

following result. 

Theorem 2: Let the tracking error be 

𝜺(𝑡) = �̅� − �̅�(𝑡), (20) 

  where the vector �̅� is the desired general 

set point defined as 

�̅� = [𝒓 𝕆 … 𝕆 ] , (21) 

  and 𝒓 = [𝑟 
 … 𝑟 

 ]  is the desired set 

point for the vector output 𝒚(𝑡). We use 

𝕆 to denote a zero vector of dimension 

𝑝 𝑥 1. Then the system (10) with control 

law (15) takes the form 

�̇�(𝑡) = �̅�𝜺(𝑡) − �̅�𝒖 (𝑡). (22) 

Proof. Replacing (13) in (10) results in 

�̇�(𝑡) = �̅��̅�(𝑡) − �̅�𝒖 (𝑡). (23) 

The control law in (15) is written in terms of the real 

state vector 

�̅�(𝑡) = [𝒙 
 (𝑡), 𝒙 

 (𝑡), … , 𝒙 
 (𝑡)] ,  

that is 

𝒖 (𝑡) = 𝑲 (𝒓 − 𝒙 (𝑡)) − 𝑲 𝒙 (𝑡) − ⋯−

𝑲 𝒙 (𝑡). (24) 

Taking the derivative of (20) and using (23) yields 

�̇�(𝑡) = −�̅��̅�(𝑡) − �̅�𝒖 (𝑡) (25) 

By adding and subtracting the term �̅��̅� in (25) gives 

�̇�(𝑡) = �̅�(�̅� − �̅�(𝑡)) − �̅�𝒖 (𝑡) − �̅��̅�. (26) 

The Theorem is established because �̅��̅� = 0 in (26). 

Remark 2: It must be remembered that because of 

the separation principle (17) we can always apply 

(24) with the estimate of the state to the real system. 

In order to have the LQR formulation of the 

ADRC problem given by (22) we define the quadratic 

cost 

𝐽 = ∫ [𝜺(𝑡) 𝑸𝜺(𝑡) + 𝒖 
 (𝑡)𝑹𝒖 (𝑡)] 𝑑𝑡

 

 
, (27) 

where 𝑸  and 𝑹  are, respectively, a positive 

semidefinite and a positive definite matrices. It is well 

known that the minimization of (27) gives the state 

feedback control 

𝒖 (𝑡) = −�̂�𝜺(𝑡) (28) 

with 

�̂� = 𝑹  (−�̅�) 𝑷, (29) 
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where 𝑷 is the symmetric positive definite solution of 

the Continuous Algebraic Riccati Equation (CARE) 

given by 

�̅� 𝑷 + 𝑷�̅� + 𝑸 − 𝑷(−�̅�)𝑹  (−�̅�) 𝑷 = 0. (30) 

The matrix gain 𝑲 in (24) is easily obtained from 

�̂� in (28) by doing 

−�̂�𝜺(𝑡) = [−�̂� −�̂� … −�̂� ](�̅� − �̅�(𝑡)) =

−�̂� (𝒓 − 𝒙 (𝑡)) − (−�̂� )𝒙 (𝑡) − ⋯−

(−�̂� )𝒙 (𝑡). 

That is, the original control law (24) is obtained 

via the LQR approach by the choice of the matrix gain 

𝑲 = [𝑲 , 𝑲 , … ,𝑲 ] = [−�̂� , −�̂� , … , −�̂� ].(31) 

Hence 𝑲 = −�̂� = 𝑹  �̅� 𝑷. In Fig. 1, it is shown 

the MIMO-ADRC configuration where the method 

LQR is employed for optimal tuning the gains. 
 

 

Figure 1. MIMO-ADRC tuning employing LQR 

4.1. Selection of matrices Q and R 

The matrices   𝑸 ∈ ℝ        and  𝑹 ∈ ℝ      in (27) 

are the tuning parameters for computing the matrix 𝑲 

in (31). One typical choice is  𝑸 = �̅� �̅� and  𝑹 = 𝜆𝕀  

with   𝜆 > 0 , this corresponds to making a trade-off 

between plant output and input “energies”. The 

quadratic cost (27) takes the form 

𝐽 = ∫ [∥ 𝒚(𝑡) ∥ + 𝜆 ∥ 𝒖 (𝑡) ∥
 ] 𝑑𝑡

 

 
. (32) 

When   𝜆  is small, the convergence 𝒚(𝑡) → 𝒓  is 

faster but the control commands 𝒖 (𝑡)  are large. 

