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ABSTRACT 

The paper deals with the problem of modelling and 
control using the Local Model Network (LMN). The 
idea is based on development of multiple local models 
for the whole operating range of the controlled process. 
The local models are then smoothly connected using the 
validity or weighting functions to provide a nonlinear 
global model of the plant. For saving the computational 
load, linear model is obtained by interpolating the 
parameters of local models at each sample instant and 
then used in Model Predictive Control (MPC) 
framework to calculate the future behaviour of the 
process. The supervisory program, based on a nonlinear 
global model, computes desired values of manipulated 
variables leading to minimum utility consumption. The 
approach is verified in a control of model of a heat 
exchanger. 
 
INTRODUCTION 

Many of the processes in the chemical industry exhibit 
nonlinear behaviour. Their nonlinearities arise from the 
dynamics in chemical reactions, thermodynamic 
relationships, etc. Such processes are difficult to model 
and control. For such problems, there is a strong 
intuitive appeal in building systems which operate over 
a wide range of operating conditions by decomposing 
them into a number of simpler linear modelling or 
control problems. Multiple-model approaches for the 
modelling and control of nonlinear systems were 
proposed in the last decade (Murray-Smith and 
Johansen, 1997). Here local models are identified over 
the operating range of the process and form a global 
nonlinear model process by incorporating the validity 
function for each of these models (Johansen and Foss 
1995). 
The basic principles of this modelling approach have 
been more or less independently developed in different 
disciplines like neural networks, fuzzy logic, statistics 
and artificial intelligence with different names such as 
local model networks (Johansen and Foss 1993), 
Takagi–Sugeno fuzzy model (Takagi and Sugeno 1985) 
or neuro-fuzzy model ( Narendra and Parthasarathy 1990; 

Zhang and Morris 2002). Similarities and differences 
between the LMN, radial basis function network 
(RBFN), fuzzy and Gaussian process model can be 
found in (Gregorcic and Lightbody 2008). 
Model Based Predictive Control (MBPC) or only 
Predictive Control is one of the control methods which 
have developed considerably over a few past years. The 
main advantage of this methodology is that it enables a 
simple treatment of input and output constraints 
(Maciejowski  2002), and copes in a natural way with 
multivariable systems.  
There are two ways to design controllers for local 
model structures, the linearization based and the local 
model-based approach. For linearization-based 
approach the local model network is linearized at the 
current operating point and linear controller is designed. 
The linearization of the LM network is very simple due 
to the structure of the model. In the second realisation a 
local controller is designed for each local model and the 
control output is then calculated as an interpolation of 
the local controller according to the current operating 
point. Both realisations have been widely used in the 
literature for control of nonlinear systems (Johansen et 
al., 2000;Mollov et all. 1999).  
In this paper the operating regions are distributed in the 
operating space using the steady-state characteristic of 
the process. The data for identification of the local 
models were created by application perturbations 
around the chosen operating points. The local models 
were identified using the least-squared method. The 
parameters of the validity functions were then optimized 
by minimizing the output error. Thus a nonlinear global 
model of the process was obtained. Predictive control 
strategy that uses parameters obtained from 
linearization of the global model was then applied to 
provide set point tracking of the output of the plant. 
The paper is organized as follows:  Section II presents 
an overview of the local model network approach. The 
basics of Model Predictive Control are outlined in 
Section III. In Section IV, the heat-exchanger process is 
described. Section V describes the modelling of a heat-
exchanger using the LMN approach. In Sections VI a 
VII results of predictive control with and without the 
utility costs taken into consideration are presented. 
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LOCAL MODEL NETWORKS 

 
The basics of Local Model Networks approach are to 
decompose the operating space into zones where linear 
models are adequate approximations of dynamic 
behaviour within that regime, with a trade-off between 
the number of regimes and the accuracy of the global 
model. The architecture of LMN benefits from being 
able to incorporate the a priori knowledge about the 
system and conventional system identification 
methodology. The LMN structure also gives transparent 
and simple representation of the nonlinear system. 
In the LMN representation, each model is a local 
approximation of the modelling surface over a subspace 
of the operating space, which can be seen as an 
operating regime (Figure 1).  

