

MODELLING AND VERIFICATION OF CONCURRENT PROGRAMS
USING UPPAAL

Franco Cicirelli, Libero Nigro, Francesco Pupo
Laboratorio di Ingegneria del Software

Dipartimento di Elettronica Informatica e Sistemistica
Università della Calabria
87036 Rende (CS) – Italy

Email: f.cicirelli@deis.unical.it, {l.nigro,f.pupo}@unical.it

KEYWORDS
Modelling and verification, simulation, concurrency,
mutual exclusion, synchronizers, timed automata,
UPPAAL, Java.

ABSTRACT

This paper describes the design and implementation of a
library of reusable UPPAAL template processes which
support reasoning and property checking of concurrent
programs, e.g. to be realized in the Java programming
language. The stimulus to the development of the
library originated in the context of a systems
programming undergraduate course. The library,
though, can be of help to general practitioners of
concurrent programming which nowadays are
challenged to exploiting the potentials of modern multi-
core architectures. The paper describes the library and
demonstrates its usage to modelling and exhaustive
verification of mutual exclusion and common
concurrent structures and synchronizers. UPPAAL was
chosen because it is a popular and continually improved
toolbox based on timed automata and model checking
and it is provided of a user-friendly graphical interface
which proves very important for debugging and
property assessment of concurrent models. Java was
considered as target implementation language because
of its diffusion among application developers.

INTRODUCTION

Current technological trend on multi-core machines
challenges developers to exploit concurrency in general
purpose applications which can have a performance
gain from the computational parallelism offered by
modern personal computers. However, as students and
developers know, concurrent programs are hard to
design and difficult to debug. Common experimented
problems include race conditions, deadlocks and
starvation (Stallings, 2005)(Silberschatz et al, 2010).
Motivated by the desire to help students of a systems
programming undergraduate course to have a more
critical approach to concurrent programming, authors
have designed and prototyped a reausable library of
UPPAAL (Bengtsson and Yi, 2003)(Behrmann et al.,
2004) template processes. The library enables a
concurrent solution to be formally modelled as a

network of timed automata (Alur and Dill, 1994), to
animate it in simulation to check qualitative behaviour
thus making a preliminary debug, and to prove
(provided the model is not too large)
functional/temporal properties of the system at hand
through model checking (Clarke et al., 2000)(Cicirelli et
al., 2007)(Cicirelli et al., 2009)(Furfaro and Nigro,
2007). The approach is similar but independent and
original with respect to that described in (Hamber and
Vaandrager, 2008). A key factor of the work described
in this paper concerns the development of concurrent
structures and synchronizers which are inspired by the
concurrent package of the Java programming language.
The UPPAAL toolbox was chosen because it is popular,
it is continually improved and it is efficient (in space
and time) in the handling of large model state graphs.
Moreover, the toolbox offers a friendly graphical user
interface which facilitates reasoning upon model
behaviour.
This paper describes (part of) the developed library and
demonstrates its usefulness by studying mutual
exclusion algorithms and by showing some common
concurrent synchronizers which are available in the
Java programming language. Concurrent models are
then applied to a sample problem. The approach makes
it simple to transform a concurrent solution model into a
corresponding Java implementation. The solutions,
though, can be ported to other languages as well.
Finally, conclusions are drawn with an indication of
further work.

MUTUAL EXCLUSION ALGORITHMS

Concurrent processes accessing shared data require two
kinds of mechanisms (see e.g. (Stallings,
2005)(Silberschatz et al., 2010)): mutual exclusion
which guarantees only one process at a time can enter
its critical section, and synchronization, i.e. the
possibility for a process in a critical section to suspend
its execution when the data values do not permit the
process to complete its operations. In this section the
focus is on mutual exclusion based on busy-waiting by
“pure software” solutions (other solutions can be based
on the hardware support, e.g. test and set instructions or
the interrupt system). Such mutual exclusion algorithms
are normally discussed in a systems programming
course for introducing students to race conditions and

Proceedings 25th European Conference on Modelling and
Simulation ©ECMS Tadeusz Burczynski, Joanna Kolodziej
Aleksander Byrski, Marco Carvalho (Editors)
ISBN: 978-0-9564944-2-9 / ISBN: 978-0-9564944-3-6 (CD)

interference problems among concurrent processes. In
the following, algorithms for N>2 processes are
considered. Examples include the Bakery algorithm and
the Eisenberg and McGuire algorithm ((Silberschatz et
al., 2010) page 302). Fig. 1 shows a pseudo code of the
generic process according to the Eisenberg and
McGuire algorithm.