When   𝜆 is large, the response 𝒚(𝑡) is more sluggish 

and the control commands are smaller. 

Remark 3: With actuator restrictions, we choose   𝜆 

larger to reduce the control effort at the expense of 

system performance. 

In LQR, the connection to closed-loop dynamics is 

indirect; it depends on the choice of matrices 𝑸 and 𝑹. 

Thus, one usually needs to perform some trial-and-

error procedure to obtain satisfactory closed-loop 

response. For this reason, it is interesting to link LQR 

to pole placement by requiring that the closed-loop 

poles of the MIMO-ADRC system (22) with optimal 

control law (15) and (31) lie in some specific region of 

the complex plane. A simple example of this is when 

we require that the closed-loop poles have real part to 

the left of 𝑠 = −𝛼 , for 𝛼 ∈ ℝ . In LQR theory, this 

problem is called LQR design with a prescribed 

degree of stability [2]. In the following result, it is 

adapted to MIMO –ADRC. 

Theorem 3: Let a MIMO-ADRC system be described 

by the state equations (22) and the LQR 

criterion 

𝐽 = ∫ 𝑒    [𝜺(𝑡) 𝑸𝜺(𝑡) + 𝒖 
 (𝑡)𝑹𝒖 (𝑡)] 𝑑𝑡

 

 
. (33) 

  Then the eigenvalues of the closed-loop 

matrix (�̅� − �̅�𝑲) lie in  ℛ𝑒𝑎𝑙(𝑠) < −𝑤 , 

where 𝑤 > 0, and the control signal is 

𝒖 = 𝑲𝒙 with gain matrix 𝑲 = 𝑹  �̅� 𝑴 

and 𝑴  the symmetric positive definite 

solution of the CARE given by 

(�̅� + 𝑤 𝕀)
 𝑴+𝑴(�̅� + 𝑤 𝕀) + 𝑸 −

𝑴�̅�𝑹  �̅� 𝑴 = 𝕆. (34) 

Proof: Replacing the coordinate transformation 

𝜺 = 𝑒   𝒙 and 𝝂 = 𝑒   𝐮  in (33) gives the Standard 

LQR criterion (27). 

Algorithm 1 shows how to implement Theorem 3 

through the Matlab® command 𝑙𝑞𝑟. 

Algorithm 1 

Matlab LQR-MIMO-ADRC design for a prescribed degree 

of stability    

Input: �̅�, �̅� from (10). 

 𝑸,𝑹,   from (33.) 

Step 1:  <<𝑨 = �̅� + 𝑤  𝕀  ; <enter> 

Step 2:  <<𝑲 = 𝑙𝑔𝑟(𝑨 , �̅�, 𝑸, 𝑹) <enter> 

Output:  𝑲 = [𝑲 … 𝑲 ]       

 

Another typical region [11] is when we require the 

closed-loop poles to be inside a circle with radius 𝜌 
and with center at (−𝛼 , 0) with 𝛼 > 𝜌 ≥ 0. That is, 

the circle 𝐶(𝛼, 𝜌) is entirely within the left-half plane. 

This can be achieved by first transforming the Laplace 

variable 𝑠 to a new variable  𝜌, defined as 𝜎 = (𝑠 +
𝛼)/𝜌. This takes the original circle in 𝑠-plane to a unit 

circle in 𝜎  -plane. The corresponding, transformed 

state-space model has the form 

𝜎𝜀(𝜎) =
 

 
(α𝕀 + �̅�)𝜀(𝜎) +

 

 
(−�̅�)𝑢 (𝜎) . (35) 

One then treats (35) as the state-space description 

of a discrete-time system. So, solving the 

corresponding discrete optimal control problem leads 

to a feedback matrix such that (1/𝜌)(𝛼𝕀 + �̅� + �̅�𝑲) 
has all its eigenvalues inside the unit disk. This in turn 

implies that, when the same control law is applied in 

continuous time, then the closed-loop poles reside in 

the original circle in 𝑠 -plane. The above result is 

summarized in Algorithm 2. 

Algorithm 2  
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Matlab LQR-MIMO-ADRC design such that the closed-

loop poles are inside the circle 𝐶(𝛼, 𝜌) 

Input: �̅�, �̅� from (10). 

