

AN ADVANCED SIMULATION MODEL FOR DEPENDABLE
DISTRIBUTED SYSTEMS

KEYWORDS
Simulation model, dependability, large scale distributed
systems

ABSTRACT

We present a simulation model designed for evaluation
of dependability in distributed systems. The model is a
modification of the MONARC simulation model by
adding new capabilities for capturing the reliability,
safety, availability, security, and maintainability
requirements. It includes components for failures
injection, and it provides evaluation mechanisms for
different replication strategies, redundancy procedures,
and security enforcement mechanisms. The model is
implemented as an extension of the multi-threaded,
process oriented simulator MONARC, which allows the
realistic simulation of a wide-range of distributed
system technologies, with respect to their specific
components and characteristics. The experimental
results show that the application of the discrete-event
simulators in the design and development of the
dependable distributed systems is appealing due to their
efficiency and scalability

INTRODUCTION

Up until recently the research efforts in the area of large
scale distributed systems (LSDS) mainly targeted the
development of functional infrastructures. As the
application domains of LSDS are extending, researchers
have to deal with new requirements. Today LSDS are
required to offer reliability, safety, availability, security
(all attributes of dependability).

In this paper we present a simulation model designed to
evaluate the dependability in LSDS. The proposed
model extends the MONARC simulation model (Dobre
et al. 2008a) with new capabilities for capturing
reliability, safety, availability, security, and
maintainability requirements. The simulation model
includes the necessary components to inject failure
events, and provides the mechanisms to evaluate
different strategies for replication, redundancy
procedures, and security enforcement mechanisms, as
well. The paper extends the results presented in (Dobre
et al. 2008b), introducing the simulation model

designed for dependability of distributed systems. The
results achieved in experimental analysis show that the
application of discrete-event simulators in the design
and development of distributed systems is appealing
due to their efficiency and scalability.

The rest of this paper is structured as follows. Section 2
presents related work in the area of modeling
distributed systems. In Section 3 we present the
extended simulation model to simulate dependable
LSDS. Sections 4 and 5 present details for the proposed
fault tolerance and security simulation models. The
experimental evaluation results are demonstrated in
Section 6. The paper ends with final remarks and
conclusions in Section 7.

2 RELATED WORK AND OUR APPROACH

Modeling and simulation are the effective tools for the
development of the new algorithms and technologies.
They enable the enhancement of large-scale distributed
systems, where analytical validations are prohibited by
the scale of the encountered problems. The use of
discrete-event simulators in the design and development
of LSDS is appealing due to their efficiency and
scalability.

SimGrid (Casanova et al. 2008) is a simulation toolkit
that provides core functionalities for the evaluation of
scheduling algorithms in distributed applications in a
heterogeneous, computational Grid environment. It
aims at providing the right model and level of
abstraction for studying Grid-based scheduling
algorithms and generates correct and accurate
simulation results. The Grid simulator toolkit developed
for the investigation is the GridSim system introduced
by Buya et al. in (Buyya and Murshed 2002). The main
concept of the simulator is on the computational
economy.

OptorSim (Venters et al. 2007) is a Data Grid simulator
designed for evaluating optimization in data access
technologies for Grid environments. It adopts a Grid
structure based on a simplification of the architecture
proposed by the EU DataGrid project. Another
simulator package is ChicagoSim (Ranganathan and
Foster 2002). It is dedicated for the implementation of

Ciprian Dobre, Florin Pop, Valentin Cristea Joanna Kolodziej
Department of Computer Science Department of Mathematics and Computer

Science
University POLITEHNICA of Bucharest University of Bielsko-Biala

Spl. Independentei 313, Bucharest, Romania ul. Willowa 2, 43-309 Bielsko-Biala, Poland
E-mails: {ciprian.dobre, florin.pop, valentin.cristea}@cs.pub.ro E-mail: jkolodziej@ath.bielsko.pl

Proceedings 25th European Conference on Modelling and
Simulation ©ECMS Tadeusz Burczynski, Joanna Kolodziej
Aleksander Byrski, Marco Carvalho (Editors)
ISBN: 978-0-9564944-2-9 / ISBN: 978-0-9564944-3-6 (CD)

the scheduling strategies in conjunction with the data
location.

