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ABSTRACT 

This research deals with the optimization of the control 
of chaos by means of evolutionary algorithms. The 
main aim of this work is to show that powerful 
optimizing tools like evolutionary algorithms can in 
reality be used for the optimization of deterministic 
chaos control. This work is aimed on an explanation of 
how to use evolutionary algorithms (EAs) and how to 
properly define the advanced targeting cost function 
(CF) securing very fast and precise stabilization of 
desired state for any initial conditions. As a model of 
deterministic chaotic system, the two dimensional 
Henon map was used. The evolutionary algorithm Self-
Organizing Migrating Algorithm (SOMA) was used in 
four versions. For each version, repeated simulations 
were conducted to outline the effectiveness and 
robustness of used method and targeting CF. 
 
INTRODUCTION 

The question of targeting (faster stabilization) with 
application to chaos control has attracted researchers 
since the first method for controlling of chaos was 
developed. The several first approaches for targeting 
have used special versions of OGY control scheme 
(Kostelich et al., 1993; Bolt and Kostelich, 1998) or 
collecting of information about trajectories, which fall 
close to desired state (Bird and Aston, 1998). Later, alot 
of methods were based on adaptive approach 
(Ramaswamy et al., 1998), center manifold targeting 
(Starrett, 2002) or neural networks (Iplikci and 
Denizhan, 2001; Iplikci and Denizhan, 2003). 
Currently, evolutionary algorithms (EA) are known as 
powerful tools for almost any difficult and complex 
optimization problem. But the quality of obtained 
results through optimization mostly depends on proper 
design of the used cost function, especially when the 
EAs are used for optimization of chaos control. The 
results of numerous simulations lends weight to the 
argument that deterministic chaos in general and also 
any technique to control of chaos are sensitive to 

parameter setting, initial conditions and in the case of 
optimization, they are also extremely sensitive to the 
construction of used cost function. 
This research utilized the Pyragas’s delayed feedback 
control technique (Just 1999, Pyragas 1992). Unlike the 
original OGY control method (Ott, et al. 1990) it can be 
simply considered as a targeting and stabilizing 
algorithm together in one package (Kwon 1999). 
Another big advantage of Pyragas method is the amount 
of accessible control parameters. This is very 
advantageous for successful use of optimization of 
parameters setting by means of EA, leading to 
improvement of system behavior and better and faster 
stabilization to the desired periodic orbits. Some 
research in this field has been recently done using the 
evolutionary algorithms for optimization of local 
control of chaos (Richter and Reinschke, 2000; Richter, 
2002). The control law in this work is based on the 
Pyragas method: Extended delay feedback control – 
ETDAS (Pyragas 1995). 
This research is concerned with the investigation of the 
design of the advanced targeting cost functions securing 
the stabilization to desired UPO (unstable periodic 
orbit) for any initial conditions. This work presents a 
accumulation of research (Zelinka et al., 2007) and also 
collates and elaborates the experiences with application 
of EA to chaos control (Senkerik et al. 2006; Senkerik 
et al. 2007) in order to reach the better results and 
decrease the influence of negative phenomenon which 
can occur in such a challenging task, which chaos 
control is.  
 
PROBLEM DESIGN 

Problem selection and case studies 

The chosen example of a chaotic system was the two 
dimensional Henon map in form (1).  
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This work primarily consists of three case studies. All 
of them are focused on an estimation of three accessible 
control parameters for EDTAS control method to 
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stabilize desired UPO, and a comparison of obtained 
results for used cost function. Desired UPOs are the 
following: p-1 (a fixed point) in the first case, p-2 in the 
second case and p-4 in the last case. All simulations 
were 50 times repeated for each EA version. The 
control method – ETDAS in the discrete form suitable 
for two dimensional Henon map has the form (2). 
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where K and R are adjustable constants, F is the 
perturbation, S is given by a delay equation utilizing 
previous states of the system and m is the period of m-
periodic orbit to be stabilized. The perturbation nF  in 
equations (2) may have an arbitrarily large value, which 
can cause diverging of the system outside the interval  
{-1.5, 1.5}. Therefore, nF  should have a value 
between maxF− , maxF  and EA should find an appropriate 
value of this limitation to avoid diverging of the system. 
 