 𝑸,𝑹 from (27.) 

Step 1:  <<𝑨 =
�̅�  

 
; <enter> 

Step 2:  << 𝑩 =
�̅�

 
; <enter> 

Step 3:  <<𝑲 = 𝑑𝑙𝑔𝑟(𝑨 , 𝑩, 𝑸, 𝑹) <enter> 

Output:  𝑲 = [𝑲 … 𝑲 ]       

Remark 4: The above ideas can be extended to 

other cases, in which the desired pole-placement 

region can be transformed into the stability region, we 

propose for example [23]. 

4.2. LQR-ESO design 

ADRC method is based on the separation 

principle. This allows treating the unknown dynamic 

and disturbances in a physical process as the 

generalized disturbance vector 𝒇 in (8), build an ESO 

to estimate it in real-time, and then canceling its effect 

using the estimate as part of the control signal. For 

computing the ESO gain matrix 

𝑳 = [𝑳 , 𝑳 , … , 𝑳   ]
  with 𝑳 ∈ ℝ

      in (12) within 

a LQR formulation, we propose the LQR design with 

a prescribed degree of stability [2]. This allows 

staying in the LQR framework and imposes the 

practical condition that ESO dynamics must be faster 

than the controller one. By duality, it is simple to 

adapt Theorem 1 to design an optimal ESO with a 

prescribed degree of stability by replacing 𝐴 ← 𝐴 , 

𝐵 ← 𝐶  and 𝐾 ← 𝐿 . 

Theorem 4: We consider an ADRC system where the 

control law 𝒖 (𝑡) in (15), (31) has been 

computed such that the closed-loop poles 

are inside the region ℛ𝑒𝑎𝑙(𝑠) < −𝑤   and 

the quadratic cost of the LQR with a 

prescribed degree of stability criterion is 

given by 

𝐽 = ∫ 𝑒    (𝒛 (𝑡)𝑸 𝒛(𝑡) + 𝒖
 (𝑡)𝑹 𝒖(𝑡)) 𝑑𝑡

 

 
. (36) 

  Then the ESO described as (12), where 

𝑤  is the required ESO bandwidth chosen 

as 𝑤 = 𝛾𝑤  , has a gain matrix given by 

𝑳 = 𝑴𝑪 𝑹 
  ∈ ℝ      , (37) 

  that places the ESO eigenvalues into 

ℛ𝑒𝑎𝑙(𝑠) < −𝑤  with 𝑴  the symmetric 

positive definite solution of the CARE 

given by 

(𝑨 + 𝑤 𝕀)𝑴 +𝑴(𝑨 + 𝑤 𝕀)
 + 𝑸 −

𝑴𝑪 𝑹 
  𝑪𝑴 = 𝕆. (38) 

Remark 5: 𝑤  is chosen 𝛾  times the maximal 

possible closed-loop pole that is defined through 𝑤  in 

Theorem 1. 

For ease of reference, we summarize the procedure 

of design in Algorithm 3. 

Under the assumption of controllability of the pair 

(�̅�, �̅�) in (10) and by a suitable choice of the feedback 

matrix 𝑲 in (15), (31) (Algorithms 1 or 2), the closed-

loop poles could be assigned to any desired set of 

locations. However, if the closed-loop poles are 

chosen much faster than those of the plant, then the 

gain 𝑲 will be large, leading to a large plant input. A 

similar problem arises in the ESO design 

(Algorithm 3). If we consider the presence of 

measurement noise 𝜼(𝑡) in the controlled output 𝒚(𝑡), 
the estimation error dynamics of the ESO (18) takes 

the form 

�̇�(𝑡) = (𝑨 − 𝑳𝑪)𝒆(𝑡) + 𝑬�̇�(𝑡) − 𝑳𝜼(𝑡). (39) 

It is evident that a large value for 𝑳 will enhance 

the effect of the measurement noise, since this is 

usually a high-frequency signal. It is then needed a 

compromise between speed of response and noise 

immunity. In MIMO-ADRC, for controller design, one 

places the desired closed-loop poles in the region 

ℛ𝑒𝑎𝑙(𝑠) < −𝑤   based on typical performance criteria 

(rise time, settling time, overshoot, etc.). The larger 

the parametre 𝑤  , the faster the response, the larger 

the control signal and a system more susceptible to 

noise. For ESO design, we choose the ESO bandwidth 

𝑤  by fixing the factor 𝛾 in 𝑤 = 𝛾𝑤   to be two to six 

times faster than the controller poles. This ensures the 

observer error vector vector decays faster than the 

desired closed-loop dynamic allowing the controller 

poles to dominate the total response. If there are 

presence of sensor noise or actuator constraints, the 

observer poles may be chosen slower than two times 

𝑤  . This would yield a system with lower bandwidth, 

more noise smoothing and less control energy 

expenditure. 

