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ABSTRACT 

Numerical schemes for inverse problems like volatility 
estimation or learning market neutral density are of 
prime importance for financial planning. Recent 
advances in numerical techniques like finite difference 
solvers based on parallel computation, Monte Carlo for 
spectral computations has led to formulation of many 
approximations based on these methods for financial 
instruments. This paper surveys two very important 
problems in finance e.g. volatility calibration and timing 
of order placing in automatic trading with finite 
difference discretization schemes. The methods for 
volatility calibration are illustrated using convergence 
of Euler Pontryagin approximation for a simplistic 
model with diffusion price process and then later on 
more general price process have also been shown to fit 
into these frameworks through similarity of their adjoint 
equations. The control approach in algorithmic trading 
has been done through viscosity solutions and Lax 
Friedrich numerical schemes. 
 
INTRODUCTION 

Volatility of the underlying asset is a crucial parameter 
in the Black-Scholes formula and the Black-Scholes 
equation for pricing general options as these are 
sensitive to volatility and investors like to anticipate 
future price of the assets concerned. The volatility is in 
general unpredictable which renders estimation of 
volatility difficult. However, the options market 
“knows” it. Obtaining and analyzing prices of a number 
of options on a given underlying asset with various 
strike prices and expiration dates helps in a way that we 
can implicitly determine volatility by using  measured 
market values of options on the considered asset. The 
canonical technique of Dupire’s method for estimating 
volatility can also be used but is typically ill posed. So 
we convert the implied volatility determination problem 
to a  terminal state observation problem for a parabolic 
equation  and the latter being a a typical inverse 
problem, enables us to  find a well-posed algorithm for 
it in the framework of optimal control theory. Thus the 
problem is changed to an optimal control problem with 
the volatility parameter as control variable. Similarity of 

other models with general price processes with Dupire’s 
model for a simplistic model is shown through 
similarity of their adjoint equations and later on the 
paper gives finite difference based approximations for 
Dupire’s model which can also be applied to models 
with general price process. 
 
In words of (Bouchard et al. 2010) “Trading algorithms 
are widely used by financial agents for high frequency 
intra-day trading purposes, e.g. for “statistical arbitrage" 
or for the execution of large orders by brokers in order 
to make profit of good prices. In both cases, large size 
of the portfolios which are handeled by a limited 
number of traders and the fact that the orders have to be 
executed very quickly justify and at times necessitate 
the use of robots. These algorithms relate to global 
optimization problems and are run without interruption 
on the whole trading period. Brokers first split the 
global number of assets to be bought or sold into slices. 
And then use robots to execute these sequentially. 
Execution of every new slice either requires a new robot 
or  calls for tuning the parameters of the algorithm 
taking into account the evolving market conditions  
(which can actually also be viewed as changing the 
parameters of a single robot, at least from the 
mathematical point of view). Thus in practice the trader 
has a bunch of trading algorithms which helps him 
decide  how to slice the order, time of  starting and 
finishing the launch and values of the parameters. The  
existence of a minimal time period  for each algorithm 
is required because the trader can not monitor all the 
algorithms running for different purposes 
simultaneously and it also is not feasible to launch an 
algorithm for less than, say, one second. This paper 
aims at providing a decision tool for traders given the 
above described practical situation.” The paper presents 
the framework for the optimal control of trading 
algorithms: i.e. how the problem can be converted into a 
finite difference scheme using control theoretic 
framework based on the above model. 
 
VOLATILITY CALIBRATION PROBLEM 

Let’s consider a simplistic model where stochastic 
process of the asset price movement under the risk-
neutral measure is  
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where W denotes Brownian motion. 
 
Correspondingly, the Black-Scholes equation becomes 
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In general, this type of problem has no explicit solution. 
It must be solved by numerical methods. With the 
improved price model of the underlying asset, we ask a 
question: how can we determining the volatility of an 
underlying asset price from its option price quotes in the 
options market  i.e. at t = t0, S = S0, if 
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are given and we have to find the volatility function 
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So the problem is precisely : Let C = C(S, t; σ, K, T) be 
a call option price, satisfying 
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and suppose that at t = t* (0 ≤ t*≤ T1), S = S* 
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is given and we have to find 
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Dupire Solution 
Let  )T,K;t,S(CC = be a European call option price 
and then from Dupire’s method (Achdou and Pironeau 
2005; Dupire 1997; Gatheral 2006) we will get 
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Let’s call (5) as the adjoint equation and we will see the 
similarity of this equation with adjoint equation of other 
models with different stochastic processes which are 
illustrated below. 

