
11

An Intrusion Detection System Using a Machine Learning

Approach in IOT-based Smart Cities

Liloja1* and Dr.P. Ranjana2

1*Research Scholar, Department of Computer Science, Hindustan Institute of Technology and

Science, Chennai, Tamil Nadu, India. lilojabasheer@gmail.com

2Professor and HOD (MCA), Hindustan Institute of Technology and Science, Chennai,

Tamil Nadu, India. pranjana@hindustanuniv.ac.in

Received: September 12, 2022; Accepted: November 19, 2022; Published: February 28, 2023

Abstract

For a long time, the digitization of all aspects of life in current cultures is seen as a procured gain.

In any way, the computerized world is noticeably flawed and numerous risks and dangers are present

as in the terrestrial land. People's daily life has changed due to the quick and advanced level of

improvement in smart cities. The most important problem that needs to be looked upon is citizens'

life, security and privacy issues. The use of Deep Learning (DL), a subcategory of Machine learning

(ML) has excelled in the field of smart cities. So, the following stages in this paper bring an effective

intrusion detection system using deep learning. a) Data collection from standard datasets such as

GPRS, CIDDS001, as well as UNSW-NB15 contains various types of attacks, these will be given

for b) Preprocessing, for eliminating anomalies using missing value removal, and normalization

techniques. Then from those data, quintessential features are extracted using Autoencoder (AE) and

then from those several features, d) feature selection for selecting and mostly removing timestamps

from attack dataset using Random Forest (RF) and finally for e) prediction with help of Restricted

Boltzmann Network (RBN). Experiment evaluation states that proposed model (RF-RBN)

performed better over various state-of-art models under various measures (accuracy:0.95,

sensitivity:0.96, specificity:0.97, detection rate:0.95).

Keywords: Deep Learning, Intrusion Detection System, IOT, Machine Learning, Restricted

Boltzmann Network, Smart Cities.

1 Introduction

A smart city raises the standard of living for its citizens by maximising the potential of its organisational

structure. Cities can use smart city technologies to monitor their growth and to immediately

communicate with their municipal infrastructure and social networks. ICT is used to improve urban

services, which also aids in cost and resource reduction and improves citizen-government interactions.

Smart city elements were created to control urban traffic and provide speedy responses.it is more

prepared to handle problems than a city where relationships with its residents are mostly "transactional"

[1]. According to Rudolf Giffinger, an expert in research analysis on urban and regional growth at

Vienna University of Technology, smart cities have six essential characteristics. Both regional and

*Corresponding author: Research Scholar, Department of Computer Science, Hindustan Institute of

Technology and Science, Chennai, Tamil Nadu, India.

Journal of Internet Services and Information Security (JISIS), volume: 13, number: 1 (February), pp. 11-21

DOI: 10.58346/JISIS.2023.I1.002

mailto:lilojabasheer@gmail.com
mailto:pranjana@hindustanuniv.ac.in

An Intrusion Detection System using a Machine Learning

Approach in IOT-Based Smart Cities
 Liloja et al.

12

neoclassical theories of development and urban expansion are related to these characteristics. The notion

of regional competitiveness, transportation economics, information and communication technology,

environmental assets, and social capital are a few of these themes. Raising the level of standard of living

of citizens while ensuring environmental preservation is the key challenge smart cities face. One use of

the internet of things is the "Smart City," which is a financially sound urban development strategy that

provides a high standard of living for its citizens. The creation of smart cities uses various technologies

[3].

Deep Learning algorithms are customized for many applications including data classification and

Intrusion Detection (ID). As a Binary classifier, ID in IoT networks is categorized as being either under

attack or belonging to the usual class using a trained classification model. The ultimate objective is to

lower false alarm rates while raising accuracy. [4]. Information discovery is discussed using data mining.

Security-related difficulties in smart cities are shown in Figure 1.