These simulators do not present general solutions to
modeling dependability technologies for LSDS. They
provide basic simulation models for evaluating LSDS.
We propose a simulation model that provides the means
to evaluate a wide-range of solutions for dependability
in LSDS. Security in particular has never been properly
handled by any of these projects. The only simulator
that is able to evaluate LSDS security aspects is G3S
(Grid Security Services Simulator) (Naqvi and Riguidel
2005). Similar to its model, we support all the
mechanisms made available in G3S. Our proposed
simulation includes capabilities for modeling security
aspects, from patterns of attack to intrusion detection,
authentication or privacy enforcement solutions. It also
includes the mechanisms to evaluate security in a more
general context, modeling more realistically distributed
systems, with their specific characteristics. The model is
able to describe actual distributed system technologies,
and provides the mechanisms to describe concurrent
network traffic, to evaluate different strategies in data
replication, and to analyze job scheduling procedures.
MONARC offers ample customization possibilities,
thus enabling users to integrate different proprietary
solutions. For example, unlike G3S, the MONARC’s
model can incorporate custom security solutions
designed by the user for particular scenarios.

3 MONARC’S ARCHITECTURE

MONARC is based on a process oriented approach for
discrete event simulation, which is suited to describe
concurrent running programs, network traffic as well as
all the stochastic arrival patterns specific for such type
of simulations (Legrand et al. 2003). The simulator is
able to handle experiments involving thousands of
processing nodes executing a large number of
concurrent jobs, and thousands of concurrent network
transfers.

Figures 1: The Regional Center model.

MONARC uses a simulation model that abstracts
components found in LSDS infrastructures. The model
includes components for simulating processing units,
databases, and network traffic. Such components can be

grouped in regional centers (Figure 1). A regional
center is used to abstract a group of resources that are
under the control of a single organization. Several
regional centers can be linked to simulate cooperation
with other resources, similar to how clusters are used in
larger Grids. The simulation model also include
components to model the behavior of the applications
and their interaction with users. Such components are
used to generate data processing.

One of the strengths of MONARC is that it can be
easily extended. This is made possible by its layered
structure. The first two layers contain the core of the
simulator (called the "simulation engine") and models
for the basic components of a distributed system
(processing units, jobs, databases, networks, job
schedulers etc). The particular components can be
different types of jobs, job schedulers with specific
scheduling algorithms or database servers that support
data replication. Using this structure it is possible to
build a wide range of models, from the very centralized
to the distributed system models, with an almost
arbitrary level of complexity (multiple regional centers,
each with different hardware configuration and possibly
different sets of replicated data).

Figures 2: The dependable simulation model and its
components.

In this paper we present an extended MONARC
simulation model that is able to evaluate dependability
aspects for LSDS. The model is designed to evaluate
fault detection, fault recovery, or security solutions in a
unitary and aggregated way. Figure 2 presents the
components of the dependable modeling layer. The
extensions to the simulation model were introduced for
modeling faults, failure detection, fault recovery, and
security aspects within a modeled distributed system.

4 FAULT TOLERANCE MODEL

We first extended the simulation model (see Figure 3)
and added the mechanisms to evaluate fault tolerance in
LSDS. The model includes components necessary to
inject and recover from faults in the processing,
networking as well as database layers.

The fault tolerance model also allows the simulation of
hybrid systems, in which failing components can
coexist with traditional components of the MONARC’s

original model. The mechanisms for fault tolerance are
added as extensions to MONARC’s simulated
components, and in simulation experiments both types
of components, with and without the fault tolerance
extensions, can coexist.

Figures 3: The extended fault tolerance model.

Figure 4 presents the modeling of fault tolerancein in
communication layer. In this case various failures can
occur within the network links, and routers. In addition,
the model can simulate redundancy and recovery
protocols based.

Figures 4: A fault tolerant network model.

At the hardware layer different distributed components
can be modeled as failing: the processing unit, the
network connectivity as well as the storage devices. In
software we consider faults occurring in a middleware
component (a faulty scheduler, a database server
returning incorrect results, etc.) or within higher-level
distributed application (jobs could fail to return correct
results).

