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ABSTRACT 

New tests for checking asymptotic stability of positive 

1D continuous-time and discrete-time linear systems 

without and with delays and of positive 2D linear 

systems described by the general and the Roesser 

models are proposed. Checking of the asymptotic 

stability of positive 2D linear systems is reduced to 

checking of suitable corresponding 1D positive linear 

systems. Effectiveness of the tests is shown on 

numerical examples. 

 

INTRODUCTION 

A dynamical system is called positive if its trajectory 

starting from any nonnegative initial state remains 

forever in the positive orthant for all nonnegative inputs. 

An overview of state of the art in positive theory is 

given in the monographs (Farina and Rinaldi 2000; 

Kaczorek 2002). Variety of models having positive 

behavior can be found in engineering, economics, social 

sciences, biology and medicine, etc..  

New stability conditions for discrete-time linear systems 

have been proposed in (Busłowicz 2008) and next have 

been extended to robust stability of fractional discrete-

time linear systems in (Busłowicz 2010). The stability of 

positive continuous-time linear systems with delays has 

been addressed in (Kaczorek 2009c) The independence 

of the asymptotic stability of positive 2D linear systems 

with delays of the number and values of the delays has 

been shown in (Kaczorek 2009d). The asymptotic 

stability of positive 2D linear systems without and with 

delays has been considered in (Kaczorek 2009a and 

2009b). The stability and stabilization of positive 

fractional linear systems by state-feedbacks have been 

analyzed in (Kaczorek 2010). 

In this paper new tests for checking asymptotic stability 

of positive 1D continuous-time and discrete-time linear 

systems without and with delays and of positive 2D 

linear systems described by the general and the Roesser 

models will be proposed. It will be shown that the 

checking of the asymptotic stability of positive 2D linear 

systems can be reduced to checking of stability of 

suitable corresponding 1D positive linear systems. 

The paper is organized as follows. In section 2 new 

stability tests for positive continuous-time linear systems 

are proposed. An extension of these tests for positive 

discrete-time linear systems is given in section 3. 

Application of the tests to checking the asymptotic 

stability of positive 1D linear systems with delays is 

given in section 4. In section 5 the tests  are applied to 

positive 2D linear systems described by the general and 

Roesser models. Concluding remarks are given in 

section 6. 

The following notation will be used: ℜ  - the set of real 

numbers, mn×ℜ  - the set of mn×  real matrices, 
mn×

+ℜ  - 

the set of mn×  matrices with nonnegative entries and 
1×

++ ℜ=ℜ
nn

, nM - the set of nn×  Metzler matrices (real 

matrices with nonnegative off-diagonal entries), nI - the 

nn×  identity matrix. 

 

CONTINUOUS-TIME LINEAR SYSTEMS 

Consider the continuous-time linear system 

 

 )()( tAxtx =&                            (2.1) 

 

where ntx ℜ∈)(  is the state vector and nnA ×ℜ∈ .  

The system (2.1) is called (internally) positive if 
ntx +ℜ∈)( , 0≥t  for any initial conditions 

nxx +ℜ∈= 0)0(  (Farina and Rinaldi 2000; Kaczorek 

2002). 

Theorem 2.1. (Farina and Rinaldi 2000; Kaczorek 2002) 

The system (2.1) is positive if and only if A is a Metzler 

matrix. 

The positive system is called asymptotically stable if 
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Theorem 2.2. (Farina and Rinaldi 2000; Kaczorek 2002) 

The positive system (2.1) is asymptotically stable if and 

only if all principal minors niM i ,...,1, =  of the matrix 

–A are positive, i.e. 
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Theorem 2.3. (Farina and Rinaldi 2000; Kaczorek 2002) 

The positive system (2.1) is asymptotically stable only if 

all diagonal entries of the matrix A are negative. 

Let nn

ijaA ×ℜ∈= ][  be a Metzler matrix with negative 

diagonal entries ( niaii ,...,1,0 =< ). 

Let define 
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and 
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for k = 1,…,n – 1. 

Let us denote by ][ cjiL ×+  the following elementary 

row operation on the matrix A: addition to the i-th row 

the j-th row multiplied by a scalar c. It is well-known 

that using these elementary operation we may reduced 

the matrix 
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to the lower triangular form 

 





















=

nnnn aaa

aa

a

A

,2,1,

2221

11

~...~~

0...~~
0...0~

~

MOMM
.                (2.5) 

 

It is easy to show that if the matrix (2.4) is Metzler 

matrix with negative diagonal entries then the matrix 

(2.5) is also a Metzler matrix. 