//shared variables used by the algorithm
enum pState {idle, want_in, in_cs}
pState flag[n]; //all elements initialized to idle
int[0,n-1] turn; //no particular initialization
//ith process
int[0,n] j;
do{ //enter part
 while(true){
 flag[i]=want_in; //I want to enter my critical section
 j=turn; //give priority to non idle processes, if there
 //are any, from turn to i clockwise
 while(j!=i){ //busy waiting
 if(flag[j]!=idle) j=turn;
 else j=(j+1)%n;
 }
 flag[i]=in_cs; //I "enter" my cs
 j=0;
 //it there exists in the entire ring a
 //process with in_cs status ?
 while((j<n) && (j==i ||flag[j]!=in_cs)) j++;
 if((j>=n) && (turn==i || flag[turn]==idle))
 /*no*/ break;
 //yes, waits
 }
 turn=i; //its my turn
 //critical_section
 //exit part
 //starting from me (turn==i)
 //search the first not idle process
 j=(turn+1)%n;
 while(flag[j]==idle) j=(j+1)%n;
 turn=j; //give it its turn
 flag[i]=idle;
 //non_critical_section
}while(true)

Figure 1. Eisenberg and McGuire mutual exclusion
algorithm for N processes

Now the goal is to model in UPPAAL the algorithm in
Fig. 1 and proving it fulfils all the three basic
properties: (a) only one process at a time can enter its
critical section, (b) a process waiting for entering its
critical section would not delay infinitely (absence of
starvation), (c) no assumption is made about the relative
speed of the processes. The modelling strategy
purposely allows to concentrate on the essential of the
algorithm while ensuring a certain efficiency of the
model checking. The model abstracts away the duration
of the single instructions carried out during the entry
section and the exit section of the protocol, thus making
it possible to determine the delay time of a process
waiting to enter its critical section, in terms of the
number and duration of critical sections executed by
other processes. The “high resolution” approach, in

which every single instruction is modeled and timed
(e.g. each instruction consumes 1 time unit) is instead
advocated in (Hamber and Vaandrager, 2008). Fig. 2
shows the proposed UPPAAL model for the generic
Process of Eisenberg and McGuire algorithm. Duration
of the critical section is supposed to be in the [2,6] time
interval. The template Process receives its unique id i as
parameter.
The use of committed locations mirrors the assumption
that instructions executed during the entry/exit part are
supposed to be time negligible with respect to the
critical section duration. Of particular concern is the
realization of the busy-waiting during the enter part.
The process enters the Busy_Wait location from which
it exits at each change of shared variables. To this
purpose a broadcast channel check is used. The process
which enters or exits from its critical section forces all
processes in busy waiting to reconsider their situation.
The following global UPPAAL declarations were used:

const int N=5; //number of processes
typedef int[0,N-1] pid; //process identifier subtype
typedef int[0,2] pState;
broadcast chan check;
const int idle=0;
const int want_in=1;
const int in_cs=2;
pid turn;
pState flag[N]={idle,idle,idle,idle,idle};
clock x[N]; //process clocks
clock y[N]; //decoration clocks

The system declaration section consists only of:

system Process;

which ensures, due to the pid parameter of the Process
template, that N instances of the template are created to
populate the model. These instances have names
Process(0), ..., Process(N-1).

Table 1 shows the queries used to verify the mutual
exclusion algorithm. Query 1 verifies the absence of
deadlocks. Queries 2 and 3 check, with different syntax,
the fundamental mutual exclusion property: no more
than one process can find itself into the critical section.
Queries 4 and 5 respectively determine minimal and
maximal delay when waiting for entering the critical
section. Query 4 is not satisfied if a value greater than 0
is used. Query 5 is not satisfied if a value lesser than 24
is used. Decoration clocks y[i] are reset when a process
starts the enter part of the protocol and measure the
elapsed time of waiting. Obviously, queries 4 and 5
have the same conclusion for any process i. It is
guaranteed that the waiting time is bounded and
amounts as upper bound to (N-1) critical sections.
Queries 6 and 7 check progress properties. In particular,
query 6 guarantees that a process which starts the enter
part of the protocol, eventually enters the critical section
(this is of course also confirmed by bounded waiting
time). Similarly, query 7 says that a process which starts

the enter part of the protocol always comes back to
home (Non_CS location).