 Figure 1: Security-related Possible Issues Occurring in Various Smart Sectors

Different methods that use machine learning and DL for detection and prevent invasions have been

developed in the past. Many of them paid less attention to the pre-processing stage, particularly feature

selection. So, the specific algorithm's classification accuracy is directly impacted [5-7]. The length of

time required for training the models is additionally lengthened by the premature pre-processing phase.

The present neural network algorithm's back-propagation method lengthens training time as well

[8–10].

1.1 Research Objectives

The following are the objectives considered for intrusion detection in smart cities which are focused on

in this paper:

● Develop an effective Intrusion detection in smart cities using a deep learning model.

● Bring an integration model of machine learning and deep learning technique.

● Here the use of 3 standard datasets such as GPRS, CIDDS001 and UNSW-NB15 to improve

the model performance and reduce the data Imbalance problem.

● With help of a stack of RBM networks, Prediction of attacks in smart cities is possible.

An Intrusion Detection System using a Machine Learning

Approach in IOT-Based Smart Cities
 Liloja et al.

13

2 Methodology

Figure 2 represents the overall architecture of the proposed framework. The different stages are a) Data

Collection from the popular data repository such as GPRS, CIDDS001, and UNSW-NB15 in which each

dataset contains certain categories of possible attack classes which could cause issues in IoT based smart

cities. Once these data are collected, they will undergo b) Preprocessing stage where the normalization

technique is used. When working with attributes of multiple scales, normalization is required. Attribute

of smaller values may be diluted by the values of other attributes, which have values on a greater scale.

Once these data are normalized, they will undergo a c) feature extraction stage were using an

autoencoder, quintessential features are extracted. The autoencoder technique makes use of 120 input

neurons. We repeatedly converted X into 100, 80, 60, 40, 22, 20, 15, 10, and 8 neurons in the hidden

layer to get the best accuracy score. The output will then be feature extracted from the inputs. Then from

those extracted features, feature reduction, also known as d) feature selection for selecting required

features for even more effective performance is done. Finally, e) the Prediction stage, with the help of a

stack of Restricted Boltzmann Machine (RBM) will be used for predicting the classes. Two stochastic

network layers make up the RBM's hidden and visible layers. Data can travel between levels because

the links between them are symmetric and bidirectional.

 Figure 2: Proposed Framework Architecture

2.1 Data Collection

Here data are collected from the popular repository as GPRS, CIDDS001, as well as UNSW-NB15.

Each is described below.

An Intrusion Detection System using a Machine Learning

Approach in IOT-Based Smart Cities
 Liloja et al.

14

GPRS dataset: The hidden and visible layers, both of which are stochastic networks, make up the

RBM. Due to connections between layer neurons and neurons in other layers, the network is referred to

as being constrained. Data flow is made possible by the bidirectional and symmetric connections

between layers.

CIDDS001 dataset: A labelled flow-based dataset called CIDDS-001 ("CIDDS-001," 2017) [17,18]

is available (Ring, Wunderlich, Grudl, Landes, & Hotho, 2017). It was created primarily for AD-based

NIDS evaluation purposes. The dataset includes traffic from External Servers and OpenStack. 13

features and one class attribute make up CIDDS-001. This analytical investigation used a total of 11

features. Since they provide more details about actual attacks, the study ignored the features of Attack

ID and Attack Description. As a result, these characteristics had little impact on the analysis. For

analysis, data on 172,839 instances from OpenStack Server and about 153,026 instances from other

servers were gathered. The dataset's instances were classified into the normal, attacker, victim,

suspicious, and unknown classes. The CIDDS-001's description may be found in Table 1

UNSW-NB15 dataset: A dataset for network intrusions is UNSW-NB15 [19,20]. There are nine

different assaults in it, including worms, backdoors, DoS attacks, and fuzzes. The collection also

includes unprocessed network packets. The testing set features 82,332 records from the attack and

normal categories, compared to 175 341 records in the training set. A total of 49 features with the class

designation are produced using twelve techniques, the Argus and Bro-IDS tools, and other factors.

Figure 3 displays the UNSW-NB15 dataset diagram in its entirety.

2.2 Preprocessing

For many activities linked to data mining and anomaly intrusion detection, data preparation is crucial.

