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ABSTRACT 

We present a simulation model designed for evaluation 
of dependability in distributed systems. The model is a 
modification of the MONARC simulation model by 
adding new capabilities for capturing the reliability, 
safety, availability, security, and maintainability 
requirements. It includes components for failures 
injection, and it provides evaluation mechanisms for 
different replication strategies, redundancy procedures, 
and security enforcement mechanisms. The model is 
implemented as an extension of the multi-threaded, 
process oriented simulator MONARC, which allows the 
realistic simulation of a wide-range of distributed 
system technologies, with respect to their specific 
components and characteristics. The experimental 
results show that the application of the discrete-event 
simulators in the design and development of the 
dependable distributed systems is appealing due to their 
efficiency and scalability 
 
INTRODUCTION 

Up until recently the research efforts in the area of large 
scale distributed systems (LSDS) mainly targeted the 
development of functional infrastructures. As the 
application domains of LSDS are extending, researchers 
have to deal with new requirements. Today LSDS are 
required to offer reliability, safety, availability, security 
(all attributes of dependability).  

In this paper we present a simulation model designed to 
evaluate the dependability in LSDS. The proposed 
model extends the MONARC simulation model (Dobre 
et al. 2008a) with new capabilities for capturing 
reliability, safety, availability, security, and 
maintainability requirements. The simulation model 
includes the necessary components to inject failure 
events, and provides the mechanisms to evaluate 
different strategies for replication, redundancy 
procedures, and security enforcement mechanisms, as 
well. The paper extends the results presented in (Dobre 
et al. 2008b), introducing the simulation model 

designed for dependability of distributed systems. The 
results achieved in experimental analysis show that the 
application of discrete-event simulators in the design 
and development of distributed systems is appealing 
due to their efficiency and scalability. 

The rest of this paper is structured as follows. Section 2 
presents related work in the area of modeling 
distributed systems. In Section 3 we present the 
extended simulation model to simulate dependable 
LSDS. Sections 4 and 5 present details for the proposed 
fault tolerance and security simulation models. The 
experimental evaluation results are demonstrated in 
Section 6.  The paper ends with final remarks and 
conclusions in Section 7. 
 
2 RELATED WORK AND OUR APPROACH 

Modeling and simulation are the effective tools for the 
development of the new algorithms and technologies. 
They enable the enhancement of large-scale distributed 
systems, where analytical validations are prohibited by 
the scale of the encountered problems. The use of 
discrete-event simulators in the design and development 
of LSDS is appealing due to their efficiency and 
scalability.  

SimGrid (Casanova et al. 2008) is a simulation toolkit 
that provides core functionalities for the evaluation of 
scheduling algorithms in distributed applications in a 
heterogeneous, computational Grid environment. It 
aims at providing the right model and level of 
abstraction for studying Grid-based scheduling 
algorithms and generates correct and accurate 
simulation results. The Grid simulator toolkit developed 
for the investigation  is the GridSim system introduced 
by Buya et al. in (Buyya and Murshed 2002). The main 
concept of the simulator is on the computational 
economy.  

OptorSim (Venters et al. 2007) is a Data Grid simulator 
designed for evaluating optimization in data access 
technologies for Grid environments. It adopts a Grid 
structure based on a simplification of the architecture 
proposed by the EU DataGrid project. Another 
simulator package is ChicagoSim (Ranganathan and 
Foster 2002). It is dedicated for the implementation of 
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the scheduling strategies in conjunction with the data 
location. 

These simulators do not present general solutions to 
modeling dependability technologies for LSDS. They 
provide basic simulation models for evaluating LSDS. 
We propose a simulation model that provides the means 
to evaluate a wide-range of solutions for dependability 
in LSDS. Security in particular has never been properly 
handled by any of these projects. The only simulator 
that is able to evaluate LSDS security aspects is G3S 
(Grid Security Services Simulator) (Naqvi and Riguidel 
2005). Similar to its model, we support all the 
mechanisms made available in G3S. Our proposed 
simulation includes capabilities for modeling security 
aspects, from patterns of attack to intrusion detection, 
authentication or privacy enforcement solutions. It also 
includes the mechanisms to evaluate security in a more 
general context, modeling more realistically distributed 
systems, with their specific characteristics. The model is 
able to describe actual distributed system technologies, 
and provides the mechanisms to describe concurrent 
network traffic, to evaluate different strategies in data 
replication, and to analyze job scheduling procedures. 
MONARC offers ample customization possibilities, 
thus enabling users to integrate different proprietary 
solutions. For example, unlike G3S, the MONARC’s 
model can incorporate custom security solutions 
designed by the user for particular scenarios. 
 