 Table 1
Query Result

1 A[] !deadlock satisfied

2
E<> Process(0).In_CS+Process(1).In_CS+
Process(2).In_CS+Process(3).In_CS+
Process(4).In_CS>1

not
satisfied

3 A[] (forall(i:pid) Process(i).In_CS imply
(forall(j : pid) j!=i imply !Process(j).In_CS)) satisfied

4 A[] Process(0).End_Enter imply y[0]>=0 satisfied

5 A[] Process(0).End_Enter imply y[0]<=24 satisfied
6 Process(0).Start_Enter --> Process(0).In_CS satisfied
7 Process(0).Start_Enter --> Process(0).Non_CS satisfied

The model in Fig. 2 can easily be adapted to be
analyzed using the “high resolution” approach
suggested in (Hamber and Vaandrager, 2008). In this
case the check channel is useless and the Busy_Wait
location can be eliminated.
Variable lock is true when a process wanting to enter is
allowed to begin its critical section. Other details should

be self-explanatory. This algorithm too ensures a
bounded waiting time of at most (N-1) critical sections.

CATALOG OF REUSABLE CONCURRENT
MODELS

Mutual exclusion algorithms like those shown in the
previous section can be the basis for implementing high
level concurrent structures. Normally they are not
directly used by the concurrent programmer which
prefers instead to use such constructs as monitors,
semaphores etc. which can provide both mutual
exclusion and synchronization mechanisms. In the
following some reusable UPPAAL templates are
proposed which model some frequently used concurrent
structures which are at the basis of common concurrent
design patterns (Grand, 2002).

The description makes some reference to Java
concurrency (Goetz et al., 2006) but the solutions can
be ported also to other programming languages. For
brevity, some constructions like the Hoare’s monitor,
barrier, exchanger etc., are not reported although they
are implemented.

Figure 2. An UPPAAL Process template for Eisenberg and McGuire mutual exclusion algorithm

Java native monitor

The essential semantics of the Java native monitor,
which derives from the Lampson and Redell monitor
(Lampson and Redell, 1979), is that any object has a
lock which provides a waiting room, that waiting
processes are not necessarily awaken in FIFO order and
that notifying methods make only ready-to-run one or
more waiting processes without giving to them any
privilege with respect to newly arriving threads. All of
this suggests the following structure for a typical entry
procedure of a thread-safe class:

return_type entry_proc(params) throws InterruptedException{
 synchronized(m){
 while(condition_for_waiting_is_true) m.wait();
 update_operation
 m.notify[All]();
 …
 }
}//entry_proc

m is the object which provides the lock, i.e. it is the
monitor object. m can be this but often (better) is
convenient for it to be a private object (Bloch, 2008) of
the guarded class. In the following, a UPPAAL model is
proposed which rests on four operations: enter, exit,
wait and notifyAll (which is of more general use than
notify) which are realized as channels, and a local
boolean lock variable which holds the lock status.

Figure 3. UPPAAL template of a Java native monitor

Start_Enter

Busy_Wait

Exiting_CS

In_CS

x[i]<=6

End_Enter

Non_CS

y[i]=0

check!

check!
x[i]=0

check?
j=turn

j!=i &&
flag[j]!=idle flag[j]!=idle

turn=j,
flag[i]=idle

flag[j]==idle
j=(j+1)%N

x[i]>=2
j=(turn+1)%N

!((j>=N) &&
 (turn==i || flag[turn]==idle))

!((j<N) &&
 (j==i ||
 flag[j]!=in_cs))

(j<N) &&
(j==i ||flag[j]!=in_cs)

j++

(j>=N) &&
(turn==i ||
 flag[turn]==idle)

turn=i

j==i
j=0,
flag[i]=in_cs

j!=i &&
flag[j]==idle j=(j+1)%N

flag[i]=want_in,
j=turn

Error

Start

lock
wait[m]?
lock=false

lock
notifyAll[m]?

!lock
notifyAll[m]?

!lock
exit[m]?

!lock
wait[m]? lock

exit[m]?
lock=false

!lock
enter[m]?

lock=true

Wait

ProduceHome

x<=4

notifyAll[m]?

exit[m]!
x=0,cs=false

notifyAll[m]!

size==n
wait[m]!
cs=false

size<n

in=(in+1)%n,size++
enter[m]!
cs=true

x>=2

Wait Consume

x<=3

Home

notifyAll[m]?

x>=1

exit[m]!
x=0,cs=false

notifyAll[m]!

size==0
wait[m]!
cs=false

size>0

out=(out+1)%n,size--
enter[m]!
cs=true

Figure 4. a) Producer model Figure 4. b) Consumer model

Start

Error

LOCK[l]=false

!LOCK[l]
unlock[l]?

LOCK[l]
unlock[l]?

LOCK[l]=false

!LOCK[l]
lock[l]?

LOCK[l]=true

Error

!LOCK[l]
await[c][l]?

LOCK[l]
signalAll[c][l]?

!LOCK[l]
signalAll[c][l]?