 
Figure 1: The nonlinear input/output approximation (c) 
is obtained by combining three linear models (a) with 

validity functions (b) 
 
If linear local models are assumed, the structure of the i-
th submodel can be defined as follows:  
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where n and m are the numbers of delayed input and 
output samples, is the  offset term, and id ( )kη  is 
assumed to be white noise.  Eq. 1 can be rewritten to 
regression form: 
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and the vector of parameters as: 
 [ ]1 1, , , , , ,i i in i im ia a b b d= … …Θ  (4) 
The LMN structure can then be represented as follows: 
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The validity functions ( )i kϕ are functions of some 
scheduling vector ( )kφ . The scheduling vector, which 
defines the operating point of the system, can include 
any system state or variable. Although any function 

with locally limited activation might be applied as a 
validity function, a common choice is Gaussian or a B-
Spline function. The Gauss function for i-th model is 
given by  
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The validity functions are generally normalized: 
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Normalization of the validity functions is often 
motivated by the desire to achieve a partition of unity. 
By partition of unity it is meant that at any point in the 
input space sum of all normalized validity functions 
equals unity, i.e.  
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However, normalization also leads to a number of other 
important side-effects that have consequences for the 
resulting network (Shorten and Murray-Smith 1997).   
Assuming that both the validity functions of the LMN 
and the parameters of the local model there are known 
there are two ways of interpolating between the local 
models:  
• A weighted sum of the outputs of local models is used 
to produce an output of the LMN (Figure 2) 
• Assuming all the local models have the same structure 
parameters of the local models are blended to form an 
LMN 
The blending of parameters provides better 
transparency, however, cannot be used in applications 
where the structure of the local models changes across 
the operating space.  
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Figure 2: Local model network structure 

 
MODEL PREDICTIVE CONTROL 

In general, industrial processes are nonlinear, but most 
MPC applications are based on the use of linear models. 
The first reason is that identification of a linear model is 
relatively simple and the linear models are sufficient 
when the plant is operating in the neighbourhood of the 
operating point. Secondly, the use of linear models with 

 



 

quadratic objective function gives rise to a convex 
problem which can be solved by Quadratic 
Programming. 
If all of the local models share the same structure across 
the operating space, the parameters of the local models 
can be blended: 
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The structure of the overall model in this case, remains 
the same as the structure of the individual local models. 
A predictor in a vector form is then given by  
  = Δ +y G u Y  (10)                          
where y is a vector of system predictions along the 
prediction horizon N, Δu is a vector of control 
increments, Y is the free response vector. G is a 
dynamics matrix.  
The computation of a control law of MPC is based on 
minimization of the following criterion 
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where (y k j k+ )  is a j steps ahead prediction of the 
system,  is a future reference trajectory and 

are the positive definite weighting matrices.  
(w k j+ )

,Q R
The reference trajectory vector 
  (12) [ ( 1), , ( )]Tw k w k N= + +…w
is obtained from the first-order lag system: 
 ( ) ( 1) (1 )w k w kα α ω= − + −  (13) 
whereα is an adjustable parameter of the reference 
trajectory and ω  is the output set point. 
The criterion 11 can be rewritten to more general matrix 
form: 
 ( ) ( )( , ) T TJ k N = − − + Δ Δw y Q w y u R u  (14) 
Using the expression (10) it can be simplified 
  ( , ) 2T TJ k N = Δ Δ Δu H u+ g u+ f  (15)                   
where the gradient g and the Hess matrix H are defined 
by following expressions                          
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Since the vector f  is a constant vector it does not have 
an effect on the quadratic programming results. The 
constraints for the control signal and control signal 
increments are given: 
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Parameters  and are constraints for the control 
signals  and    and are constraints for the 
control signal increments. Matrices 
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DESCRIPTION OF THE PROCESS 
 
Heat exchangers are widely used in space heating, 
petrochemical plants or power plants. It is represented 
by a vessel (see Figure 3) filled with water. It is possible 
to increase the water temperature with electric heating 
A. Heating power E is controlled continuously. Cooling 
helix B is used to decrease water temperature . CT

 
Figure 3 Scheme of a heat-exchanger 
 
 The system can be described under a simplified 
assumption (ideal mixing, characteristic temperatures, 
etc.) by 3 differential equations (Dusek and Honc 
2009).  
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where  xT  are characteristic temperatures  
 0BT is input temperature of cooling helix 
 is ambient temperature 0T
 is input temperature 0CT

 



 

 xm are masses 
 xc are specific heat capacities 
  xS are heat transfer areas 
 xα are heat transfer coefficients. 
The input variables are constrained – cooling water 
flow is within the range max0 Q Q≤ ≤ , and heating 
power . max0 E E≤ ≤
The parameters of the system that are used in the 
simulations are given in Table 1 
 
Table 1 Parameters of the system 

 
Par. Value Par. Value 

Am  0.5 kg  AS  20.0095 m  

Bm  0.1 kg  BS  20.065 m  

Cm  4.0kg  CS  20.24 m  

Ac  1 1452 Jkg K− −  Aα  2 1 1750 Jm s K− − −  

Bc  1 14180 Jkg K− −  Bα  2 1 1500 Jm s K− − −  

Cc  1 14180 Jkg K− −  Cα  2 1 15 Jm s K− − −  

0CT  025 C  q  10.0016 kgs−  

0BT  015 C  0T  025 C  

minE  2 30kgm s−  minQ  10 kgs−  

maxE  2 3500kgm s−  maxQ  10.0083 kgs−  
 

MODELLING OF HEAT EXCHANGER 
 
The local modelling approach was used to model the 
dynamic and steady-state properties of the system. The 
process exhibits nonlinear behaviour as can be seen 
from steady-state characteristics depicted in Figure 4.  
 