3 MONARC’S ARCHITECTURE 

MONARC is based on a process oriented approach for 
discrete event simulation, which is suited to describe 
concurrent running programs, network traffic as well as 
all the stochastic arrival patterns specific for such type 
of simulations (Legrand et al. 2003). The simulator is 
able to handle experiments involving thousands of 
processing nodes executing a large number of 
concurrent jobs, and thousands of concurrent network 
transfers. 

 
Figures 1: The Regional Center model. 

MONARC uses a simulation model that abstracts 
components found in LSDS infrastructures. The model 
includes components for simulating processing units, 
databases, and network traffic. Such components can be 

grouped in regional centers (Figure 1). A regional 
center is used to abstract a group of resources that are 
under the control of a single organization. Several 
regional centers can be linked to simulate cooperation 
with other resources, similar to how clusters are used in 
larger Grids. The simulation model also include 
components to model the behavior of the applications 
and their interaction with users. Such components are 
used to generate data processing. 

One of the strengths of MONARC is that it can be 
easily extended. This is made possible by its layered 
structure. The first two layers contain the core of the 
simulator (called the "simulation engine") and models 
for the basic components of a distributed system 
(processing units, jobs, databases, networks, job 
schedulers etc). The particular components can be 
different types of jobs, job schedulers with specific 
scheduling algorithms or database servers that support 
data replication. Using this structure it is possible to 
build a wide range of models, from the very centralized 
to the distributed system models, with an almost 
arbitrary level of complexity (multiple regional centers, 
each with different hardware configuration and possibly 
different sets of replicated data).  
 

 

Figures 2: The dependable simulation model and its 
components. 

In this paper we present an extended MONARC 
simulation model that is able to evaluate dependability 
aspects for LSDS. The model is designed to evaluate 
fault detection, fault recovery, or security solutions in a 
unitary and aggregated way. Figure 2 presents the 
components of the dependable modeling layer. The 
extensions to the simulation model were introduced for 
modeling faults, failure detection, fault recovery, and 
security aspects within a modeled distributed system.  
 
4  FAULT TOLERANCE MODEL 

We first extended the simulation model (see Figure 3) 
and added the mechanisms to evaluate fault tolerance in 
LSDS. The model includes components necessary to 
inject and recover from faults in the processing, 
networking as well as database layers.  

The fault tolerance model also allows the simulation of 
hybrid systems, in which failing components can 
coexist with traditional components of the MONARC’s 



 

 

original model. The mechanisms for fault tolerance are 
added as extensions to MONARC’s simulated 
components, and in simulation experiments both types 
of components, with and without the fault tolerance 
extensions, can coexist.  
 

 

Figures 3: The extended fault tolerance model. 

Figure 4 presents the modeling of fault tolerancein in 
communication layer. In this case various failures can 
occur within the network links, and routers. In addition, 
the model can simulate redundancy and recovery 
protocols based. 
 

 

Figures 4: A fault tolerant network model. 

At the hardware layer different distributed components 
can be modeled as failing: the processing unit, the 
network connectivity as well as the storage devices. In 
software we consider faults occurring in a middleware 
component (a faulty scheduler, a database server 
returning incorrect results, etc.) or within higher-level 
distributed application (jobs could fail to return correct 
results).  

The model includes faults such as crash faults, omission 
faults, time faults, as well as Byzantine faults. All 
modeled components have mechanisms to simulate 
injection of faults (or the modeling of their failure). The 
mechanisms are configurable via metrics for calculating 
processor availability. The first mechanism is based on 
the MTTF (mean time to failure) parameter. The fault 
injection uses the MTTF together with a mathematical 
probability distribution (such as binomial, Poisson, 
Gaussian, standard uniform, etc)., such as at random 
intervals a component can experience faulty behavior 
(failures). The second error injection mechanism uses 
random occurrence of fault events. This is useful in 

modeling Byzantine failures. For such errors the 
simulation model allows resuming the normal behavior 
of the faulty component.  