Theorem 2.4. The positive system with the matrix (2.5) 

is asymptotically stable if and only if all diagonal entries 

of the matrix are negative. 

Proof. The eigenvalues of the matrix (2.5) are equal to 

its diagonal entries nnaa ~,...,~
11  and the positive system is 

asymptotically stable if and only if all the diagonal 

entries are negative. □ 

Theorem 2.5. The positive continuous-time linear 

system (2.1) is asymptotically stable if and only if one of 

the equivalent conditions is satisfied: 

i) the diagonal entries of the matrices defined by 

(2.3) 

 
)(k

knA −  for k = 1,…,n – 1                 (2.6) 

 

are negative, 

ii) the diagonal entries of the lower triangular 

matrix (2.5) are negative, i.e. 

 

0~ <kka  for k = 1,…,n               (2.7) 

 

Proof. To simplify the notation we shall show the 

equivalency of the conditions (2.2) and (2.6) for n = 3.  

From Theorem 2.2 for n = 3 we have 
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By condition i) of Theorem 2.5 for n = 3 the diagonal 

entries of the matrices  
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are negative. Note that the condition (2.8) are equivalent 

to the conditions (2.9) since 3,2,1,0 =< iaii  and the 

inequalities  
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are satisfied if and only if 0det
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The proof can be also accomplished by induction with 

respect to n. A different proof is given in (Narendra and 

Shorten 2010). 

To show the equivalence of the conditions (2.6) and 

(2.7) note that the computation of the matrix )1(

1−nA  by the 

use of (2.3b) for k = 1 is equivalent to the reduction to 

zero of the entries 1,...,1,, −= nja nj  of the matrix 

(2.4) by elementary row operations since 
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for i = 1,…,n – 1 since 0, <nna  and 0, ≥jia  for ji ≠ . 

Thus, the matrix )1(

1−nA  is a Metzler matrix. Continuing 

this procedure after n steps we obtain the Metzler lower 

triangular matrix (2.5). Therefore, the conditions (2.6) 

and (2.7) are equivalent. □ 

Example 2.1. Consider the positive system (2.1) with the 

matrix 
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Check the asymptotic stability using the conditions 

(2.2), (2.6) and (2.7).  

Using (2.2) for (2.11) we obtain 
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The conditions (2.2) of Theorem 2.2 are satisfied and 

the positive system (2.1) with (2.11) is asymptotically 

stable. 

Using (2.3) for (2.11) we obtain 
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The conditions (2.6) of Theorem 2.5 are satisfied and 

the positive system is asymptotically stable. 

Using the elementary row operations to the matrix 

(2.11) we obtain 
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The conditions (2.7) of Theorem 2.5 are also satisfied 

and the positive system is asymptotically stable. 

 

DISCRETE-TIME LINEAR SYSTEMS 

Consider the discrete-time linear system 

 

,...}1,0{,1 =∈= ++ ZixAx ii                 (3.1) 

 

where n

ix ℜ∈  is the state vector and nnA ×ℜ∈  . 

The system (3.1) is called (internally) positive if 
n

ix +ℜ∈ , +∈ Zi  for any initial conditions nx +ℜ∈0 . 

Theorem 3.1. (Farina and Rinaldi 2000; Kaczorek 2002) 

The system (3.1) is positive if and only if nnA ×

+ℜ∈ . 

The positive system is called asymptotically stable if 
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From Theorem 2.2 and 3.1 it follows that the 

nonnegative matrix A  is asymptotically stable if and 

only if the Metzler matrix nIA −  is asymptotically 

sable. 

Theorem 3.2. (Farina and Rinaldi 2000; Kaczorek 2002) 

The positive system (3.1) is asymptotically stable if and 

only if all principal minors niM i ,...,1,ˆ =  of the matrix 

nn

ijn aAIA ×ℜ∈=−= ]ˆ[ˆ  are positive, i.e. 
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Theorem 3.3. (Farina and Rinaldi 2000; Kaczorek 2002) 

The positive system (3.1) is asymptotically stable only if 

all diagonal entries of the matrix A  are less than 1. 

It is assumed that niaii ,...,1,1 =<  of the matrix 

nn

ijaA ×

+ℜ∈= ][  since otherwise by Theorem 3.3 the 

system is unstable. Using (2.3) in a similar way as for 

the matrix A we define for the matrix ]ˆ[ˆ
ijn aIAA =−=  

the matrices )(ˆ k

knA −  for 1,...,1,0 −= nk . Using the 

elementary row operations we reduce the matrix Â  to 

the lower triangular form 

 





















=

nnnn aaa

aa

a

A

,2,1,

2221

11

'~...'~'~

0...'~'~
0...0'~

'
~

MOMM
              (3.4) 

 

Theorem 3.4. The positive discrete-time system with the 

matrix (3.4) is asymptotically stable if and only if all 

diagonal entries of the matrix 'Â  are less than 1. 

