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ABSTRACT
The paper presents a practical introduction to the mod-
elling and verification of concurrent systems with the
Alvis modelling language using the α0 system layer.
This version of Alvis is the most universal one. It is as-
sumed that each active agent has access to its own proces-
sor and all agents perform their statements concurrently.
All layers of an Alvis models are shortly described in the
paper and possibilities of a formal verification are also
discussed. A classical problem of dining philosophers is
presented to illustrate Alvis features and methods of an
automatic model verification with the CADP toolbox.

INTRODUCTION
Standard techniques, such as peer reviewing or testing
are very often insufficient to guarantee an expected level
of software quality in case of concurrent systems. Formal
methods included into the design process may provide
more effective verification techniques, and may reduce
the verification time and system costs. Unfortunately,
formal methods are very seldom used in real IT projects,
due to their specific mathematical syntax.

Alvis (Szpyrka et al., 2011a) is a novel modelling lan-
guage designed by our team especially for concurrent
systems. Alvis has its origins in the CCS process algebra
(Milner, 1989), (Aceto et al., 2007), and the XCCS mod-
elling language (Balicki and Szpyrka, 2009), (Matyasik,
2009). In contrast to process algebras, Alvis uses a high
level programming language based on the Haskell syn-
tax, instead of algebraic equations, and provides a hierar-
chical graphical modelling for defining interconnections
among agents.

The aim of the paper is to provide a practical intro-
duction to the modelling and verification of concurrent
systems with Alvis. The subsequent sections provides
information about:
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• comparison of Alvis with other languages used for
embedded systems development;

• layers of Alvis models;

• basic information about states of Alvis models, tran-
sitions among states and LTS graphs used for verifi-
cation purposes;

• methods of a formal verification with the CADP
toolbox.

COMPARISON WITH OTHER LANGUAGES
Alvis has its origins in the CCS process algebra (Mil-
ner, 1989), (Fencott, 1995), (Aceto et al., 2007) and the
XCCS language (Balicki and Szpyrka, 2009), (Matyasik,
2009). The main result of the fact is the communi-
cation model used in Alvis that is similar to the one
used in CCS and the rendes-vous mechanism used in
Ada (Barnes, 2006). However, Alvis uses a simplified
rendez-vous mechanism with equal agents without dis-
tinguishing servers and clients. In contrast to Ada, Alvis
does not support asynchronous procedure calling, a pro-
cedure uses always an active agent context.

A few constructs in Ada were an inspiration while de-
veloping Alvis language. For example, protected objects
have been used to define passive agents and the Ada se-
lect statement has been used to define the Alvis select
statement. An Alvis model composed of few agents that
work concurrently is similar to an Ada distributed sys-
tem. Active agents can be treated as processing nodes,
while passive agents as storage ones.

Alvis has many features in common with E-LOTOS
– an extension of the LOTOS modelling language (ISO,
1989). First of all, Alvis as E-LOTOS is derived from
process algebras. Alvis, like E-LOTOS, was intended to
allow a formal modelling and verification of distributed
real-time systems. In contrast to E-LOTOS, Alvis pro-
vides graphical modelling language. Moreover, Alvis
Toolkit supports a LTS graph generation, which signif-
icantly simplifies the formal verification of models.

Alvis has also many features in common with Sys-
tem Modelling Language (SysML)(Sys, 2008) – a gen-
eral purpose modelling language for systems engineer-
ing applications. It contains concepts similar to SysML
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ports, property blocks, communication among the blocks
and hierarchical models. Unlike SysML, Alvis combines
structure diagrams (block diagrams) and behaviour (ac-
tivity diagrams) into a single diagram. In addition, Alvis
defines formal semantics for the various artifacts, which
is not the case in SysML.

Due to the use of Ada origins, VHDL (Ashenden,
2008) and Alvis have a similar syntax for the commu-
nication and parallel processing. The concept of agent in
Alvis is also similar to a design entity in VHDL and both
languages use ports for a communication among system
components. It should be noted, however, that Alvis is
closely linked with its graphical model layer. Graphical
composition allows for easier identification of the system
hierarchy and components. The main purpose of VHDL
is the specification of digital electronic circuits and it fo-
cuses on systems hardware. However, Alvis integrates
the hardware and software views of an embedded sys-
tem.

In contrast to synchronous programming languages
like Esterel (Berry, 2000), (Palshikar, 2001) or
SCADE (SCA, 2007), Alvis does not use the broadcast
communication mechanism. Only agents connected with
communication channels can communicate one with an-
other.

MODELS

An Alvis model is composed of three layers:

Graphical layer – is used to define data and control
flow among distinguished parts of the system un-
der consideration that are called agents. The layer
takes the form of a hierarchical graph with nodes
representing agents.

Code layer – is used to describe the behaviour of indi-
vidual agents. It uses both Haskell functional pro-
gramming language (O’Sullivan et al., 2008) and
original Alvis statements.

System layer – depends on the model running environ-
ment i.e. the hardware and/or operating system. The
layer is the predefined one and it is necessary for a
model simulation and verification.

To present the most important features of Alvis the
well-known problem of dining philosophers has been
chosen. Five philosophers sit around a circular table.
Each philosopher spends his life alternately thinking and
eating. There is a large bowl of spaghetti in the centre of
the table. There are also five plates at the table and five
forks set between the plates. Eating the spaghetti requires
the use of two forks. Each philosopher thinks. When he
gets hungry, he picks up the two forks that are closest to
him. If a philosopher can pick up both forks, he eats for a
while. After a philosopher finishes eating, he puts down
the forks and starts thinking.