Calibration with Stochastic volatility model with 
Poisson process 
Consider the price process S whose dynamics under the 
pricing measure P is given by: where B is a Brownian 
motion and N a Poisson random measure on [0,T] × R 
with compensator  υ  and N is the associated  
compensated  random measure. Assume 
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Then the equation can be reduced to 
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Calibration of Stochastic volatility model with random 
jumps 
The price dynamics is 
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Where r(t) is the discount rate, δt is the spot volatility 
process and M is a compensated random measure with 
compensator 
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Let’s make the assumption 
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then under above assumption the call option price (T;K) 
→Ct(T;K), as a function of maturity and strike, is a 
solution (in the sense of distributions) of the partial 
integro-differential equation: 
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We can see the similarity of (7) and (8) to (5). For such 
examples one is referred to (Achdou 2005; Gatheral 
2006). 

Computational Problems with Dupire’s Model 
Suppose that at *tt = , *SS = we can get from the 
options market the option price quotes with various 
strike prices and expiration dates, i.e. if we know the 
function ),T,K;t,S(C)T,K(F **= then we can 
calculate σ(K, T) by (6) however, this algorithm is not 
robust to the real data and is thus not reliable. In fact, 
for a given F(K,T), in order to calculate σ(K, T) by (6), 
we need to calculate the derivatives FKK, FK and FT. But 
a small error in F can result in big changes in its 
derivatives, especially in its second derivatives. 
Therefore the algorithm to compute σ(K,T) by (6) is ill-
posed. In general, F(K, T) is given on a set of discrete 
points {(Kk,Tl)}(k = 1,..., m, l = 1,..., n). Thus 
interpolation or extrapolation technique would be 
required to obtain a continuous function F(K, T) in the 
domain (0 ≤ K < ∞, T 1 ≤ T ≤ T2) from the values at 
discrete points. However, naive interpolation and 
extrapolation tend to incur irregularity and instability in 
the solution σ(K, T). A more robust calibration method 
is hence needed. Although Dupire method is not 
practical, nevertheless, we can follow its idea in solving 
this ill-posed problem. That is, we still want to reduce 
the implied volatility determination problem to a 
terminal state observation problem for a parabolic 
equation. Since the latter is a typical inverse problem, 
we can always find a well-posed algorithm for it. We 
convert the implied volatility function determination 
problem to a terminal state observation problem so that 
in the framework of optimal control theory we could 
find a well posed numerical iteration. 
 

ALGORITHMIC TRADING CONTROL 
PROBLEM 

Following the model (Bouchard et al. 2010) a control 
policy of the trading algorithm is described by a non-

decreasing sequence of stopping times (τi)i≥1, [δ,∞) × E 
valued random value (δi , εi)i≥1. The stopping times τi  
describe the times at which an order is given to the 
algorithm, εi  is the value of the parameters with which 
the algorithm is run and δi  the length of the period 
(latency period) during which it is run with the value εi . 
The set E is a compact subset of Rd, which represents 
the possible values of the parameters, the quantity 0 ≤   
δ’≤ T denotes the minimum length of the time period 
during which the algorithm can be run. At time it t ϵ [τi , 
τi + δi) the value of the parameter of the trading 
algorithm is denoted by νt. For t ϵ A([τi , δi)i≥1)   
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In the following, let’s denote by S  the set of adapted 
processes ν that can be written in the above form for 
some sequence of stopping times (τi)i≥1 and of  [δ,∞) × 
E valued random variables (δi , εi)i≥1, (τi
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ν)i≥1  is  
the sequence associated to ν ϵ S.  

Given some initial data (t ,x) ϵ [0, T] × Rd the output of 
the trading algorithm associated to some control policy  
ν ϵ S  is defined as the strong solution X x,t
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the stochastic differential equation 
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where ϖ=νt  means that the algorithm is not running at 
time t. The aim of the controller is to maximize the 
expected value of the gain functional ν
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where (δ,e) ϵ  R + × E denotes the initial state of the 
remaining latency time and value of the parameters. 
 