Proof is similar to the proof of Theorem 2.4. 

Theorem 3.5. The positive discrete-time linear system 

(3.1) is asymptotically stable if and only if one of the 

equivalent conditions is satisfied: 

i) the diagonal entries of the matrices 

  
)(ˆ k

knA −  for k = 1,…,n – 1                (3.5) 

 

 are negative, 

ii) the diagonal entries of the lower triangular 

matrix (3.4) are negative, i.e. 

 

0'ˆ <kka  for k = 1,…,n                 (3.6) 

 

Proof. The positive discrete-time system (3.1) is 

asymptotically stable if and only if the corresponding 

continuous-time system with the Metzler matrix 

nIAA −=ˆ  is asymptotically stable. By Theorem 2.5 the 

positive discrete-time system (3.1) is asymptotically 

stable if one of its conditions is satisfied. □ 

Example 3.1. Check the asymptotic stability of the 

positive system (3.1) with the matrix 
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Using (3.5) for n = 2 we obtain 
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Condition i) of Theorem 3.5 is satisfied and the positive 

system (3.1) with (3.7) is asymptotically stable. 

Similarly, using the elementary row operations to the 

matrix (3.8) we obtain 
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The condition ii) of Theorem 3.5 is satisfied and the 

positive system is asymptotically stable. 

 

LINEAR SYSTEMS WITH DELAYS  

Consider the continuous-time linear system with q 

delays (Kaczorek 2009c) 
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where ntx ℜ∈)(  is the state vector, ,nn

kA ×ℜ∈  

qk ,...,1,0=  and qkdk ,...,1,0 =>  are delays.  

The initial conditions for (4.1) have the form 
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The system (4.1) is called (internally) positive if 
ntx +ℜ∈)( , 0≥t  for any initial conditions ntx +ℜ∈)(0 . 

Theorem 4.1. The system (4.1) is positive if and only if 

 

nMA ∈0  and nn

kA ×

+ℜ∈ , qk ,...,1=         (4.3) 

 

where Mn is the set of nn ×  Metzler matrices. 

Proof is given in (Kaczorek 2009c). 

Theorem 4.2. The positive system with delays (4.1) is 

asymptotically stable if and only if the positive system 

without delays 
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is asymptotically stable. 

Proof is given in (Kaczorek 2009c). 

To check the asymptotic stability of the system (4.1) 

Theorem 2.5 is recommended. The application of 

Theorem 2.5 to checking the asymptotic stability of the 

system (4.1) will be illustrated by the following 

example. 

Example 4.1. Consider the system (4.1) with q = 1 and 

the matrices 
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The matrix of the positive system (4.4) with delays has 

the form 
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Using (2.6) for the matrix (4.6) we obtain 
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Condition i) of Theorem 2.5 is satisfied and the positive 

system (4.1) with (4.5) is asymptotically stable. 

Now let us consider the discrete-time linear system with 

q delays (Busłowicz 2008) 
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where n

ix ℜ∈  is the state vector and nn

kA ×ℜ∈ ,           

k = 0,1,…,q. 

The initial conditions for (4.8) have the form 
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The system (4.8) is called (internally) positive if 
n

ix +ℜ∈ , +∈ Zi  for any initial conditions n

kx +− ℜ∈  for 

k = 0,1,…,q. 

Theorem 4.3. (Kaczorek 2002) The system (4.8) is 

positive if and only if nn

kA ×

+ℜ∈ , k = 0,1,…,q. 

Theorem 4.4. The positive discrete-time system with 

delays (4.8) is asymptotically stable if and only if the 

positive system without delays 
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is asymptotically stable. 

Proof is given in (Busłowicz 2008). 

To check the asymptotic stability of the system (4.8) 

Theorem 3.5 is recommended. The application of 

Theorem 3.5 to checking the asymptotic stability of the 

system (4.8) will be illustrated by the following 

example. 

Example 4.2. Consider the positive system (4.8) with     

q = 1 and the matrices 
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The matrix of the positive system (4.10) without delays 

has the form 
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and using the elementary row operation to (4.13) we 

obtain 
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The condition ii) of Theorem 3.5 is satisfied and the 

positive system is asymptotically stable 

 

2D LINEAR SYSTEMS 

Consider the general autonomous model of 2D linear 

systems 
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where n

jix ℜ∈,  is the state vector and nn

kA ×ℜ∈ ,          

k = 0,1,2. 