Most anomaly detection algorithms that learn the statistical characteristics of variables acquired from

audit data must first prepare their data, and data normalisation is a crucial stage in this process. Data

normalisation tries to proportionally scale the values of each continuous characteristic into a range so

that none of the continuous variables can significantly affect the other continuous attributes. In the phase

of data preprocessing, attribute normalisation is the main topic of this section. In this study, four more

approaches for attribute normalisation are used in addition to the original attributes.

2.2.1 Normalization

2.2.1.1 Mean Range [0,1]

It is simple to convert an attribute into a range of values between [0,1] if we know its maximum and

minimum values.

𝑥𝑖 =
𝑣𝑖−𝑚𝑖𝑛(𝑣𝑖)

𝑚𝑎𝑥(𝑣𝑖)−𝑚𝑖𝑛(𝑣𝑖)
 (1)

Where vi is the attribute's actual value, and the attribute's maximum and lowest are calculated over

all other values. Normally, if the maximum and minimum are equal, xi is set to 0.

2.2.1.2 Statistical Standardization

Data from any Normal distribution should be transformed into a conventional Normal distribution with

a mean of zero and a unit variance using statistical normalisation. The definition of statistical

normalisation is:

𝑥𝑖 =
𝑣𝑖−𝜇

𝜎
 (2)

An Intrusion Detection System using a Machine Learning

Approach in IOT-Based Smart Cities
 Liloja et al.

15

where 𝜎 is the standard deviation and 𝑣𝑖 − 𝜇 is the mean of n values for a specific attribute: = 1/n

€ni=1 vi.

𝜎 = √
1

𝑛
∑𝑖=1

𝑛  (𝜈𝑖 − 𝜇) (3)

However, when statistical normalisation is utilised, the data set should follow a Normal distribution.

More specifically, the central limit theorem specifies that there should be a large number of samples (n).

The attribute's value is not statistically normalised into the range [0,1]. Instead, 99.9% of the attribute's

samples fall inside the range [-3, 3].

2.2.1.3 Ordinal Normalization

Ranking an attribute's continuous value before normalising the rank into [0,1] is known as ordinal

normalisation. The ordinal normalisation is defined as:

𝑥𝑖 =
𝑟−1

𝑚𝑎𝑥(𝑟)−1
 (4)

Where r is the rank of a particular value in an attribute.

Evidently, ordinal normalising also place an attribute's values in the [0,1] range. In this study, if

several attribute values are the same, the rank is not raised. For example, the following rank after 18 is

16 if certain values are ordered as…,15,15,15.

2.2.1.4 Frequency Normalization

By taking into account the ratio of a value to the attribute's total value, frequency normalisation seeks to

normalise an attribute. It's described as:

𝑥𝑖 =
𝑣𝑖

∑𝑖  𝑣𝑖
 (5)

Frequency normalization also scales an attribute into [0,1].

2.2.2 Feature Scaling

To cope with local optima and skewness towards specific features, feature scaling is a crucial step.

Additionally, faster training is made possible for the ML-based IDS. Applying standard scaling causes

the values to be replaced by their Z-scores. A data point's Z-score indicates how far away from the mean

value the data point is. Zi, the z-score, is determined by the following equation:

𝑧𝑖 =
𝑥𝑖−𝑥𝑚𝑒𝑎𝑛

𝑥𝑠𝑡𝑑

 (6)

in which xi stands for the value of each feature, xmean for the feature's average value, and xstd for the

standard deviation.

2.3 Feature Extraction

The input and output layers of a special type of multilayer perceptron known as an autoencoder (Figure

3) have the same number of neurons.

An Intrusion Detection System using a Machine Learning

Approach in IOT-Based Smart Cities
 Liloja et al.

16

 Figure 3: Autoencoder Network

Encoder and decoder are two components of the autoencoder's architecture that are trained at each

subsequent layer. Each layer of a deep autoencoder takes input from the one before it. Specifically, the

output is reconstructed from the compressed representation that the autoencoder has been trained to

transform the raw input into.