Let’s consider the case where the aim of the controller 
is to sell a number 0Q  of one stock S  between 0 and 

0T > . We denote by tV  the global volume 
instantaneously traded on the market at time t . The 



 

 

dynamics of )V,S(  is given by the strong solution of 
the SDE 
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where W denotes a two dimensional standard Brownian 
motion, and (μS ,σS ,μV ,σV) are Lipschitz continuous. It 
is implicitly assumed that the above SDE has non-
negative solutions whatever the initial conditions are. A 
control ν ϵ S is identified to a sequence (τi

ν δi
ν εi

ν)i≥1    ϵ 
S. Here εi

ν stands for the intensity at which the stocks 
are bought, i.e. the algorithm buys a number 
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remaining number of stocks to he bought before T  is 
thus given by: 
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where q  is now defined as ϖ≠= e1c)e(q . It follows that 
the cumulated wealth’s dynamic is 
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where η  is a given market impact function. 
If the number 0Q  of shares is not liquidated at time T  

the remaining part v
TQ  is instantaneously bought on the 

market at the price ),,( TT
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Lipschitz continuous function c . The total cost after the 
final transaction is thus given by: 
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The aim of the controller is to minimize the expectation 
of the quantity 
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for some convex function l  satisfying regularity 
conditions. 
 
OPTIMAL CONTROL THEORETIC APPROACH 

Control Approach to Volatility Calibration 

Let’s consider an open set nR⊂Ω  and let V  be some 
Hilbert space of functions on Ω  considered as a 
subspace of )(2 ΩL  with its usual inner product. For a 
given cost functional RVVh →×:  : V x V —> R, the 
optimal control problem consists of finding 
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where R]T̂,0[: →×Ωϕ  is the solution to the 
differential equation 
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with some given initial function 0)0(., ϕ=ϕ . For each 

choice of σ it is a function R]T̂,0[V:f →× . tϕ  
denotes the partial derivative with respect to t . We 
refer to σ as the control and the minimizer of (13), if it 
exists, is called the optimal control. We assume that σ 
takes values in some compact set RB ⊂ . Let the value 
function U be defined as: 
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The value function U  solves the non-linear Hamilton-
Jacobi-Bellman equation 
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where RVV:H →×  is the Hamiltonian associated to 
the above optimal control problem 
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The method of characteristics associated to (15) yields 
the Hamiltonians system 
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where λH  and ϕH  denote the Gateaux-derivatives of 
H  w.r.t. λ  and ϕ  respectively. The unknown quantity 
is the local volatility function )S,t(σ=σ . Hence the 
problem of calibrating σ from option prices can he 
formulated as an optimal control problem.  
 
Suppose that )K,T(CC mm =  are call options priced in 
the market, for different strikes 0≥K  and maturities 

TT ˆ0 ≤≤ . We wish to the determine the control σ  
minimizing 
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It is also assumed that for all T  and 
],[, maxmin σσσ ∈K .The problem as stated here is 

typically ill-posed as the solution often is very sensitive 
small changes in mC . 
 
Discretized Hamiltonian 
Discrete Version of (17) 
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where D1 and D2 are finite difference operators 
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We define the discrete Hamiltonian as 
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Since H  is not differentiable generally , we need to to 
regularize it in order for (15) to be sensible. There are 
different regularization schemes and the choice depends 
on the problem and we contend herewith Tikhonov 
regularization. See (Bouchouev and Isakov1997;  
Sandberg and Szepessy 2006) for different 
regularization schemes related to different problems. 
We construct a regularization of the Hamiltonian with 
appropriate function s and its regularized version 
sδ which are described below. 
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Since s  is nondifferentiable H is also nondifferentiable. 
Using a regularized version of sδ of s ,  defined as  
approximating )(xs  by 
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we can have the  regularization of the Hamiltonian 
where H becomes 
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Let’s have a uniform partition of the time interval ]T̂,0[  

with N/T̂t =∆  for some integer N . Again we 
introduce a uniform grid on M/K̂K],K̂,0[ =∆ , We use 
the notation 
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Let’s write )Tj,K(C)K(C )j( ∆=  and 

)Tj,K()K()j( ∆λ=λ  and assume that they satisfy a 
symplectic implicit Euler scheme (Sandberg and 
Szepessy 2006): 

)j()j()1j( ),C(THCC λ∆=− δ
λ

+  

)j(
C

)1j()j( ),C(TH λ∆=λ−λ δ+  

 

(18) 

where ( ))1j()j()j( ,CH),C(H +δδ λ=λ .  

 
Convergence of  Euler Pontryagin Approximation 
If  the Hamiltonian in (15) is Lipschitz on RR dd× , if 
(18) has a solution  and )1j( +λ  has uniformly bounded 
variation with respect to )j(C  for all j  and T∆  then 
the optimal solution to the Pontryagin problem (18) 
( ))j()j( ,C λ  satisfies the error estimate (for T~ ∆δ ) 
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For a proof see (Sandberg and Szepessy 2006). 