The fault injection mechanisms are used together with 
fault detection and recovery mechanisms. For that the 
model includes a monitoring component. The 
component is responsible with the management of 
events related to the triggering of faults. In the event of 
a failure each component can take global actions (such 
as update of the service catalogue if the experiment 
requires it). It also updates the states of the distributed 
system, and informs other components of the event.  

The scheduler also implements a fault-tolerant 
mechanism. Whenever a new job is submitted the 
scheduler also produces a special simulation event that 
triggers when a timeout occurs. The timeout depends on 
the user’s specifications and is used as a signal if the 
job fails to return results in due time. In this case the 
scheduler is interrupted either when the job finishes or 
when the timeout event occurs. The same mechanisms 
are implemented within the network simulation model. 
In this case a job is informed if a transfer failed to finish 
in a specified amount of time (possible due to network 
congestion) and can take appropriate measures (such as 
canceling the transfer or saving the state). 

The simulation model also includes mechanisms model 
check-pointing or logging of the system’s state. Such 
mechanisms are implemented using MONARC’s 
simulation events. The model is able to simulate both 
static and dynamic check-pointing strategies.  

The simulation model also includes mechanisms for the 
evaluation of replication and redundancy mechanisms. 
Replication provides mechanisms to use multiple 
instances of the same system or subsystems and choose 
the result based on quorum. The simulation model 
allows the simulation of DAG distributed activities. 
This is useful in modeling job replication, when the 
same job can be executed on multiple processing units, 
and another job receives the outputs and selects the 
correct results. The possibility to model replication 
mechanism was demonstrated in (Eremia, et al, 2010). 
Redundancy results were demonstrated in experiments 
presented in (Dobre et al. 2008b).  
 
5  SECURITY MODEL FOR LARGE SCALE 
DISTRIBUTED SYSTEMS 

LSDS are vulnerable to security threats because they 
rely on distributed access control mechanisms necessary 
to access remotely wide-spread resources that are under 
different administrative domains. The MONARC’s 
simulation model includes components for the analysis 
of security-dependent experiments (Figure 5). It is 
capable to simulate security solutions used in real-world 
distributed environments, such as GSI, PKI, SSL, 
cryptographic solutions, etc. In addition, the model 
includes various simulated security attacks. It allows the 
addition of detection mechanisms for such attacks, by 



 

 

providing simulation mechanisms for message 
encryption or authentication and authorization.  

The model considers the general case of security, as a 
mean to ensure that systems remain safe and reliable to 
errors, threats or malicious changes. The model 
includes solutions for data privacy, data integrity and 
system availability.  

The security model allows the specification of security 
policies. A security policy describes which actions are 
allowed and which are prohibited. Entities to which 
these actions apply include users, services, information, 
machinery, etc. Once the security policy is established, 
the necessary security enforcement mechanisms are 
considered. The model includes various security 
mechanisms (Johnston, 2004): confidentiality (it 
includes mechanisms to ensure that an authenticated 
entity can access only the information that has been 
authorized to), authentication (the models includes 
mechanisms to identify entities involved in a 
communication or collaboration), authorization (the 
model guarantees that once the entity has been 
authenticated, its options will be restricted / limited to 
those operations that it is authorized to perform), and 
audit (the models includes the mechanisms to guarantee 
the non-repudiation of origin and content of a message). 

 

Figures 5: The security simulation model. 

The security model includes a secured job that carries 
authentication tokens or certificates, and is able to 
request data based on specific rights. The user can 
specify the use of X.509 certificate, together with a PKI 
infrastructure for example, or can easily add new means 
of authentication. In particular for Grid systems an 
additional important concept considered by the security 
model is the Virtual Organization (VO). In a VO 
different organizations (commercial companies, 
universities, etc.) collaborate to share resources and 
work together to solve common problems. Each 
organization within a VO is managed independently 
and has its own security solutions such as Kerberos or 

PKI infrastructure (Public Key Infrastructure). To 
define VOs the model uses security policies shared 
between regional centers. The model includes 
mechanisms to evaluate various authentication 
solutions. Such authentication mechanisms are applied 
to the scheduler, processing unit, and to jobs requesting 
data from the database servers. For example, the job 
scheduler includes restrictions to where to execute 
specific jobs, based on the VO to which they belong. 
The processing units are capable to verify if a particular 
job is allowed to be executed. The access control 
verification can be implemented based on various 
schemas (RBAC, MAC, DAC, etc).  