The model includes faults such as crash faults, omission
faults, time faults, as well as Byzantine faults. All
modeled components have mechanisms to simulate
injection of faults (or the modeling of their failure). The
mechanisms are configurable via metrics for calculating
processor availability. The first mechanism is based on
the MTTF (mean time to failure) parameter. The fault
injection uses the MTTF together with a mathematical
probability distribution (such as binomial, Poisson,
Gaussian, standard uniform, etc)., such as at random
intervals a component can experience faulty behavior
(failures). The second error injection mechanism uses
random occurrence of fault events. This is useful in

modeling Byzantine failures. For such errors the
simulation model allows resuming the normal behavior
of the faulty component.

The fault injection mechanisms are used together with
fault detection and recovery mechanisms. For that the
model includes a monitoring component. The
component is responsible with the management of
events related to the triggering of faults. In the event of
a failure each component can take global actions (such
as update of the service catalogue if the experiment
requires it). It also updates the states of the distributed
system, and informs other components of the event.

The scheduler also implements a fault-tolerant
mechanism. Whenever a new job is submitted the
scheduler also produces a special simulation event that
triggers when a timeout occurs. The timeout depends on
the user’s specifications and is used as a signal if the
job fails to return results in due time. In this case the
scheduler is interrupted either when the job finishes or
when the timeout event occurs. The same mechanisms
are implemented within the network simulation model.
In this case a job is informed if a transfer failed to finish
in a specified amount of time (possible due to network
congestion) and can take appropriate measures (such as
canceling the transfer or saving the state).

The simulation model also includes mechanisms model
check-pointing or logging of the system’s state. Such
mechanisms are implemented using MONARC’s
simulation events. The model is able to simulate both
static and dynamic check-pointing strategies.

The simulation model also includes mechanisms for the
evaluation of replication and redundancy mechanisms.
Replication provides mechanisms to use multiple
instances of the same system or subsystems and choose
the result based on quorum. The simulation model
allows the simulation of DAG distributed activities.
This is useful in modeling job replication, when the
same job can be executed on multiple processing units,
and another job receives the outputs and selects the
correct results. The possibility to model replication
mechanism was demonstrated in (Eremia, et al, 2010).
Redundancy results were demonstrated in experiments
presented in (Dobre et al. 2008b).

5 SECURITY MODEL FOR LARGE SCALE
DISTRIBUTED SYSTEMS

LSDS are vulnerable to security threats because they
rely on distributed access control mechanisms necessary
to access remotely wide-spread resources that are under
different administrative domains. The MONARC’s
simulation model includes components for the analysis
of security-dependent experiments (Figure 5). It is
capable to simulate security solutions used in real-world
distributed environments, such as GSI, PKI, SSL,
cryptographic solutions, etc. In addition, the model
includes various simulated security attacks. It allows the
addition of detection mechanisms for such attacks, by

providing simulation mechanisms for message
encryption or authentication and authorization.

The model considers the general case of security, as a
mean to ensure that systems remain safe and reliable to
errors, threats or malicious changes. The model
includes solutions for data privacy, data integrity and
system availability.

The security model allows the specification of security
policies. A security policy describes which actions are
allowed and which are prohibited. Entities to which
these actions apply include users, services, information,
machinery, etc. Once the security policy is established,
the necessary security enforcement mechanisms are
considered. The model includes various security
mechanisms (Johnston, 2004): confidentiality (it
includes mechanisms to ensure that an authenticated
entity can access only the information that has been
authorized to), authentication (the models includes
mechanisms to identify entities involved in a
communication or collaboration), authorization (the
model guarantees that once the entity has been
authenticated, its options will be restricted / limited to
those operations that it is authorized to perform), and
audit (the models includes the mechanisms to guarantee
the non-repudiation of origin and content of a message).

Figures 5: The security simulation model.

The security model includes a secured job that carries
authentication tokens or certificates, and is able to
request data based on specific rights. The user can
specify the use of X.509 certificate, together with a PKI
infrastructure for example, or can easily add new means
of authentication. In particular for Grid systems an
additional important concept considered by the security
model is the Virtual Organization (VO). In a VO
different organizations (commercial companies,
universities, etc.) collaborate to share resources and
work together to solve common problems. Each
organization within a VO is managed independently
and has its own security solutions such as Kerberos or

PKI infrastructure (Public Key Infrastructure). To
define VOs the model uses security policies shared
between regional centers. The model includes
mechanisms to evaluate various authentication
solutions. Such authentication mechanisms are applied
to the scheduler, processing unit, and to jobs requesting
data from the database servers. For example, the job
scheduler includes restrictions to where to execute
specific jobs, based on the VO to which they belong.
The processing units are capable to verify if a particular
job is allowed to be executed. The access control
verification can be implemented based on various
schemas (RBAC, MAC, DAC, etc).