 

Finally we summarize the above and obtain the 
completely discretized Hamiltonian system 
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This discretization is very suitable for Newton like 
iterations. 
 
Control Approach to Algorithmic Trading 

Algorithmic Trading Control Problem as Viscosity 
Solution 
The value function is defined on  
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which can be decomposed in two main regions. (a) the 
active region, the region where 0>δ  and ϖ≠e : It 
corresponds to the set of initial conditions where the 
algorithm is running and the controller has to wait till 
the end of the latency period before passing a new 
order. and (b) passive region, the region where ϖ=e , 
and therefore 0=δ . 
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It corresponds to the set of initial conditions where the 
algorithm is running and can be launched immediately 
with a new set of parameters. These two regions are 
complemented by the natural boundaries of the active 
region when 0→δ  and :Tt →+δ  
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for any ],[ Tt -valued stopped time ϑ . 
 
For ,),,,( 0,>∈ EDext δ  the controller can not change 
the parameter of the algorithm before the end of the 
initial latency period 0>δ . Choosing ϑ  arbitrary 
small  implies that V  should satisfy 
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where ),,,(),( extVLxt e δ+  is defined for ),( eδ  
taken as parameters. 
 
The  boundary condition is 

),,(),0,,(),,,( exfxtVextV += ϖδ  if ,),,,( 0,EDext ∈δ  

and 

),,,(),,,( extVextV =δ  if TDext ∈),,,( δ , 

Boundary condition as t → T   is the terminal condition: 

),,()(),,,( exfxgextV +=δ  if TDext ∈),,,( δ , 

where 0),( =⋅ ϖf  by condition. 
 
The above discussion shows that V  should solve the 
equation 

 0=ϕH  

on D , where, for a smooth function ϕ  defined on D , 

Donext
dLH E 0,         ),,,()( >∂
∂

+−= δφε  (20) 

However, since V  may not be smooth, it has to be 
stated in terms of viscosity solutions in the sense of 
Crandall Lions. See (Bouchard and Touzi 2009; 
Bouchard et al. 2010; Yong and Zhou 1999) for more 
details. 
 
NUMERICAL ALGORITHMS 

Volatility Calibration 

Let’s introduce the two functions 
MNMN RR:G,F →δδ : 
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We need ),C( λ  such that 0),C(G),C(F =λ=λ δδ . 
Starting with some initial guess ])0[],0[( λC , the 
Newton method gives 
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where ])[],[( kYkX  is the solution to the following 
system of linear equations 
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where kJ  denotes the Jacobean of 
MN2MN2 RR:)G,F( →  evaluated at ])k[],k[C( λ . 

Depending upon the desired level of accuracy this 
iteration can be performed. For some applications of 
this iteration to volatility calibration see (Gatheral 2006; 
Kiessling 2010).  
 
Algorithmic Trading 

Lax Fredrich Scheme 
We can use the viscosity solution of the problem: 

 ),0(R)t,x(foru)u(Hu xxxt ∞×∈∂ε=∂+∂ εεε . 

 Rx for )x(g)0,x(u ∈=ε .  
 

 

to construct solution to the following desired problem 

 ),0(R)t,x(for0)u(Hu xt ∞×∈=∂+∂ . 

 Rx for )x(g)0,x(u ∈= .  
 

 

for which the Lax Friedrich scheme (Sandberg and 
Szepessy 2006; Bouchaouv and Isakov 1997 ) is 
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The stability condition for above scheme is  
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t
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In the two-dimensional case if a first order 
Hamilton-Jacobi equation has the form 

 ,0)V(HV xt =∂+∂   

The Lax Friedrich scheme for this two dimensional 
case is 
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So for our problem which is a four dimensional case 
that scheme will finally reduce to finite difference 
schemes (Almgren 2009; Bouchard et al. 2010). 
 
CONCLUSION 

Inverse problems are ubiquitous in economics and 
finance, some examples are learning market neutral 
measure and volatility estimation etc. Control 
framework comes into picture as many problems can be 
transformed from original form into optimization 
problems for which dynamic programming or optimal 
control theory could be applied. Numerical 
discretization of these problems therefore become very 
important as they can be solved very efficiently for 
lower dimensional cases and these schemes are highly 
parallelizable which makes use of these numerical 
methods very attractive for problems with intensive 
computational needs. 
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