LOCK[l]
await[c][l]?
LOCK[l]=false

Figure 5. a) Lock template model Figure 5. b) Condition template model

A waiting process can only be awaken by a notifyAll
operation (the interruption mechanism is ignored). Fig.
3 portrays the template model for a Java monitor.
Global declarations for introducing one or more
monitors in an application model are:

const int MONITORS=…; //number of monitor objects
typedef int[0,MONITORS-1] mid; //monitor unique identifiers
//monitor operations as array of channels
chan enter[MONITORS];
chan exit[MONITORS];
chan wait[MONITORS];
urgent broadcast chan notifyAll[MONITORS];

A monitor model initializes by assigning false to the
associated lock variable. Invoking a wait/notifyAll/exit
on a monitor whose lock is false is a fatal error (the
committed Error location is entered which has no
outgoing edge).

A wait[m]? synchronization opens the monitor lock. It
is up to the invoking process to enter a waiting location
from which it exits on receiving a notifyAll signall. Fig.
4 shows a producer/consumer model with a bounded
buffer. Producer and consumer instances receive a
unique process id in the relevant category (p_id for
producers and c_id for consumers) and the monitor
object upon which mutual exclusion and
synchronization are based. Models in Fig. 4 clarify that
an awaken process has to re-gain the monitor as any
newly arriving process. When a process updates the
buffer, it awakes all the waiting processes by a
notifyAll[m]! which is a broadcast channel. Each
producer/consumer instance owns a local boolean cs
variable (useful for analysis purposes) for registering if
it is or not in the critical section.

The producer/consumer model was checked with a
varying number of producers and consumers. The
following two queries (which are satisfied) check that at
any time at most one process can be in its critical
section:

A[] (forall(i:p_id) Producer(i,0).cs imply (forall(j:p_id) j!=i
imply !Producer(j,0).cs) && (forall(k:c_id)
!Consumer(k,0).cs))

A[] (forall(i:c_id) Consumer(i,0).cs imply (forall(j:c_id) j!=i
imply !Consumer(j,0).cs) && (forall(k:p_id)
!Producer(k,0).cs))

Lock/Condition

Starting from Java 5, the concurrent Java library
provides an alternative mechanism to the built-in
monitor, which is based on the concept of a lock and
associated conditions. The structure is just syntactic
sugar built on the monitor (lock) mechanism. Now,
though, processes can wait on different rooms
(conditions) of the same lock. The lock/unlock
operations are defined on a lock object, whereas
await/signal[All] are the operations on a condition. Only
the signalAll operation is considered (the signal method
would awake a process without any order). In the
UPPAAL modelling, the association of conditions to
lock is achieved by using a bi-dimensional array of
channels where the first index selects a condition, the
second one the associated lock. Fig. 5 shows the
developed Lock (with parameter lock id l) and
Condition (with parameters the condition id c and lock
id l) UPPAAL (sub) models. The array of LOCK
booleans storing the lock statuses is made global so as
to be shared by a lock and its conditions. Of course, the
programming model is very similar to that shown for
the Java native monitor: each use of enter[m]!/exit[m]!
is replaced by a use of lock[l]!/unlock[l]!, an use of
wait[m]! is replaced by await[c][l]! where c is a
condition of l, an use of notifyAll[m]! is replaced by
signalAll[c][l]! for awaking all the waiting processes on
condition c.

Semaphores

Can be counting or binary semaphores (see e.g.
(Silberschatz et al., 2010)). They can be used for mutual
exclusion and synchronization purposes (Downey,

2007). In the following, the names of the operations on
semaphores are the classic P and V (Dijkstra, 1965).
The proposed implementation uses a bounded queue for
storing the identifiers of processes waiting on the
semaphore. The awaking of waiting processes follows
the FIFO order. Each semaphore holds a private counter
which cannot go negative, and stores the number of
permits available on the semaphore. The following
globals help defining the semaphore models:

const int PROCESSES=…; //number of processes
typedef int[0,PROCESSES-1] pid; //process ids subtype
const int SEMAPHORES=4; //number of semaphores
typedef int[0,SEMAPHORES-1] sid; //semaphore ids subtype
//semaphore operation-channels
chan P[SEMAPHORES];
chan V[SEMAPHORES];
chan GO[PROCESSES];
pid proc; //process id trying to P(ass through the semaphore

Error
initial<0

GO[pr]!
lock=false

count==0 &&
full()

size()==0
count++,
lock=false size()>0

pr=dequeue()

!lock
V[s]?
lock=true

count==0 &&
!full()
enqueue(),
lock=false

initial>=0

initialize()

count>0
GO[p]!

count--,
lock=false

!lock
P[s]?
lock=true,
p=proc

Error

GO[pr]!
lock=false

count==0 &&
full()

size()==0

count=1,
lock=false size()>0

pr=dequeue()

!lock
V[s]?
lock=true

count==0 &&
!full()

enqueue(),
lock=false

initialize()

count==1
GO[p]!

count=0,
lock=false

!lock
P[s]?

lock=true,
p=proc

Figure 6. a) Counting semaphore model Figure 6. b) Binary semaphore model

CS

Produce
Home

x<=3

in=(in+1)%n,
size++

x=0

V[full]!