The model adds the possibility to include secure data
transport protocols. For example, the SSL protocol
offers the possibility to encrypt the messages being
exchanged between entities in a simulation experiment.
In addition the model implements handshake
mechanisms for protocols supporting authentication
capabilities. The user can easily add and evaluate new
protocols and mechanisms. The model includes
mechanisms for data encryption, keys and certificate
management, etc. In addition, it includes mechanisms
for traffic filtering by specifying exclusion rules based
on various metrics (ports, addresses, protocols, etc) and
corresponding actions (reject for example).

The security model also enables the protection of
message content sent throughout the network against
attacks such as interception (eavesdropping), and thus
keeping its confidentiality, by encrypting its content. It
also ensures secure data transfers by using protocols to
allow the authentication of the parties involved in the
communication. This ensures both the integrity of
messages transmitted, and their protection against
attacks such as man in the middle.

The implementation also includes an exclusion rule
based traffic filtering of all components of a virtual
organization. This mechanism can be used to prevent
attacks such as DoS. In case of many connections
coming from the same address, for example, the
filtering policy can specify that that particular address is
banned for a certain period of time (or permanently).

6. EXPERIMENTAL RESULTS

To analyze the validity and performance of the
dependability simulation model we conducted several
simulation experiments.

We first evaluated fault tolerance. The first experiment
analyzed how the number of processing units relates to
the reliability in processing a batch of tasks. The
objective was to guarantee that a given number of tasks
can be processed, without considering delays caused by
failed processing units. If no processing unit is working
at a given moment, the experiment fails.
In the experiment a number of jobs are sent for
processing. The job scheduler is responsible with
finding a suitable processing unit for each of these jobs.

Figures 6: Results obtained for batch of tasks.

The results in Figure 6 were obtained for different cases
(10, 20, and 40 processors) and 10,000 jobs sent for
execution. The CrashThresh parameter shows the
probability of the processing units to experiment
permanent failures. In these experiments, for particular
cases (Figure 6), the job scheduler gets into a state
where there are no more processing units to execute
jobs. In this case the scheduler is no longer able to mask
failure and, therefore, the user sees a lower number of
processing jobs successfully executed (the vertical
axis).

Table 1: Results for transient failures.
Jobs CPUs Transient

Thresh
Avg. Failed CPUs Processed

10000 10 0.5 7 4931

10000 10 0.6 3 10000

10000 10 0.7 1 10000

We continued with experiments where 10 processing
units experience transient failures. In these experiments
we varied the probability of processors to experience
failures (the Transient Thresh parameter).

Figures 7: The simulation scenario used with the
Network Failure experiments.

The obtained results (see Table 1) show a bottleneck for
the number of jobs that are successfully executed. In
this case the job scheduler considers that CPUs fail if
they don't answer for one heartbeat and they are
repaired if one positive answer is received.

These experiments reveal the importance of taking
repairing actions in case of faulty resources. If no

permanent faults occur, and transient faults occur in a
reasonable range, a task still finishes, independently of
the batch size. This is because the processing units are
repaired faster than they break.

Because tasks conserve the work they’ve done when
stopped, the time is proportional with the average
percentage of failed processors if all tasks are
completed. In this case efficiency is computed by
dividing the ideal completion time to the actual
completion time if failures occur. By default jobs are
not reset when rescheduled, resulting in efficiency
values proportional to the average number of working
processors. If jobs are reset when rescheduled,
efficiency is much more correlated to MTBF. If a
processor can never finish by itself a job, no jobs will
be completed, resulting null efficiency.

Figures 8: Results obtained for different probabilities of
links to experience permanent failures.

Another set of experiments was further designed to
evaluate the relation between redundant network links
and link reliability. The goal is to send a number of
packets, without considering delays. Because of its
resilience to missed packets, TCP was chosen as the
transport protocol.

Figures 9: Comparison between execution time (s) for

scheduling algorithms with and without errors.