Algorithm 3 

Matlab LQR-ESO design with a prescribed degree of 

stability 

Initialization: 𝑸 = 𝕀 (   ), 𝑹 = 𝕀  

Input: 𝑨, 𝑪 from (12) 

 𝑸 , 𝑹 , 𝑤  from (36.) 

Step 1:  <<𝑨 = 𝑨 + 𝑤 𝕀 (   )   <enter> 

Step 2:  << 𝑲 = 𝑙𝑞𝑟(𝑨 
 , 𝑪 , 𝑸 , 𝑹 ); <enter> 

Step 3:  <<𝑳 = transpose(𝑲 )   <enter> 

Output:  𝑳 = [𝑳 , 𝑳 , … , 𝑳   ] (   )    
  

 

5. Application to a heat exchanger 

A heat exchanger is a typical system found in 

industrial equipment, built for efficient heat transfer 
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from one medium to another. The media may be 

separated by a solid wall, so that they never mix, or 

they may be in direct contact. They are widely used in 

refrigeration, air conditioning, power plants, chemical 

plants, petrochemical plants, petroleum refineries and 

natural gas processing. Consider the heat exchanger in 

Fig. 2 [10]. The lower part is the cold part into which 

water flows with temperature 𝑇   and the flow is 𝑓 . 

The upper part is the hot part with input water 

temperature 𝑇   and flow 𝑓 . When the flows meet 

through separate pipes, the hot water heats the cold 

water to temperature 𝑇  and it is itself cooled to 

temperature 𝑇 . By setting up the heat balance in the 

cold part it is found that the temperatures change 

according to 

𝑉 �̇� (𝑡) = 𝑓 [𝑇  (𝑡) − 𝑇 (𝑡)] + 𝜙[𝑇 (𝑡) −

𝑇 (𝑡)]. (40) 

The first term in the right hand side represents the 

cooling due to the inflow of cold water (normally, 

𝑇  ≤ 𝑇 , so this will give the decrease of 

temperature). The other term corresponds to the heat 

transfer from the hot to the cold part of the heat 

exchanger. It is proportional to the difference in 

temperature, and the constant of proportionality 𝜙 , 

depends on the heat transfer coefficient, the heat 

capacity of the fluids, etc. Correspondingly, for the hot 

part one has 

𝑉 �̇� (𝑡) = 𝑓 [𝑇  (𝑡) − 𝑇 (𝑡)] + 𝜙[𝑇 (𝑡) −

𝑇 (𝑡)]. (41) 

It is now assumed that the flows are constant 

𝑓 = 𝑓 = 𝑓, the outputs are 𝑦 = 𝑇  and 𝑦 = 𝑇  and 

control inputs are selected as 𝑢 = 𝑇   and 𝑢 = 𝑇  . 

Equations (40) and (41) may be rewritten as 

�̇� (𝑡) =
 

  
[𝑢 (𝑡) − 𝑦 (𝑡)] +

 

  
[𝑦 (𝑡) − 𝑦 (𝑡)],(42) 

�̇� (𝑡) =
 

  
[𝑢 (𝑡) − 𝑦 (𝑡)] +

 

  
[𝑦 (𝑡) − 𝑦 (𝑡)],(43) 

 

Figure 2. Heat Exchanger 

We consider the numerical values 𝑓 = 0.01 

𝑚 /𝑚𝑖𝑛, 𝜙 = 0.2 𝑚 /𝑚𝑖𝑛 and 𝑉 = 𝑉 = 1 𝑚
 . The 

transfer function matrix is computed as 

𝐺(𝑠) =
 .  

(   .  )(   .  )
[
𝑠 + 0.21 0.2
0.2 𝑠 + 0.21

] (44) 

To measure the degree of interaction between the 

loops of the system, the concept of relative gain array 

(RGA) [5] can be used. For (44), the RGA is 

computed as 

𝐺(0) ∘ [𝐺(0)  ] = [
10.76 −9.76
−9.76 10.76

], (45) 

where the operator ∘  denotes element-wise 

multiplication. From the values of the RGA in (45), it 

is evident that the system is strongly coupled. 