The basic cost function 

The proposal of the basic cost function (CF) is in 
general based on the simplest CF, which could be used 
only for the stabilization of p-1 orbit. The idea was to 
minimize the area created by the difference between the 
required state and the real system output on the whole 
simulation interval – τi.  
But another cost function had to be used for stabilizing 
of the higher periodic orbit. It was synthesized from the 
simple CF and other terms were added. In this case, it is 
not possible to use the simple rule of minimizing the 
area created by the difference between the required and 
actual state on the whole simulation interval – τi, due to 
the many serious reasons, for example: degrading of the 
possible best solution by phase shift of periodic orbit.  
This CF, is in general based on searching for desired 
stabilized periodic orbit and thereafter calculation of the 
difference between desired and found actual periodic 
orbit on the short time interval - τs (approx. 20 - 50 
iterations) from the point, where the first min. value of 
difference between desired and actual system output is 
found. Such a design of CF should secure the successful 
stabilization of higher periodic orbit anywise phase 
shifted.  
Furthermore, because of CF values being very close to 
zero, this CF also allows using of decision rule avoiding 
very time demanding simulations. This rule stops EA 
immediately, when the first individual with good 
parameter structure is reached, thus the value of CF is 
lower then the acceptable (CFacc) one. Typically CFacc = 
0.001 at time interval τs = 20 iterations, thus the 
difference between desired and actual output has value 
0.0005 per iteration – i.e. successful stabilization for 
used control technique. This CF was also used for p-1 
orbit. The CFBasic has the form (3). 
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where:  TS - target state, AS - actual state 

τ1 - the first min. value of difference between 
TS and AS 

 τ2 – the end of optimalizing interval (τ1+ τs) 
 penalization1= 0 if τi - τ2 ≥ τs;  
 penalization1= 10*( τi - τ2) if τi - τ2 < τs  

(i.e. late stabilization) 
 
The advanced targeting cost function 

It was necessary to modify the definition of CF in order 
to decrease the average number of iteration required for 
the successful stabilization and avoidance of any 
associated problem. The CFBasic is suitable for adding 
some term of penalization for slowly stabilizing 
solutions, thus it was modified for the use of all 
required UPOs. The CF value is multiplied by the 
number of iterations (NI) of the first found minimal 
value of difference between desired and actual system 
output (i.e. the beginning of fully stabilized UPO). To 
avoid problems associated with CF returning value 0 
and to put the penalization to similar level as the non-
penalized CF value, the small constant (SC) is added to 
CF value before penalization (multiplying by NI). 

Generally, there exist two possible approaches for 
defining the SC value. The first one capitalizes the 
previous simulation results with CF basic and 
experiences, whereas the second approach uses the 
automatically computed value. 

The next two proposals of CF design are based on the 
second approach, which should avoid any problems 
associated with defining the value of small constant, SC 
in advance (especially for stabilization of higher 
periodic orbit). The SC value (5) is computed with the 
aid of power of non-penalized basic part of CF (4).  
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SC = 10ExpCF (5) 

 
In general, there exists two possible ways for 

applying the multiplication by number of iterations 
required for stabilization (NI). The first version of final 
design of targeting CF (CFT1 - ADV) has the form (6). 
Here the sum of basic part of CF and automatically 
computed SC is multiplied by NI. Finally, to avoid the 
problems with fast stabilization, only for limited range 
of initial conditions, the final CF value is computed as a 
sum of n repeated simulations for different initial 
conditions. Consequently, the EA should find the robust 
solutions securing the fast targeting into desired 
behavior of system for almost any initial conditions. 
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where: xinitial is from the range 0.05 – 0.95 and uses step 
0.1. 
 
In the second version of targeting CF (CFT2 - ADV), there 
is only a slight change in comparison with the previous 
proposal. Here the number of steps for stabilization (NI) 
multiplies only the small constant (SC) which is counted 
in the same way as in the previous case (5). This version 
of targeting CF (CFT2 - ADV) has the form (7). 
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Graphical CF Overview 

The difference between the proposed CFs can be clearly 
seen in Figures 1 and 2, which shows the dependence of 
CF values on the adjustable parameter K. Remaining 
parameters were set at the best values reached in 
optimizations; consequently the two-dimensional 
diagram always shows the section of global minimum. 
From these figures, it is obvious as to how a small 
change in the CF design can influence the nonlinearity 
and unpredictability of CF surface. 
 