Figure 7 shows the experiment’s network topology.
Cern LAN sends packets to Caltech LAN. Packets are
routed by Cern Router through the two possible paths
towards Caltech Router in respect to network load.
Figure 8 shows the results obtained for the case when
the network links can experience permanent failures.
We considered a number of 10 jobs that are sending
messages. We then varied the probability of a link to
experience permanent failures. The vertical axis shows

the number of jobs that were able to complete their
tasks of transferring the data.

We also evaluated various fault-tolerant scheduling
algorithms for DAGs. The experiments considered the
case of several complex DAG dependent tasks that were
submitted for execution, and the cases when faults
occur or not. The results are presented in Figure 9.
Differences between the submitted jobs and the
finalized ones represent the number of jobs that were
successfully rescheduled (when faults occurred).

Figures 10: Experiment evaluating the security
simulation model.

An experiment designed to evaluate the security model
considering the case of two regional centers is
presented in Figure 10. The experiment involves
sharing several processing units and a database server
within a virtual organization. The purpose is to
demonstrate the functionality of an access policy within
the secured database server. The experiment uses two
types of jobs: one requests the creation of a database
and writes data in it; and the other one connects to the
server and requests the data matching a specific pattern.

Figures 11: Results obtained for the security
experiment.

We associated a security policy resembling the UNIX
file access policies to the database server belonging to
the VO. We considered that members of the VO have
read and write rights over the database server. A get
operation is ignored and the operation is considered an
implicit attack on the database server. The experiment
consisted in the insertion of many jobs of the types
previously presented. The results (Figure 11)
demonstrate that during an attack the throughput
increases, in contrast with the initial conditions of the

experiments. Also, the number of received connections
increases during an attack. The results demonstrate the
validity of the proposed security model, as they are well
mapped with the analytical results expected from the
experiment. We also conducted a number of other
experiments, trying to evaluate the components
proposed within the security model, ranging from
securing communication to imposing access control at
virtual organization level.

Figures 12: The percent of attacks recognized on the
database side from the total number of requests.

By extending the security model, we were able to
concurrently simulate both ordinary jobs, as well as
ones that tried different operations on the database
without having sufficient rights. We logged and
compared how many attacks were randomly generated
(reads without the read right, etc.) versus how many
attacks did the database server successfully recognized
(Figure 12).

In all these cases not only the security solutions
designed and included in the proposed security model
correctly handled possible attacks, but also the
performance of the distributed simulated environment
(throughput in the network or processing capability of
the simulated processing units) was not affected beyond
rendering the environment to be used anymore.

7. CONCLUSIONS

As society increasingly becomes dependent of
distributed systems (Grid, P2P, network-based), it is
becoming more and more imperative to engineer
solutions to achieve reasonable levels of dependability
for such systems. Simulation plays an important part in
building and evaluating dependable distributed systems.
In this paper we presented a simulation model designed
to evaluate the dependability in distributed systems. The
model extends the MONARC simulation model with
new capabilities for capturing reliability, safety,
availability, security, and maintainability requirements.
The model extends the multithreaded, process oriented
simulator MONARC. It includes the necessary
components to inject various failure events, and
provides the mechanisms to evaluate different strategies
for replication, redundancy procedures, as well as
security enforcement mechanisms. The results obtained
in presented simulation experiments probe that the use
of discrete-event simulators, such as MONARC, in the

design and development of dependable distributed
systems is appealing due to their efficiency and
scalability.

ACKNOWLEDGEMENT

The research presented in this paper is supported by
national project “DEPSYS – Models and Techniques for
ensuring reliability, safety, availability and security of
Large Scale Distributes Systems”, Project “CNCSIS-IDEI”
ID: 1710, by the national project: "TRANSYS – Models
and Techniques for Traffic Optimizing in Urban
Environments", Project CNCSIS-PN-II-RU-PD ID: 238,
and by the Sectorial Operational Programme Human
Resources Development 2007-2013 of the Romanian
Ministry of Labour, Family and Social Protection through
the Financial Agreement POSDRU/89/1.5/S/62557.

REFERENCES

Buyya, R.; and M. Murshed. 2002. “GridSim: A Toolkit for
the Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing”.
Journal of Concurrency and Computation: Practice and
Experience (CCPE), Vol. 14, 1175–1220.