V[mutex]!
GO[p]?

P[mutex]! proc=p

GO[p]?P[empty]!
proc=px>=1

Consumex<=2

CS

Home

out=(out+1)%n,
size--

x>=1 V[empty]!

x=0

V[mutex]!

GO[p]?

P[mutex]! proc=p

GO[p]?P[full]! proc=p

Figure 7. a) Producer model with semaphores Figure 7. b) Consumer model with semaphores

Specific constant names can also introduced globally to
make more readable a process model when accessing
selected semaphores. Fig. 6 portrays the UPPAAL
templates for the counting and binary semaphores.
Parameters of both models are the semaphore id, the
initial value (which for a binary semaphore is restricted
to be 0 or 1), the expected length of the waiting queue.
The design pattern which follows from the models in
Fig. 6 is that a process which executes a P[s]! operation
on a semaphore s must assign, in the update part of the
command, its own process identifier to the global
variable proc. In addition, following a P[s]!
synchronization, the process has to wait for a GO[p]?
synchronization which unblocks the process. Models in
Fig. 6 immediately release a GO command if a permit
exists at the time of a P[s]!. Note that indexes of the
array of GO channels are process ids and not semaphore
ids.
Model implementation rests on a few C-like functions
which hide the counter initialization and the
management of the waiting queue of the semaphore.
Mutual exclusion of P/V atomic operations is ensured
by a local lock object of the semaphore, initialized to
false. To clarify the use of the semaphore models, Fig. 7
shows the producer/consumer models of classical

bounded buffer application. The models receive as
parameter their process id p (of type pid). Three
semaphores are used: mutex (binary semaphore), empty
and full (counting semaphores) having a number of
permits, from time to time, which reflects respectively
the number of empty/full slots in the bounded buffer.
The ids of these semaphores are introduced in the global
declarations.
The instructions for setting up the UPPAAL system
model composed of two producers, one consumer and
buffer capacity of n, are as in the following:

//template process instances
Mutex=BinarySemaphore(mutex /*sem id*/,
 1/*initial value*/,2/*queue size*/);
Empty=Semaphore(empty,n,2);
Full=Semaphore(full,0,1);
prod1=Producer(0);
prod2=Producer(1);
cons=Consumer(2);
//system configuration
system Mutex,Empty,Full,prod1,prod2,cons;

The following query (which is satisfied) checks that
mutual exclusion is correctly enforced on the three
processes:

A[] cons.CS+prod1.CS+prod2.CS<=1

Another template model (JSemaphore) was developed
which was inspired by the Java Semaphore class. It
allows atomically to withdraw/deposit more than one
permit at a time. The channel-operations are
AcquireX[jsid], ReleaseX[jsid], AvailablePermits[jsid]
where jsid is the id of the semaphore in this particular
category, and X can be absent to express the default of
1 permit, or can be a natural up to a given allowed
maximum. The AcquireX[] channels correspond to
acquireUninterruptibly(...) methods of the Java
Semaphore class. The same conventions on classic
semaphores apply here: the global proc variable must be
assigned the process id at the time of an acquire, which
must be followed by a GO[]? command for unblocking.
A process acquiring multiple permits at once will block
if the requested number of permits is not available. A
release command updates the number of permits of the
semaphore and (possibly) awakes the oldest awaiting
process, provided its permit request is now fulfilled. A
process can check the number of available permits
through the operation AvailablePermits[jsid] whose use
must update the global proc in the usual way, and be
followed by a GO[]? command as for an acquire
command. The requesting process will find the output
of AvailablePermits[jsid] in a global variable which is
specified as the fourth parameter (passed by reference)
to the JSemaphore template.

EXAMPLES

The following reports a few examples based on some of
the UPPAAL developed concurrent structure models.
When transforming a UPPAAL model to Java it is
important to reflect that GO? synch? and similar
synchronizations required in UPPAAL are implicit in
the suspensive character of Java methods (e.g. wait(),
s.P() on a semaphore s etc.).