The model adds the possibility to include secure data 
transport protocols. For example, the SSL protocol 
offers the possibility to encrypt the messages being 
exchanged between entities in a simulation experiment. 
In addition the model implements handshake 
mechanisms for protocols supporting authentication 
capabilities. The user can easily add and evaluate new 
protocols and mechanisms.  The model includes 
mechanisms for data encryption, keys and certificate 
management, etc. In addition, it includes mechanisms 
for traffic filtering by specifying exclusion rules based 
on various metrics (ports, addresses, protocols, etc) and 
corresponding actions (reject for example).  

The security model also enables the protection of 
message content sent throughout the network against 
attacks such as interception (eavesdropping), and thus 
keeping its confidentiality, by encrypting its content. It 
also ensures secure data transfers by using protocols to 
allow the authentication of the parties involved in the 
communication. This ensures both the integrity of 
messages transmitted, and their protection against 
attacks such as man in the middle. 

The implementation also includes an exclusion rule 
based traffic filtering of all components of a virtual 
organization. This mechanism can be used to prevent 
attacks such as DoS. In case of many connections 
coming from the same address, for example, the 
filtering policy can specify that that particular address is 
banned for a certain period of time (or permanently). 
 
6. EXPERIMENTAL RESULTS 

To analyze the validity and performance of the 
dependability simulation model we conducted several 
simulation experiments.  

We first evaluated fault tolerance. The first experiment 
analyzed how the number of processing units relates to 
the reliability in processing a batch of tasks. The 
objective was to guarantee that a given number of tasks 
can be processed, without considering delays caused by 
failed processing units. If no processing unit is working 
at a given moment, the experiment fails.  
In the experiment a number of jobs are sent for 
processing. The job scheduler is responsible with 
finding a suitable processing unit for each of these jobs. 



 

 

 

Figures 6: Results obtained for batch of tasks. 

The results in Figure 6 were obtained for different cases 
(10, 20, and 40 processors) and 10,000 jobs sent for 
execution. The CrashThresh parameter shows the 
probability of the processing units to experiment 
permanent failures. In these experiments, for particular 
cases (Figure 6), the job scheduler gets into a state 
where there are no more processing units to execute 
jobs. In this case the scheduler is no longer able to mask 
failure and, therefore, the user sees a lower number of 
processing jobs successfully executed (the vertical 
axis).  

Table 1: Results for transient failures. 
Jobs CPUs Transient 

Thresh 
Avg. Failed CPUs Processed 

10000 10 0.5 7 4931 

10000 10 0.6 3 10000 

10000 10 0.7 1 10000 

We continued with experiments where 10 processing 
units experience transient failures. In these experiments 
we varied the probability of processors to experience 
failures (the Transient Thresh parameter).  

 

Figures 7: The simulation scenario used with the 
Network Failure experiments. 

The obtained results (see Table 1) show a bottleneck for 
the number of jobs that are successfully executed. In 
this case the job scheduler considers that CPUs fail if 
they don't answer for one heartbeat and they are 
repaired if one positive answer is received.  

These experiments reveal the importance of taking 
repairing actions in case of faulty resources. If no 

permanent faults occur, and transient faults occur in a 
reasonable range, a task still finishes, independently of 
the batch size. This is because the processing units are 
repaired faster than they break.  

Because tasks conserve the work they’ve done when 
stopped, the time is proportional with the average 
percentage of failed processors if all tasks are 
completed. In this case efficiency is computed by 
dividing the ideal completion time to the actual 
completion time if failures occur. By default jobs are 
not reset when rescheduled, resulting in efficiency 
values proportional to the average number of working 
processors. If jobs are reset when rescheduled, 
efficiency is much more correlated to MTBF. If a 
processor can never finish by itself a job, no jobs will 
be completed, resulting null efficiency. 
 