Casanova, H.; A. Legrand; and M. Quinson. 2008 “SimGrid: a
Generic Framework for Large-Scale Distributed
Experimentations”. In Proc. of the 10th IEEE Int.
Conference on Computer Modelling and Simulation
(UKSIM/EUROSIM'08), Cambridge, UK, 126-131.

Dobre, C.; C. Stratan; and V. Cristea. 2008a. “Realistic
simulation of large scale distributed systems using
monitoring”. In Proc. of the 7th International Symposium
on Parallel and Distributed Computing (ISPDC 2008),
Krakow, Poland, 434-438.

Dobre, C.; F. Pop; and V. Cristea. 2008b. “A Simulation
Framework for Dependable Distributed Systems”, In
Proc. of the First International Workshop on Simulation
and Modelling in Emergent Computational Systems
(SMECS-2008), Portland, USA, 181-187.

Eremia, B.; C. Dobre; F. Pop; A. Costan; and V. Cristea.
2010. “Simulation model and instrument to evaluate
replication techniques”, In Proc. of the 3PGCIC 2010,
International Conference on, P2P, Paralel, Grid, Cloud
and Internet Computing, Fukuoka, Japonia, 541-547.

Johnston, S. 2004. “Modeling security concerns in service-
oriented architectures”. Accessed 07.02. 2011, From:
http://www.ibm.com/developerworks/
rational/library/4860.html.

Legrand, I.C.; H. Newman; C. Dobre; and C. Stratan. 2003.
“MONARC Simulation Framework”. In Proc. of the Int.
Workshop on Advanced Computing and Analysis
Techniques in Physics Research, Tsukuba, Japan, 133-
138.

Naqvi, S.; and M. Riguidel. 2005. “Grid Security Services
Simulator G3S) – A Simulation Tool for the Design and
Analysis of Grid Security Solutions”. In Proc. of the First
International Conference on e-Science and Grid
Computing, Melbourne, Australia, 421-428.

Ranganathan, K.; and I. Foster. 2002. “Decoupling
Computation and Data Scheduling in Distributed Data-
Intensive Applications”. In Proc. of the Int. Symposium of
High Performance Distributed Computing, Edinburgh,
Scotland, 352-356.

Venters, W.; T. Cornford; M. Lancaster; Y. Zheng; and A.
Kyrikidou. 2007. “Studying the usability of Grids,
ethongraphic research of the UK particle physics
community”. In Proc. of the UK e-Science All Hands
Conference, Nottingham, UK, 683-685.

AUTHOR BIOGRAPHIES

Dr. Ciprian DOBRE received his PhD
in Computer Science at the University
POLITEHNICA of Bucharest in 2008.
His main research interests are Modeling
and Simulation, Grid Computing,

Monitoring and Control of Distributed Systems,
Advanced Networking Architectures, Parallel and
Distributed Algorithms. His research activities were
awarded with the Innovations in Networking Award for
Experimental Applications in 2008 by the Corporation
for Education Network Initiatives (CENIC).

Dr. Florin POP is a lecturer in the
Computer Science Department of the
University Politehnica of Bucharest.
His research interests are oriented to:
scheduling in Grid environments (his

PhD research), distributed system, parallel computation,
communication protocols and numerical methods. He
received his PhD in Computer Science in 2008 with
Magna cum laudae distinction. He is member of RoGrid
consortium and participates in research projects from
Romania and abroad.

Prof. Dr. Eng. Valentin CRISTEA is a
professor of the Computer Science and
Engineering Department of the
University Politehnica of Bucharest
(UPB). He teaches courses on

Distributed Systems and Algorithms. As a PhD
supervisor he directs thesis on Grids and Distributed
Computing. Valentin Cristea is Director of the National
Center for Information Technology of UPB and leads
the laboratories of Collaborative High Performance
Computing and eBusiness.

Dr. Joanna KOLODZIEJ graduated in
Mathematics from the Jagiellonian
University in Cracow in 1992, where she
also obtained the PhD in Computer
Science in 2004. She has served and is

currently serving as PC Co-Chair, General Co-Chair
and IPC member of several international conferences
and workshops including PPSN 2010, ECMS 2011,
CISIS 2011, 3PGCIC 2011, CISSE 2006, CEC 2008,
IACS 2008-2009, ICAART 2009-2010. Dr Kolodziej is
Managing Editor of IJSSC Journal and serves as a EB
member and guest editor of several peer-reviewed
international journals.