Sharable resource

The problem (Reek, 2004) concerns a sharable resource
which can be accessed according to the rules: (a) as
long as there are fewer than three processes using the
resource, new processes can start using it right away,
(b) once there are three processes using the resource, all
three must leave before any new processes can begin
using it.
A first solution is based on the Java native monitor (or
the equivalent lock/condition structure). Fig. 8 depicts a
template model for the generic Process accessing the
resource. Process has two parameters: its process id p
and the monitor m.
The variable release is true if currently there is a release
of processes from the resource according to rule (b).
Variable active stores the number of processes which
are currently using the resource. Both must be acted
under mutual exclusion. A monitor m is used as a
guardian of the resource. As long as the number of

active processes is 3 or there is a release in progress, the
asking process is forced to wait (it reaches the Wait
location and frees the monitor). On exiting from the
critical section, if active is equal to 3, release is set to
true. In any case the exiting process decrements the
active counter. When active goes to 0, a notifyAll[m]! is
issued and release is reset to false. Note that if active is
0 but no release was in progress, the notifyAll[m]!
signal reduces to a no-operation because no processes
are really waiting.

Figure 8. Process model based on the Java native
monitor

A system model with 5 instances of Process was
verified. It was found to be free of deadlocks but
without liveness guarantee for any process. Liveness
was checked e.g. with a query like this:
Process(0,0).Start-->Process(0,0).RA (Resource
Access) which is not satisfied. The query continues to
be not satisfied even when the Try location is turned to
be committed and the enter/exit/wait channels are
declared urgent.

public class Manager {
private int active=0;
private boolean release=false;
private Object m=new Object();
public void want_to_enter() throws InterruptedException{

synchronized(m){
 while(active==3 || release) m.wait();
 active++;
 }
 }//want_to_enter

public void exit() throws InterruptedException{
synchronized(m){

 if(active==3) release=true;
 active--;
 if(active==0){
 m.notifyAll();
 release=false;
 }
 }
 }//exit
}//Manager
Figure 9. A Java thread-safe class corresponding to
model in Fig. 8

The problem is that process selection at entering and
process awaking from waiting are not deterministic. A
Java thread-safe class corresponding to the model in
Fig. 8 is portrayed in Fig. 9.

RA

x<=4

Wait

TryStart

enter[m]!exit[m]!

active>0

active==0
notifyAll[m]!
release=false

active--

active<3
active==3

release=true

x>=0

!release &&
active<3
exit[m]!
active++,
x=0

notifyAll[m]? active==3 ||
release
wait[m]!

enter[m]!

Fig. 10 shows a solution based on semaphores, which
mimics a solution based on the Hoare’s monitor. Two
binary semaphores MUTEX and WAIT are used. WAIT
serves to block a process when active is 3 or there is a
release in progress. The solution exploits the “Pass the
Baton” design pattern (Reek, 2004), i.e. when an exiting
process finds the conclusion of a release and that there
are waiting processes, it awakes (the oldest) one and
passes to it the mutual exclusion. On the other hand,

when release is true or there is no waiting process, the
exiting process frees the MUTEX.

The application model was model checked and found
free of deadlocks too. Liveness was checked by the
queries:

Process(0).W --> Process(0).RA
Process(0).Start --> Process(0).RA

Figure 10. Process model based on semaphores

The above queries verify respectively if process 0 (or
any other process) always is able to reach RA from W
(start waiting), or from Start.
These queries are not satisfied because of the non
urgent character of P/V and GO channels, together with
the fact that an UPPAAL timed automaton is not forced
to abandon as soon as possible a normal location.
Changing the channels to urgent, both the queries are
satisfied, mirroring that a process is eventually chosen
from the waiting queue of semaphores (FIFO behavior).

Termination problems

The first problem considered is proposed in (Stallings,
2005) and involves five processes: three of type A and
two of type B. The goal is finding the minimum number
of semaphores and using exclusively P’s and V’s on
these semaphores so as to have always that the five
processes terminate according to the sequence ABAAB.
Instead of trying intuitively to find a solution, the
following suggests a Petri net (see Fig. 11) which
models in abstract terms a solution. Transition tA
models a process A termination. Transition tB models a
process B termination. Net topology and initial marking
mirror the number of A and B processes (see places A
and B) and the constraints on the termination sequence
(see places cA and cB and weights of cB-tB and tB-cA
arcs).
Obviously, there is no general rule to guide the
transformation from a specification to an
implementation which is guaranteed to be correct with
respect to the specification. In this case, though, by
interpreting places as semaphores and their initial
marking as the initial value of the semaphores, and
interpreting token withdraw and token deposit during

transition firing respectively as P’s and V’s on the
relevant semaphores, one can achieve a semaphore
implementation from the net model. An important
aspect to reproduce in the semaphore implementation is
the atomicity of transition firing.
In reality, semaphores corresponding to places A and B
can be omitted because in the implementation the
number of processes A and B is implicitly represented
by instances of their class/template. As a consequence,
five semaphores could be used: cA, cB, mA, mB, mAB
where mA and mB are mutex semaphores guarding A
processes each other and B processes each other,
whereas mAB regulates mutex among As and Bs. As a
first attempt, Fig. 12 sketches semaphore declaration
and initialization, and the body of A and B process
types:

Figure 11. Petri net model for the termination problem
ABAAB

The implementation in Fig. 12 is redundant: mA and
mB can be eliminated by resting on cA initialization
which excludes multiple A to initiate firing of transition
tA in Fig. 11, and cB initialization along with the FIFO
property of employed semaphores, so as to allow only

W

RA

x<=4

Start

!release &&
waiting>0
V[WAIT]!

release ||
waiting==0

V[MUTEX]!

active>0

active==0
release=false

active<3
active==3

release=true

active==3 ||
release
V[MUTEX]!

active--

GO[p]?
waiting--,
active++

active<3 &&
!release
active++

GO[p]? P[MUTEX]!

proc=p
x>=4 V[MUTEX]!

x=0

P[WAIT]!

proc=p,
waiting++

GO[p]?P[MUTEX]!

proc=p

one B to fire transition tB. Proposed implementation
using three semaphores is shown in Fig. 13.

Semaphore cA<-1, cB<-0
BinarySemaphore mA<-1, mB<-1, mAB<-1
A:
P(mA)
P(cA)
P(mAB)
V(cB)
V(mAB)
V(mA)

B:
P(mB)
P(cB)
P(cB)
P(mAB)
V(cA)
V(cA)
V(mAB)
V(mB)

Figure 12. a) Global
declarations and A process
body sketch

Figure 12. b) B process
body sketch

Figures 14 and 15 depict UPPAAL models for
processes A and B.

The semaphores cA and cB have ids respectively CA
and CB. Figures 16 and 17 show a decoration
automaton Checker along with the Synch automaton
and urgent synch channel which were designed (with
the help of counters tA and tB which count respectively
the number of terminated A processes and B processes)
to demonstrate correctness of the simplified solution.

EndBegin

V[MUTEX]!
tA++

V[CB]!

GO[p]?P[MUTEX]!
proc=p

GO[p]?

P[CA]!
proc=p

End

Begin

V[MUTEX]!

tB++

V[CA]!

V[CA]!

GO[p]?

P[MUTEX]!
proc=p

GO[p]?P[CB]!
proc=p

GO[p]?

P[CB]!
proc=p

Error ABAAB

ABAA

ABA

AB

A

tA==2 &&
tB==2
synch?

tA==1 &&
tB==2
synch?tA==2 &&

tB==0
synch?

tA==0 &&
tB==1
synch?

tB==2
synch?

tA==3
synch?

tA==2
synch?tB==1

synch?

tA==1
synch?

Figure 14. Automaton of A process Figure 15. Automaton of B process Figure 16. Checker automaton

Figure 17. Synch automaton Figure 18. Petri net model for the
AABABB termination problem

Figure 19. A Petri net model for the
problem AABABABB

Correctness of the semaphore implementation of the
ABAAB termination problem was verified by the
query:

A[] !Checker.Error

which was find satisfied. The same method was applied
to the termination problem AABABB with three A and
three B. In this case was designed the Petri net model of
Fig. 18.
A correct and minimal semaphore implementation based
on four classic semaphores is sketched in Fig. 20. The
more resource demanding termination problem of 8

processes AABABABB proposed in (Stallings, 2005),
was solved according to the Petri net in Fig. 19 and the
JSemaphore automaton. Similarly to the AABABB
problem, four classical semaphores could be used but
the corresponding UPPAAL model is hard to verify.

In Fig. 21 it is sketched a verified correct solution based
on three JSemaphore automata, of which one serves as a
mutex. Since a process B acquires 6 tokens at once or
none and blocks, the mutex mB semaphore of Fig. 20 is
no longer required. The resulting reduced model was
found more amenable for the model checker.

Semaphore cA<-1, cB<-0
BinarySemaphore mAB<-1
A:
P(cA)
P(mAB)
V(cB)
V(mAB)

B:
P(cB)
P(cB)
P(mAB)
V(cA)
V(cA)
V(mAB)

Figure 13. a) Minimal A
process body sketch

Figure 13. b) Minimal
B process body sketch

tB

tA

4B

0cB

2cA4A

43

6

synch!