Boundary conditions for (5.1) have the form 
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Theorem 5.1. (Kaczorek 2002) The system (5.1) is 

positive if and only if  
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The Roesser autonomous model of 2D linear systems 

has the form (Kaczorek 2002) 
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where 1
,

nh

jix ℜ∈  and 2
,

nv

jix ℜ∈  are the horizontal and 

vertical state vectors at the point (i,j) and lk nn
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×

ℜ∈, , 

k, l = 1,2. 

Boundary conditions for (5.4) have the form 
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Theorem 5.2. (Kaczorek 2002) The Roesser model (5.4) 

is positive if and only if  
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The positive general model (5.1) is called 

asymptotically stable if 

 

0lim ,
,

=
∞→

ji
ji

x  for all n

ix +ℜ∈0, , +∈ Zi , n

jx +ℜ∈,0 , +∈ Zj .              

(5.7) 

Similarly, the positive Roesser model (5.4) is called 

asymptotically stable if 
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Theorem 5.3. The positive general model (5.1) is 

asymptotically stable if and only if the positive 1D 

system 
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is asymptotically stable. 

Proof is given in (Kaczorek 2009a and 2009d). 

Theorem 5.4. The positive Roesser model (5.4) is 

asymptotically stable if and only if the positive 1D 

system 

 

++ ∈







= Zix

AA

AA
x ii ,

2221

1211

1               (5.10) 

 

is asymptotically stable. 

Proof is given in (Kaczorek 2009a and 2009d). 

To check the asymptotic stability of the positive general 

model (5.1) and the positive Roesser model (5.4) the 

Theorem 3.5 is recommended. The application of 

Theorem 3.5 to checking the asymptotic stability of the 

models (5.1) and (5.4) will be shown on the following 

examples. 

Example 5.1. Consider the positive general model (5.1) 

with the matrix 

 









=








=








=

2.01.0

3.02.0
,

1.00

1.00
,

1.01.0

2.01.0
110 AAA .(5.11) 

 

In this case 

 









=++=

4.02.0

6.03.0
210 AAAA             (5.12) 

 

and 

 










−

−
=−=

6.02.0

6.07.0ˆ
nIAA .        (5.13) 

 

Using the elementary row operation to (5.13) we obtain 

 

[ ]









−

−
 →









−

−
=

×+

6.02.0

05.0

6.02.0

6.07.0ˆ 121L
A . 

 

The condition ii) of Theorem 3.5 is satisfied and the 

positive general model with (5.11) is asymptotically 

stable. 

Example 5.2. Consider the positive Roesser model (5.4) 

with the matrices 

 









=

2221

1211

AA

AA
A                    (5.14a) 

 

And 

 

].8.0[],1.02.0[

,
2.0

1.0
,

4.01.0

2.03.0

2221

1211

==









=








=

AA

AA
          (5.14b) 

 

In this case 

 

















−

−

−

=−=

2.01.02.0

2.06.01.0

1.02.07.0

ˆ
nIAA .      (5.15) 

 

Using the elementary row operation to (5.15) we obtain 

 

[ ]
[ ]

[ ]

















−

−

−

 →

















−

−

−

 →

















−

−

−

×+

×+
×+

2.01.02.0

05.03.0

0045.0

2.01.02.0

05.03.0

025.06.0

2.01.02.0

2.06.01.0

1.02.07.0

5.021

5.031
132

L

L
L

 

 

The condition ii) of Theorem 3.5 is satisfied and the 

positive Roesser model with (5.14) is asymptotically 

stable. 

In a similar way as for 1D linear systems using 

(Kaczorek 2009b) the considerations can be easily 

extended to 2D linear systems with delays and to 

fractional 1D and 2D linear systems. 

 



 

 

CONCLUDING REMARKS 

New tests for checking asymptotic stability of positive 

1D continuous-time and discrete-time linear systems 

without and with delays and of positive 2D linear 

systems described by the general and the Roesser 

models have been proposed. The tests are based on the 

Theorem 2.5 and Theorem 3.5. Checking of the 

asymptotic stability of positive 2D linear systems has 

been reduced to checking of suitable corresponding 1D 

positive linear systems. The tests can be also extended 

to 2D continuous-discrete linear systems and to 1D and 

2D fractional linear systems. An open problem is 

extension of these considerations to 2D positive 

switched linear systems. 
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