 
Fig. 1. Dependence of CF value on parameters K for p-2 orbit, 

xinitial = 0.7, CFT1-ADV, R = 0.13, maxF = 0.12 
 

 
Fig. 2. Dependence of CF value on parameters K for p-2 orbit, 

xinitial = 0.7, CFT2-ADV, R = 0.35, maxF = 0.18 
 

Optimization algorithms  

For the experiments described here, stochastic 
optimization algorithm SOMA (Zelinka, 2004), has 
been used. It was chosen because it has been proven 
that this algorithm has the ability to converge towards 
the global optimum. SOMA works with groups of 
individuals (population) whose behavior can be 
described as a competitive – cooperative strategy. The 
construction of a new population of individuals is not 
based on evolutionary principles (two parents produce 
offspring) but on the behavior of social group, e.g. a 
herd of animals looking for food. This algorithm can be 
classified as an algorithm of a social environment. To 
the same group of algorithms, particle swarm algorithm 
can also be put in, sometimes called swarm intelligence. 
In the case of SOMA, no velocity vector works as in 
particle swarm algorithm, only the position of 
individuals in the search space is changed during one 
generation, here called ‘Migration loop’. 

The rules are as follows: In every migration loop, the 
best individual is chosen, i.e. individual with the 
minimum cost value, which is called “Leader”. An 
active individual from the population moves in the 
direction towards Leader in the search space. At the end 
of the movement, the position of the individual with 
minimum cost value is chosen. If the cost value of the 
new position is better than the cost value of an 
individual from the old population, the new individual 
appears in new population. Otherwise the old one 
remains for the next migration loop. 
 
EXPERIMENTAL RESULTS 

Four versions of SOMA were used for all simulations. 
(See Table 1). See also Table 2 for parameter set up of 
EA. Parameters for the optimizing algorithm were set 
up in such a way in order to reach the same value of 
maximal CF evaluations for all used versions. Each 
version of SOMA has been applied 50 times in order to 
find the actual optimum. 
The primary aim here is not to show which version is 
better or worse but to show that the EA can in reality be 
used for deterministic chaos control when the targeting 
cost function is properly defined. 
All results are shown only for variable x of two 
dimensional Henon map because of its form (1), where 
the variable y has the same values as variable x but it is 
only phase shifted. 
Here is the list of desired UPOs:. 
 
Henon Map with a = 1.2 and b = 0.3: 
p-1 (fixed point): xF = 0.8 
p-2 orbit: x1 = -0.562414, x2 = 1.26241 
p-4 orbit: x1 = 0.139, x2 = 1.4495, x3 = -0.8595, x4 = 0.8962 
 

The optimization interval for p-1 orbit was τi = 100 
iterations, for higher periodic orbits (p-2 and p-4) it was 
mostly τi = 150 iterations. 



 

 

The ranges of all estimated parameters were these: 
 -2 ≤ K ≤ 2 , 0 ≤ maxF  ≤ 0.5 and 0 ≤ R ≤ 0.5 

 
Table 1: Used versions of SOMA 

 
Index Algorithm / Version 

1 SOMA AllToOne  
2 SOMA AllToRandom 
3 SOMA AllToAll 
4 SOMA AllToAllAdaptive 

 
Table 2: Parameter Settings for SOMA 

 
Parameter ATO / ATR ATA / ATAA 

PathLength 3 3 
Step 0.33 0.33 
PRT 0.1 0.1 
PopSize 25 10 
Migrations 25 7 
Max. CF 
Evaluations (CFE) 5400 5670 

 
The best solution for each version of SOMA are shown 
in Tables 3 – 5 together with other optimization results 
like average number of iterations required for successful 
stabilization for 50 repeated simulations (Avg. IStab). 
The figures 3 – 11 shows the simulation of the best 
individual solutions for the uniformly distributed initial 
conditions in the range 0 < xinitial < 1, and 100 samples 
were used in this kind of simulation 
 
Control of chaos, p-1 orbit 

The first case is focused on the stabilization of p-1 orbit. 
For the best individual solutions given by CFT1-ADV 
(SOMA ATAA) and CFT2-ADV (SOMA ATAA), please 
refer to Table 3. From the series of complex simulations 
depicted in Figures 3 – 5, it is obvious, that the 
occurrence of the phenomenon, when some best 
individual solutions are not suitable for complex 
simulation with wide range of initial conditions, 
whereas the remaining best solutions give excellent 
results, was successfully suppressed by means of usage 
of advanced targeting cost functions. The example of 
this negative phenomenon is represented by simulation 
of results given by CFBasic. Based on obtained results, it 
may be stated that the control parameters estimated in 
the optimizations ensured very fast and precise reaching 
of a desired state for any initial conditions. 
 