 

Figures 8: Results obtained for different probabilities of 
links to experience permanent failures. 

Another set of experiments was further designed to 
evaluate the relation between redundant network links 
and link reliability. The goal is to send a number of 
packets, without considering delays. Because of its 
resilience to missed packets, TCP was chosen as the 
transport protocol.  
 

 
Figures 9: Comparison between execution time (s) for 

scheduling algorithms with and without errors. 

Figure 7 shows the experiment’s network topology. 
Cern LAN sends packets to Caltech LAN. Packets are 
routed by Cern Router through the two possible paths 
towards Caltech Router in respect to network load. 
Figure 8 shows the results obtained for the case when 
the network links can experience permanent failures. 
We considered a number of 10 jobs that are sending 
messages. We then varied the probability of a link to 
experience permanent failures. The vertical axis shows 



 

 

the number of jobs that were able to complete their 
tasks of transferring the data.  

We also evaluated various fault-tolerant scheduling 
algorithms for DAGs. The experiments considered the 
case of several complex DAG dependent tasks that were 
submitted for execution, and the cases when faults 
occur or not. The results are presented in Figure 9. 
Differences between the submitted jobs and the 
finalized ones represent the number of jobs that were 
successfully rescheduled (when faults occurred). 
 

 

Figures 10: Experiment evaluating the security 
simulation model. 

An experiment designed to evaluate the security model 
considering the case of two regional centers is 
presented in Figure 10. The experiment involves 
sharing several processing units and a database server 
within a virtual organization. The purpose is to 
demonstrate the functionality of an access policy within 
the secured database server. The experiment uses two 
types of jobs: one requests the creation of a database 
and writes data in it; and the other one connects to the 
server and requests the data matching a specific pattern. 
 

 

Figures 11: Results obtained for the security 
experiment. 

We associated a security policy resembling the UNIX 
file access policies to the database server belonging to 
the VO. We considered that members of the VO have 
read and write rights over the database server. A get 
operation is ignored and the operation is considered an 
implicit attack on the database server. The experiment 
consisted in the insertion of many jobs of the types 
previously presented. The results (Figure 11) 
demonstrate that during an attack the throughput 
increases, in contrast with the initial conditions of the 

experiments. Also, the number of received connections 
increases during an attack. The results demonstrate the 
validity of the proposed security model, as they are well 
mapped with the analytical results expected from the 
experiment. We also conducted a number of other 
experiments, trying to evaluate the components 
proposed within the security model, ranging from 
securing communication to imposing access control at 
virtual organization level. 
 

 

Figures 12: The percent of attacks recognized on the 
database side from the total number of requests. 

By extending the security model, we were able to 
concurrently simulate both ordinary jobs, as well as 
ones that tried different operations on the database 
without having sufficient rights. We logged and 
compared how many attacks were randomly generated 
(reads without the read right, etc.) versus how many 
attacks did the database server successfully recognized 
(Figure 12).   

In all these cases not only the security solutions 
designed and included in the proposed security model 
correctly handled possible attacks, but also the 
performance of the distributed simulated environment 
(throughput in the network or processing capability of 
the simulated processing units) was not affected beyond 
rendering the environment to be used anymore. 
 
7. CONCLUSIONS 

As society increasingly becomes dependent of 
distributed systems (Grid, P2P, network-based), it is 
becoming more and more imperative to engineer 
solutions to achieve reasonable levels of dependability 
for such systems. Simulation plays an important part in 
building and evaluating dependable distributed systems.   
In this paper we presented a simulation model designed 
to evaluate the dependability in distributed systems. The 
model extends the MONARC simulation model with 
new capabilities for capturing reliability, safety, 
availability, security, and maintainability requirements.  
The model extends the multithreaded, process oriented 
simulator MONARC. It includes the necessary 
components to inject various failure events, and 
provides the mechanisms to evaluate different strategies 
for replication, redundancy procedures, as well as 
security enforcement mechanisms. The results obtained 
in presented simulation experiments probe that the use 
of discrete-event simulators, such as MONARC, in the 



 

 

design and development of dependable distributed 
systems is appealing due to their efficiency and 
scalability. 
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