Semaphore cA<-2, cB<-0
BinarySemaphore mAB<-1, mB<-1

A:
P(cA)
P(mAB)
V(cB)
V(cB)
V(mAB)

B:
P(mB)
P(cB)
P(cB)
P(cB)
P(cB)
P(mAB)
V(cA)
V(cB)
V(cB)
V(cB)
V(mB)
V(mAB)

Figure 20. a) A process body
sketch

Figure 20. b) B process
body sketch

JSemaphore cA<-2, cB<-0, mAB<-1

A:
Acquire(cA)
Acquire(mAB)
Release(cB,3)
Release(mAB)

B:
Acquire(cB,6)
Acquire(mAB)
Release(cA)
Release(cB,4)
Release(mB)

Figure 21. a) A process
body sketch

Figure 21. b) B process
body sketch

All the experiments were carried out on a Win7 64 bit,
Intel i5 Core 750 @ 2.67GHz, with 6GB RAM.

CONCLUSIONS

This paper proposes an approach based on UPPAAL for
modelling and exhaustive verification of concurrent
programs, e.g. destined to be implemented in Java.
Some common patterns mainly inspired by the Java
concurrent package were abstracted as reusable
template processes of UPPAAL which can be easily
integrated and composed in user-defined project
models. The reasoning and visibility capabilities
enabled by the UPPAAL toolbox are of paramount
importance in the didactic (but also in other contexts) of
concurrent programming which is a well-know difficult
task to master. Nevertheless concurrency is emerging as
a crucial factor for future complex application
developments which can greatly benefit from the
computing potentials offered by modern multi-core
processor architectures. A lesson learned from the
described experience is that rigorous modelling of
concurrent structures not only help proving correctness
of a solution but the efforts behind modelling and
analysis highlight semantics of a concurrent pattern and
can guide the implementation in an object-oriented
language like Java.

Prosecution of the research aims to
� improving and extending the library of reusable

concurrent models, e.g. with control mechanisms
such as the Active Oberon (Active Oberon, on-

line) monitor which has boolean conditions and an
implicit signalling mechanism

� building a reference collection of solution models
for significant classes of concurrent applications

� experimenting with other model checkers such as
SMV, PVS, TLA+ etc.

REFERENCES
Active Oberon,

http://bluebottle.ethz.ch/languagereport/index.html
Alur R. and D.L. Dill (1994). A theory of timed automata.

Theoretical Computer Science, 126(2), pp. 183-235.
Behrmann G., David A., Larsen K.G. (2004). A tutorial on

UPPAAL. In Formal Methods for the Design of Real-Time
Systems, M. Bernardo and F. Corradini Eds., LNCS 3185,
Springer, pp. 200-236.

Bengtsson J., Yi W. (2003).Timed automata: semantics,
algorithms and tools. J. Desel, W. Reisig, and G.
Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 87–124.

Bloch J. (2008). Effective Java. 2nd Edition, Addison-Wesley.
Clarke E.M., Grumberg O., Peled D.A. (2000). Model

checking. MIT Press.
Cicirelli F., Furfaro A. & Nigro L. (2007). Using

TPN/Designer and UPPAAL for modular modelling and
analysis of time-critical systems. Int. J. of Simulation
Systems, Science & Technology, 8(4):8-20,
http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-8/No-
4/cover.htm.

Cicirelli F., A. Furfaro A., Nigro L. (2009). Modelling and
Analysing Real Time System Specifications using Time
Stream Petri Nets. In Proc. of 30th IFAC Workshop on
Real-Time Programming and 4th International Workshop
on Real-Time Software (WRTP/RTS'09), Mragowo,
Poland, October 12-14, pp. 35-42.

Dijkstra E.W. (1965). Cooperating sequential processes.
Technological University, Eindhoven, The Netherlands,
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD
01xx/EWD123.html

Downey A. (2007). The Little Book of Semaphores. Green Tea
Press, 2.1.2 Edition.

Furfaro A., Nigro L. (2007). Modelling and schedulability
analysis of real-time sequence patterns using Time Petri
Nets and UPPAAL. In Proc. of Int. Workshop on Real
Time Software (RTS'07), Wisla, Poland, pp. 821-835.

Goetz B., Peierls T., Bloch J., Bowbeer J., Holmes D., Lea D.
(2006). Java concurrency in practice. Addison Wesley
Professional.

Grand M. (2002). Patterns in Java, Vol. 1, Wiley.
Hamberg R., Vaandrager F. (2008). Using model checkers in

an Introductory Course on Operating Systems, ACM
SIGOPS Operating Systems Review, Vol. 42, Issue 6.

Lampson B.W., Redell D.D. (1979). Experience with
processes and monitor in Mesa. In Proc. of SOSP, pp. 43-
44.

Reek K.A. (2004). Design patterns for semaphores. In Proc. of
SIGCSE’04 Technical Symposium on Computer Science
Education, Vol. 36, Issue 1.

Stallings W. (2005). Operating Systems: Internals and Design
Principles. Prentice-Hall.

Silberschatz A., Galvin P.B., Gagne G. (2010). Operating
System Concepts. 8th Edition, Wiley.