𝐻(𝑥) = 𝜎(𝑊 ⋅ 𝑙(𝑥) + 𝑏) (7)

In this case, the learning function is sigmoid. The terms "weight" and "bias" are respectively W and

b. With the function described in layer (5).

𝑅(𝑥) = 𝑎(𝑊 ⋅ 𝐻(𝑥) + 𝑏′) (8)

Where, from the latent representation H(x), R(x) is the expected output of the input I(x). To lower

the network's reconstruction error, the autoencoders' weights are optimised. The computation for the

reconstruction error is:

(𝐼(𝑥), 𝑅(𝑥)) =∥ 𝑘(𝑥) − 𝑅(𝑥) ∥2 (9)

Additionally, the reconstruction error for binary values using the cross-entropy measure (7):

𝐿(𝐼(𝑥), 𝑅(𝑥)) = −∑𝑘=1  [𝐼(𝑥)𝑘𝑙𝑜𝑔 𝑅(𝑥)𝑘 + (1𝐼(𝑥)𝑘)𝑙𝑜𝑔 (1 − 𝑅(𝑥)𝑟𝑘)] (10)

2.4 Feature Selection

A Random Forest (RF) is made up of a number of classification or regression trees that have not been

pruned. Random forest generates a large number of classification trees, and each tree is constructed

using a distinct bootstrap sample selected from the initial data and a tree classification algorithm. After

the forest has been built, a new object that needs to be identified is placed on each tree. Each tree casts

a vote, symbolising the choice that establishes the class of the item. The class that best supports the

object is chosen by the forest. The random forests algorithm is as follows (for both classification and

regression):

1) To build ntree bootstrap samples, create n samples from the training set.

2) Create a regression tree, with adjustment for each of the bootstrap samples. The tree is allowed

to grow to its maximum capacity without any pruning. When the number of predictors, mtry,

equals p, bagging can be viewed as a particular instance of random forests.

3) To forecast new data, combine the ntree tree

The error rate can be assessed in two different ways. The dataset must first be split into training and

test halves. The forest can be constructed using the training part, and the error rate can be calculated

using the test part. Utilizing the Out-of-Bag (OOB) error estimate is an alternative strategy. We do not

need to separate the training data in order to get it because the RF approach calculates OOB errors during

An Intrusion Detection System using a Machine Learning

Approach in IOT-Based Smart Cities
 Liloja et al.

17

the training phase. Both methods have been employed in our research to assess the mistake rate.].

Features are picked at random as the forest grows.

 The main tuning parameter is the number of characteristics used to separate each node for each tree

(mtry). This parameter has to be improved for random forests to perform better. Only choose a sufficient

number of trees to ensure that the OOB error has been stabilised. The descriptor's significance or intrinsic

proximity can be reached with more than 500 trees, however typically 500 are enough. RF does not use

a halting criteria, instead penalising "too many" trees by wasting computational resources. The size of

the trees that are grown is somewhat influenced by this parameter. In Random Forest, the default value

for classification is 1, while the default value for regression is 5, ensuring that trees reach their full

potential.

2.4.1 Variable Selection

The high dimensionality of many pattern recognition applications has made feature selection strategies

urgently necessary. There are many different purposes for feature selection in this discipline, but the two

most significant ones are:

1) To prevent overfitting and enhance model performance; and

2) To gain a more thorough understanding of the underlying mechanisms that produced the

data. For the majority of life science challenges, the interpretability of machine learning

models is seen as being as crucial to prediction accuracy.

In contrast to most other classifiers, Random Forest does feature selection right away when building

a classification rule. The total or average relevance value for a feature in a forest is determined by adding

up the importance values of all the trees in the forest. The most common variable significance measure

employed in RF is probably the Permutation Importance Measure (PIM). Not every training sample is

used by the RF algorithm when building a single tree. To determine how accurately the forest can be

identified, use the remaining samples that are Out of Bag (OOB). The classification accuracy of the

intact OOB samples and the OOB samples with the specific feature permuted should be compared in

order to determine the relative significance of each feature in the tree. As shown in Algorithms 1 and 2,

we employed the PIM in this work to evaluate the relevance of a subset of features in comparison to all

features.