 
Figure 4. Steady-state characteristics of the heat 
exchanger 
 
Five separate sets of data were collected at different 
operating points. The operating points were chosen at 
the corners of the operating region and in the centre of 
it. Each data set is restricted to be close to the locus of 
equilibrium points. To get representative data for each 
subspace, an additional low-amplitude excitation signal 
has to be injected into the system. In this way the 

system is excited locally at the particular operating 
point and the collected data will reflect the dynamic 
which is a valid representation of the system only on the 
subspace close to operating point. Away from those 
points the accuracy of the network can decrease rapidly 
due to unmodelled off-equilibrium dynamics.  
At each chosen point an affine ARX model  
 1 1 2 2: ( 1) ( ) ( ) ( )i iM y k b u k b u k ay k c+ = + + +  (21) 
was identified. The scheduling vector ( )kφ contains the 
values of input 1( 1u k )− and . The widths of the 
Gaussian validity functions 
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minimization of a mean-squared modelling error over 
the training data using the criterion: 
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It is important to highlight here that in many industrial 
applications it could be difficult or even unsafe to drive 
the system rapidly across the operating space and hence 
global data is often not available. The modelling 
performance of the LMN is shown in Figure 5 where 
step changes of both inputs are applied to the system 
being modelled and LMN. 
 

 
 
Figure 5. Comparison of the measured output of system 
(green) and output of the LMN (red)  
 

 



 

 
Figure 6. Steady-state characteristics of the LMN 
 
Since the LMN will be used for finding the optimal 
inputs the steady-state properties of the LMN are of 
high importance. The steady-state characteristic of the 
LMN is depicted in Figure 6.  
 
PREDICTIVE CONTROL OF THE HEAT 
EXCHANGER MODEL  

 
The control task is to control the temperature inside the 
vessel by manipulating the flow-rate of the 
cooling water and heating 
power . The length of prediction horizon, 
was set to N = 20 with sampling period of 1 minute.  
The weighting matrices  were chosen as   
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Figure 7 Control of a heat exchanger 
 
Figure 7 shows the dynamic responses of the system 
when the sequence of changes is introduced into the 

system. The heating and cooling act against each other. 
As can be seen at the time from 100 to 300 minutes both 
inputs are active. The output temperature can be reach 
with an infinite number of combinations of inputs. 
However, only one combination of inputs has minimal 
utility costs.  
 

PREDICTIVE CONTROL WITH MINIMAL 
COST  

 
In the MPC strategy an extra term in the cost function 
of problem (14) is added to account for the utility cost. 
Thus, the control scheme uses two level structure that 
consists of supervisory level that determines the optimal 
steady-state inputs and MPC level that guides the 
process to this point. The optimization problem of the 
supervisory level is the minimization of the total utility 
consumption: 
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where are the cold and hot utility costs per unit 
and represents the steady-state response of the 
system given the inputs . 

1 2,c c

1 2( , )L u u

1 2,u u
 The desired optimal values that are obtained at 
supervisory level are included in the cost function of the 
control problem as a new term that penalizes the 
distance that the system is from the desired condition. In 
(Dusek and Honc 2009) the difference between the 
optimal state and state at the end of horizon is used.  
Here the difference between the last control signal and 
optimal control signal is weighted in the criterion. The 
MPC optimization problem is reformulated as follows: 
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where matrix K and vector l are defined as: 
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Only the future final value is used in the criterion to 
separate the effect of the optimising action of the 
supervisory level from the more immediate MPC 
closed-loop corrections. Analysis of this technique 
concerning the model plant mismatch can be found in 
(Gonzales et al. 2006). The main control objective is to 
follow the set-point and respect manipulated variable 
constrains and at the same time to minimize energy 
costs for heating and cooling. The same horizons and 
weighting matrices as in the previous control have been 

 



 

used in the criterion. Additional weighting matrix S was 
chosen as 
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CONCLUSION   

AUTHOR BIOGRAPHIES In this paper, a MPC scheme based on local model 
network has been applied to model of a heat exchanger. 
The operation of the process is decomposed into a set of 
operating regimes, and simple local models are 
developed for each regime. These are combined into a 
global model structure using the validity functions. The 
supervisory level looks for steady-state input values in 
agreement with minimum utility consumption, while the 
MPC accounts for transient performance and offset free 
controlled outputs. 
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