Table 3: Results for p-1 orbit, CFT1-ADV and CFT2-ADV 
 

CF Version CFT1-ADV CFT2-ADV 
K -0.9977 -0.8575 

Fmax 0.4382 0.4688 
R 0.3837 0.2148 

CF Val. 9.13 10-14 3.86 10-14 
Avg. IStab 56 41 

 
Fig. 3. Best solution: p-1 orbit, CFBasic, SOMA ATA, complex 
simulation with 0 < xinitial  < 1, 100 samples 

 

 
Fig. 4. Best solution: p-1 orbit, CFT1-ADV, SOMA ATAA, 
complex simulation with 0 < xinitial  < 1, 100 samples 
 

 
Fig. 5. Best solution: p-1 orbit, CFT2-ADV, SOMA ATAA, 
complex simulation with 0 < xinitial  < 1, 100 samples 
 
Control of chaos, p-2 orbit 

This case is focused on the stabilization of p-2 orbit.  
The best results given by CFT1-ADV (SOMA ATA) and 
CFT2-ADV (SOMA ATA) are given in Table 4. The 
outputs of simulations are depicted in Figures 6 - 8. 
The results given by CFT1-ADV show the following 
attributes: rapid achievement of desired UPO in 
comparison with CFBasic (on average, around 51 
iterations are required), together with very poor 
performance of EA, i.e. the proportion of the solutions 
with either perfect stabilization or temporary or possibly 
none at all. Also, relatively considerable period 
doubling or oscillating in the close neighborhood of 
desired UPO arose (Fig 7). 
In case of CFT2-ADV, the two main above mentioned 
problems with period doubling (i.e. low-quality 



 

 

stabilization) and very poor performance of EAs in 
finding the stabilizing securing solutions were 
noticeably suppressed  
 

Table 4: Results for p-2 orbit, CFT1-ADV and CFT2-ADV 
 

CF Version CFT1-ADV CFT2-ADV 
K 0.3264 0.4208 

Fmax 0.1150 0.1767 
R 0.1342 0.3451 

CF Val. 216.7945 5.81 10-9 
Avg. IStab 51 133 

 

 
Fig. 6. Best solution: p-2 orbit, CFBasic, SOMA ATO, complex 
simulation with 0 < xinitial  < 1, 100 samples 

 

 
Fig. 7. Best solution: p-2 orbit, CFT1-ADV, SOMA ATA, 
complex simulation with 0 < xinitial  < 1, 100 samples 
 

 
Fig. 8. Best solution: p-2 orbit, CFT2-ADV, SOMA ATA, 
complex simulation with 0 < xinitial  < 1, 100 samples 
 

Control of chaos, p-4 orbit 

The last case is focused on the stabilization of p-4 orbit.  
See Table 5 for the results of this optimization. The 
simulations of the best individual solutions are depicted 
in Figures 9 - 11.  
As a conclusion of this case study, it is possible to say 
that also in the case of p-4 orbit and optimizations by 
means of CF T1-ADV the phenomenon of faster targeting 
of desired UPO (only 84 iterations) for wide range of 
initial conditions occurs at the cost of poor performance 
of EA and period doubling. This is apparent from the 
notable difference of CF values given by CFT1-ADV and 
CFT2-ADV. 
In case of CFT2-ADV, the presented results show positive 
features as in case of p-2 orbit and from the comparison 
with CFBasic (Fig. 9), it follows that the stabilization was 
reached very quickly and precisely. 