An Intrusion Detection System using a Machine Learning

Approach in IOT-Based Smart Cities
 Liloja et al.

18

2.5 Classification

Two stochastic network layers make up the RBM's hidden and visible layers. While the hidden layer

attempts to feature learning from the visible layer with a focus on exhibiting the probabilistic data

distribution, the visible layer represents the collected data. Since layer neurons connect to neurons in

other layers, the network is said to be limited. Data transport is made possible by the bidirectional and

symmetric connections between layers. Figure 4 shows the RBM, where the visible layer's neuron counts

are shown as m and the hidden layer's counts as n, respectively. The weight matrix is represented by the

letters w, and the bias vectors by the letters a and b. To create the probability distribution on observable

features, RBM uses hidden layer variables. Each input pattern feature results in the production of one

visible unit, which is made up of other visible units and is reliant on observational components. Each

input pattern feature has one visible unit in the primary layer, which is composed of visible units and

depends on observational components. The observational elements, which are relationships between

features, are modelled by the dependencies of hidden units. The entropy function sometimes referred to

as an energy-based model, is used to represent the probability distribution of the variables h and v.

 Figure 4: RBM Network for IDS

The function is defined in vectorial format and extensive format by the aforementioned equations:

𝐸(𝑣, ℎ) = −ℎ𝑇𝑊𝑣 − 𝑎𝑇𝑣 − 𝑏𝑇ℎ𝐸(𝑣, ℎ) = −∑𝑖=1
𝑚  𝑣𝑗ℎ𝑗𝑤𝑗 − ∑𝑘=1

𝑚  𝑎𝑖𝑣𝑖 − ∑𝑖=1
𝑛  𝑏ℎ𝑗 (11)

It is likely to assign probabilities using the entropy function in the hidden and visible layers for each

pair of neurons in the network, resulting in the probabilistic distribution shown below.

𝑝(𝑣, ℎ) =
𝑒−𝐸(𝑣ℎ)

∑𝑛ℎ  𝑒−𝐸(𝑣ℎ) (12)

The total of all the vector probabilities from the hidden layer is supplied as the vector probability

from v as the visible layer.

𝑝(𝑣) =
∑ℎ  𝑒−𝐸(𝑣ℎ)

∑𝛾ℎ  𝑒−𝐸(𝑣ℎ). (13)

The actions are autonomous because RBMs do not include a connection between nearby neurons in

the same layer. This provides the calculations for conditional probabilities that are,

𝑝(ℎ ∣ 𝑣) = ∏𝑝  (ℎ𝑗 ∣ 𝑣)

𝑝(ℎ ∣ 𝑣) = ∏𝑝(𝑣∣ ∣ ℎ). (14)

The original RBM versions were created to address problems with binary data. Using the proper

distribution, (11) and (10), which may be constructed as

𝑝(ℎ𝑗 =∥ 𝑣) = 𝑠𝑖𝑔𝑚 (𝑏𝑗 + ∑𝑖=1
𝑚  𝑣𝑖𝑤𝑗)

An Intrusion Detection System using a Machine Learning

Approach in IOT-Based Smart Cities
 Liloja et al.

19

𝑝(𝑣𝑗 = 1ℎℎ) = 𝑠𝑖𝑔𝑚 (𝑎𝑗 + ∑𝑗=1
𝑛  ℎ𝑖𝑤𝑗). (15)

The probabilities of applying the entropy function in the hidden and visible layers are shown by the

aforementioned formulae. Let's say the sigmoid function relates to sigma (x). The use of RBM for binary

data restricts problem-solving capability. The RBM form is used, allowing subsequent data to improve

problem accuracy. RBM of the Gauss type is the most well-known variety. This RBM changes the

visible layer probability distribution to a Gaussian distribution. Gaussian-Bernoulli RBM is the term

used to describe this disparity. According to a description of the Gaussian-Bernoulli RBM probability

distribution,

𝑝(ℎ𝑗 = 1 ∣ 𝑣) = 𝑠𝑖𝑔𝑚 (𝑏𝑗 +
1

𝑎2
∑𝑖=1

𝑚  𝑣𝑖𝑤𝑗𝑗)