For MIMO-ADRC design, equations (41) and (42) 

are written in the form (7) selecting 𝒚 = [𝑦 𝑦 ] =
[𝑇 𝑇 ]

 , 𝒇 = [𝑓 𝑓 ]
 , 𝒖 = [𝑢 𝑢 ] =

[𝑇  𝑇  ]
   and 𝑩 ̂ = [

0.01 0
0 0.01

]. The state space 

description for �̅�(𝑡) = [𝒙 
 (𝑡)] = [𝒚(𝑡) ]  is 

{
�̇̅�(𝑡) = [

1 0
0 1

] (𝒇 + 𝒖 ̂(𝑡))

𝒚(𝑡) = [
1 0
0 1

] �̅�(𝑡)
. (46) 

Comparing (46) with (10) yields 

�̅� = 𝕆 , �̅� = 𝕀 , �̅� = 𝕀 . (47) 

The extended state space description of (46) for 

𝒙 = [�̅� , 𝒇 ] ∈ ℝ  is 

{
 
 
 
 

 
 
 
 
�̇� = [

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

] 𝒙 + [

1 0
0 1
0 0
0 0

]𝒖 ̂(𝑡)

+ [

0 0
0 0
1 0
0 1

] �̇�

𝒚 = [
1 0 0 0
0 1 0 0

] 𝒙

 (48) 

The ESO is obtained through the equations 

{
 
 
 

 
 
 
�̇� = [

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

] 𝒛 + [

1 0
0 1
0 0
0 0

]𝒖 ̂

+[
𝐿  𝐿  𝐿  𝐿  
𝐿  𝐿  𝐿  𝐿  

]
 

(𝒚 − �̂�)

�̂� = [
1 0 0 0
0 1 0 0

] 𝒛,

 (49) 

where 𝐿 = [
12.17 0 37.5 0
0 12.17 0 37.5

]
 

  is the 

ESO gain matrix which is computed through 

algorithm 3 for 𝑸 = 𝕀 , 𝑹 = 𝕀  and 𝑤 = 3 . The 

control input is 
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Figure 3. Set-point tracking 

 

Figure 4. Set-point tracking and disturbance rejection 

for constant 𝜙 in (42-43) 

 

Figure 5. Set-point tracking and disturbance rejection 

for time-varying 𝜙 in (42-43) 

 

𝒖(𝑡) = 𝑩 ̂
  𝒖 ̂(𝑡) = [

100 0
0 100

] {[
𝐾  𝐾  
𝐾  𝐾  

] (𝒓 −

𝒛 (𝑡)) − 𝒛 (𝑡)}, (50) 

where 𝑲 = [
2.4142 0
0 4.4142

]  is the controller gain 

matrix and 𝒛 (𝑡)  is the estimate of the generalized 

perturbation 𝒇 = [𝑓 𝑓 ]
 . The gain matrix 𝑲  is 

computed employing the algorithm 1 by choosing 

𝑸 = 𝕀 , 𝑹 = 𝕀 ,  and 𝑤 = 1 . Fig. 3 shows the 

performance of the proposed method compared with a 

standard multi-loop design based on steady state 

decoupling [1, 32] for a set point in channel 1 with 

amplitude 2 and a set point in channel 2 with 

amplitude -2 applied since 𝑡 = 10 𝑠. In Fig. 4, we add 

an external pulse as a disturbance signal, of amplitude 

1 and length 10 seconds since 𝑡 = 10 𝑠 . Finally, in 

Fig. 5, we repeat the conditions of Fig. 4 but changing 

the constant 𝜙 in (41) and (42) into the time varying 

one 𝜙 = −0.016(𝑡 − 0.2). 

6. Conclusions 

In this paper, a LQR solution has been used to 

develop optimal tuning algorithms for decoupling 

uncertain MIMO systems that have been formulated 

into the ADRC framework. The desired performance 

objectives are globally and directly addressed by 

minimizing a quadratic function of the state and 

control input avoiding the typical trial-and-error 

strategy of SISO-ADRC for every loop of the MIMO 

system. The method outperforms the standard multi-

loop approach in the case of a heat exchanger. 
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