 
Table 5: Results for p-4 orbit, CFT1-ADV and CFT2-ADV 

 
CF Version CFT1-ADV CFT2-ADV 

K -0.4828 -0.4154 
Fmax 0.1904 0.2808 

R 0.4390 0.4969 
CF Val. 241,1852 2.85 10-6 

Avg. IStab 84 145 
 

 
Fig. 9. Best solution: p-4 orbit, CFBasic, SOMA ATAA, 
complex simulation with 0 < xinitial  < 1, 100 samples 

 

 
Fig. 10. Best solution: p-4 orbit, CFT1-ADV, SOMA ATA, 
complex simulation with 0 < xinitial  < 1, 100 samples 



 

 

 
Fig. 11. Best solution: p-4 orbit, CFT2-ADV, SOMA ATO, 

complex simulation with 0 < xinitial  < 1, 100 samples 
 
Investigation on results of chaos control 

This section presents a accumulation of research 
(Senkerik et al. 2007) and the results presented here. 
Please refer to Table 6 for the comparison of average 
number of iterations required for stabilization, which 
was elaborated for five CFs and all desired UPOs. Here, 
a gradual decrease of average IStab value together with 
development and testing of complex targeting cost 
functions can be clearly seen. 
 

Table 6: Comparison of results for five CFs 
 

UPO p-1 p-2 p-4 
CF Basic 77 124 122 
CF Targ1 49 113 121 
CF Targ2 39 108 118 

CF Targ1 Adv. 56 51 84 
CF Targ2 Adv. 41 133 143 
 
The first CF Basic gives satisfactory results and can 

be used wherever the good quality of stabilization is 
expected and the speed of stabilization and “universality 
of this solution” for wider range of initial conditions are 
not decisive.  

In case of targeting cost functions, the results for p-1 
orbit are significantly better, on the other hand the 
slightly better results for higher periodic orbits (p-2 and 
p-4) were achieved at the cost of arising of problem 
with worse performance of EAs and obtaining of 
solutions with only temporary stabilization or none at 
all. This negative phenomenon culminates in case of 
CFT1-ADV where the very low avg. IStab values 
represents the solutions with rapid and only temporary 
stabilization. 
Finally, CFT2-ADV design suppress all mentioned 
problems and gives excellent performance from the 
point of view of quickness and quality of stabilization 
for any initial conditions. 
 

CONCLUSION 

The optimization of chaos control described here is 
relatively simple and easy to implement. Based on 
obtained results, it may be claimed that all simulations 
give satisfactory results and thus EAs are capable of 
solving this class of difficult problems and the quality 
of results does not depend only on the problem being 
solved but also on the proper definition of the CF.  

From the optimization results it follows, that they are 
extremely sensitive to the construction of used CF and 
any small change in the design of CF can cause radical 
improvement of the system behavior (as in case of CF 
Targ2 Advanced), but of course, on the other hand can 
cause worsening of observed parameters and behavior 
of chaotic system as well. 

All achieved results give the following piece of 
knowledge. 
CF Targ1 advanced is the example of an upgraded CF 
Targ1 design, which brings the advantage of 
automatically computed SC value, for the purpose of 
improving the behavior of controlled chaotic system for 
wide range of initial conditions. The results were for the 
first view satisfactory, but two very momentous 
problems arose – period doubling and very poor 
performance of EAs. These problems uncovered hidden 
non-optimal structure of CF Targ1. 
In the last proposal of CF Targ2, there were only slight 
changes in CF design, but from the presented results it 
can be seen, how such a small change can influence the 
performance of a controlled system, especially when it 
is an extremely sensitive chaotic system. CF Targ2 
advanced gives excellent results for simulations with 
wide range of initial conditions and seem to be the 
choice for the task of finding of “universal and robust 
solution”. The problems with poor EA performance and 
period doubling were mostly suppressed here. The only 
disadvantage of this proposal is the relatively big 
computational-time demands. 

Finally, it is hard task to propose a CF, which gives 
excellent results, especially “universal results” suitable 
for simulation with wide range of initial conditions. As 
repeatedly mentioned, the chaotic systems are extremely 
sensitive to proper settings of control algorithm and of 
course they are very sensitive to even very tiny change 
in any parameter. This extreme sensitivity is transferred 
into complexity of CF surface thus it is also hard task 
for EAs to find good solution. It is also difficult to 
determine the conditions for optimizations and 
subsequent simulations.  

Furthermore parameter settings for EA were based on 
heuristic approach; therefore there is also possibility for 
the future research. According to all results showed here 
it is planned that the main activities will be focused on 
testing of evolutionary deterministic chaos control in 
continuous-time and high-order systems and finally 
testing of evolutionary real-time chaos control. 
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