𝑝(𝑣𝑗 = 1 ∣ ℎ) = 𝑁(𝑎𝑖 + ∑𝑗=1
𝑛  ℎ𝑗𝑤𝑖𝑗, 𝜎2). (16)

The RBM training includes reducing the negative log-likelihood provided.

𝛥𝑤𝑗 = 𝑒
𝜕𝑙𝑜𝑔𝑔 (𝑉)

𝜕𝑤𝑗𝑗
= 𝑒ℎ𝑗ℎ𝑚 (17)

In order to indicate the desired data rates and model appropriately, the learning rate is denoted by the

letters e, d, and m. Whereas (14) and (15) provide expectations for continuous data, (10) and (11) provide

expectations for binary data.

3 Performance Analysis

The model is implemented over hardware specifications like Ryzen 5/7 series CPU, NV GPU, 1TB HDD

and Windows 11 OS, software specifications like PyTorch, an open-source python library for building

deep learning models and Google Collaboratory, an open-source Google environment for developing

deep learning model. Experimental evaluations are carried over various models like SVM, VGG16,

VGG19, NB, Alexnet, Resnet50 and Googlenet over measures like accuracy, sensitivity, specificity,

recall, precision, F1-score, detection rate, TPR, FPR and computation time.

4 Conclusion

To improve the city as a whole, physical, information technology, social and business infrastructures

must all be integrated. In order to anticipate danger and recognize network intrusions as well as attacks,

machine learning approaches require data training. Threats to cyber networks are frequently evolving

faster than the ability of cyber defenders to create and put into use novel signatures to recognize them.

There are several possibilities for applying neural network-based deep learning in cyber security

applications to precisely identify malware variants when combined with recent developments in machine

learning algorithm growth. The paper also describes how to apply DL tactics to a wide spectrum of cyber

security threats that target networks, application software, host systems, and information. This paper

aids other research specialists to dig deeper and understand various approaches and try to integrate them

with other models to bring even more efficiency.

References

[1] Ullah, Z., Al-Turjman, F., Mostarda, L., & Gagliardi, R. (2020). Applications of artificial

intelligence and machine learning in smart cities. Computer Communications, 154, 313-323.

[2] Vimal, S., Suresh, A., Subbulakshmi, P., Pradeepa, S., & Kaliappan, M. (2020). Edge

computing-based intrusion detection system for smart cities development using IoT in urban

An Intrusion Detection System using a Machine Learning

Approach in IOT-Based Smart Cities
 Liloja et al.

20

areas. In Internet of things in smart Technologies for Sustainable Urban Development, 219-237.

Springer, Cham.

[3] Otoum, Y., Liu, D., & Nayak, A. (2022). DL‐IDS: a deep learning–based intrusion detection

framework for securing IoT. Transactions on Emerging Telecommunications

Technologies, 33(3).

[4] Gupta, S.K., Tripathi, M., & Grover, J. (2022). Hybrid optimization and deep learningbased

intrusion detection system. Computers and Electrical Engineering, 100.

[5] Kumar, P., Kumar, R., Srivastava, G., Gupta, G.P., Tripathi, R., Gadekallu, T.R., & Xiong, N.N.

(2021). PPSF: a privacy-preserving and secure framework using blockchain-based machine-

learning for IoT-driven smart cities. IEEE Transactions on Network Science and

Engineering, 8(3), 2326-2341.

[6] Maniriho, P., Niyigaba, E., Bizimana, Z., Twiringiyimana, V., Mahoro, L.J., & Ahmad, T.

(2020). Anomaly-based intrusion detection approach for iot networks using machine learning.

In IEEE International Conference on Computer Engineering, Network, and Intelligent

Multimedia (CENIM), 303-308.

[7] Alsoufi, M.A., Razak, S., Siraj, M.M., Nafea, I., Ghaleb, F.A., Saeed, F., & Nasser, M. (2021).

Anomaly-based intrusion detection systems in iot using deep learning: A systematic literature

review. Applied Sciences, 11(18), 8383.

[8] Reddy, D.K., Behera, H.S., Nayak, J., Vijayakumar, P., Naik, B., & Singh, P.K. (2021). Deep

neural networkbased anomaly detection in Internet of Things network traffic tracking for the

applications of future smart cities. Transactions on Emerging Telecommunications

Technologies, 32(7).

[9] Singh, S., Fernandes, S.V., Padmanabha, V., & Rubini, P.E. (2021). Mcids-multi classifier

intrusion detection system for iot cyberattack using deep learning algorithm. In IEEE Third

International Conference on Intelligent Communication Technologies and Virtual Mobile

Networks (ICICV), 354-360.

[10] Rashid, M.M., Kamruzzaman, J., Hassan, M.M., Imam, T., & Gordon, S. (2020). Cyberattacks

detection in iot-based smart city applications using machine learning techniques. International

journal of environmental research and public health, 17(24), 9347.

[11] KarsligЕl, M.E., Yavuz, A.G., Güvensan, M.A., Hanifi, K., & Bank, H. (2017). Network

intrusion detection using machine learning anomaly detection algorithms. In IEEE 25th Signal

Processing and Communications Applications Conference (SIU), 1-4.

[12] Singh, R., Kumar, H., & Singla, R.K. (2015). An intrusion detection system using network

traffic profiling and online sequential extreme learning machine. Expert Systems with

Applications, 42(22), 8609-8624.

[13] Wang, H., Gu, J., & Wang, S. (2017). An effective intrusion detection framework based on

SVM with feature augmentation. Knowledge-Based Systems, 136, 130-139.

[14] Aloqaily, M., Otoum, S., Al Ridhawi, I., & Jararweh, Y. (2019). An intrusion detection system

for connected vehicles in smart cities. Ad Hoc Networks, 90.

[15] Rahman, M.A., Asyhari, A.T., Leong, L.S., Satrya, G.B., Tao, M.H., & Zolkipli, M.F. (2020).

Scalable machine learning-based intrusion detection system for IoT-enabled smart

cities. Sustainable Cities and Society, 61.

[16] Primartha, R., & Tama, B.A. (2017). Anomaly detection using random forest: A performance

revisited. In IEEE International conference on data and software engineering (ICoDSE), 1-6.

[17] Verma, A., & Ranga, V. (2018). On evaluation of network intrusion detection systems:

Statistical analysis of CIDDS-001 dataset using machine learning techniques. Pertanika Journal

of Science & Technology, 26(3), 1307-1332.

[18] Carneiro, J., Oliveira, N., Sousa, N., Maia, E., & Praça, I. (2021). Machine learning for network-

based intrusion detection systems: an analysis of the CIDDS-001 dataset. In International

Symposium on Distributed Computing and Artificial Intelligence, 148-158. Springer, Cham.

An Intrusion Detection System using a Machine Learning

Approach in IOT-Based Smart Cities
 Liloja et al.

21

[19] Moustafa, N., & Slay, J. (2015). UNSW-NB15: a comprehensive data set for network intrusion

detection systems (UNSW-NB15 network data set). In IEEE military communications and

information systems conference (MilCIS), 1-6.

[20] Moustafa, N., & Slay, J. (2016). The evaluation of Network Anomaly Detection Systems:

Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data

set. Information Security Journal: A Global Perspective, 25(1-3), 18-31.

[21] Manfredi, S., Ceccato, M., Sciarretta, G., & Ranise, S. (2022). Empirical Validation on the

Usability of Security Reports for Patching TLS Misconfigurations: User-and Case-Studies on

Actionable Mitigations. Journal of Wireless Mobile Networks, Ubiquitous Computing, and

Dependable Applications, 13(1), 56-86.