System layer
The system layer is necessary for a model simulation
and verification. From the users point of view, the layer
works in the read-only mode. It gathers information
about all agents in a model and their states. Agents can
retrieve some data from the layer, but they cannot directly
change them. The system layer provides some functions
that are useful for implementation of scheduling algo-
rithms or for retrieving information about other agents
states.

User can choose one of a few versions of the layer and
it affects the developed model semantic. System layers
differ about the scheduling algorithm and system archi-
tecture mainly. There are two approaches to the schedul-
ing problem considered. System layers with α symbol
provide a predefined scheduling function that is called
after each step automatically. On the other hand, sys-
tem layers with β symbol do not provide such a function.
A user must define a scheduling function himself.

In this paper we will consider only the α0 system layer.
This layer makes Alvis an universal formal modelling
language similar to Petri nets or process algebras. The α0

layer scheduler is based on the following assumptions.

• Each active agent has access to its own processor
and performs its statements as soon as possible.

• The scheduler function is called after each statement
automatically.

• In case of conflicts, agents priorities are taken under
consideration. If two or more agents with the same
highest priority compete for the same resources, the
system works indeterministically.

A conflict is a state when two or more active agents
try to call a procedure of the same passive agent or
two or more active agents try to communicate with
the same active agent.

Graphical layer
The graphical layer takes the form of a communication
diagram (Szpyrka et al., 2011b) i.e. a hierarchical graph
whose nodes represent agents. Agents are divided into
active (rounded boxes) and passive ones (rectangles).
Active agents are treated as threads of control in a con-
current system, while passive agents represent shared re-
sources with mutual exclusion access. Communication
diagrams are the only way, in Alvis, to point out agents
that communicate one with another. Moreover, the dia-
grams allow programmers to combine sets of agents into
modules that are also represented as agents (called hier-
archical ones).

Agents communicate one with another using ports
drawn as circles placed at the edges of the correspond-
ing rounded box or rectangle. A communication is possi-
ble only through defined communication channels drawn
as lines (or broken lines) between ports. An arrowhead
points out the input port for the particular connection.



Figure 1: Dining philosophers – communication diagram

Communication channels without arrowheads represent
pairs of connections with opposite directions.

The communication diagram for the considered model
of dining philosophers is shown in Fig. 1. It contains
5 active (Ph1, . . . , Ph5) and 5 passive (F1, . . . , F5)
agents that represent philosophers and forks respectively.
For a given philosopher, ports right and left are used to
take up and put back his right and left fork respectively.
On the other hand, ports get and put represent possible
fork’s procedures.

Code layer
Code layer is used to describe the behaviour of individ-
ual agents. The layer uses both Haskell functional lan-
guage and original Alvis statements. The list of Alvis
statements used with the α0 system layer is presented
in Table 1. We have omitted statements explicitly re-
lated to time e.g., loop every or delay that are used for
real-time programming. Discussing time dependences is
out of the scope of the paper. For more information and
a detailed formal description of all presented statements
see (Szpyrka et al., 2011a) or (Szpyrka et al., 2011b).

agent Ph1, Ph2, Ph3, Ph4, Ph5 {
loop { -- 1
in right; -- 2
in left; -- 3
out right; -- 4
out left; -- 5

}
}

agent F1, F2, F3, F4, F5 {
taken :: Bool = False;
proc (taken == False) get {
taken = True; -- 1
out get; } -- 2

proc (taken == True) put {
taken = False; -- 3
in put; } -- 4

}
}

Listing 1: Dining philosophers – code layer

The code layer for the considered model of dining
philosophers is presented in Listing 1. In this approach



Table 1: Alvis statements used with the α0 system layer (time statements omitted)
Statement Description
exec x = expression Evaluates the expression and assigns the result to the parameter; the exec key-

word can be omitted.
exit If an active agent performs the statement, it is terminated. If a passive agent

performs the statement, its current procedure is terminated.
if (g1) {...} Conditional statement.
elseif (g2) {...}

...

else {...}

in p Collects a signal (without value) via the port p.
in p x Collects a value via the port p and assigns it to the parameter x.
jump label Transfers the control to the line of code identified with the label.
loop (g) {...} Repeats execution of the contents while the guard if satisfied, the guard is

checked everytime before entering the loop contents. – It is similar to the
while loop in most languages.

loop {...} Infinite loop.
null Empty statement.
out p Sends a signal (without value) via the port p.
out p x Sends the value of the parameter x via the port p; a literal value can be used

instead of a parameter.
proc (g) p {...} Defines the procedure for the port p of a passive agent. The guard is optional.
select { Selects one of the alternative choices. Guards g1, g2, . . . decide which
alt (g1) {...} alternatives can be chosen after entering the select statement.
alt (g2) {...}

...

}

start A Starts the agent A if it is in the Init state, otherwise do nothing.

philosophers try to take their right fork before the left
one. All agents Ph1, . . . , Ph5 share the same behaviour
definition. Forks modelled as passive agents provide two
procedures – get for taking a fork, and put for putting
them back. The taken parameter is used to control the
procedures accessibility.

We consider behaviour of Alvis models at the level of
detail of single steps. Statements such as exec, exit, in,
jump, null, out and start are single-step statements. On
the other hand, if, loop and select are multi-step state-
ments. We use recursion to count the number of steps for
multi-step statements. For each of these statements, the
first step enters the statement interior. Then, we count
steps of statements put inside curly brackets. Comments
included into the considered code layer contain step num-
bers. For example, one cycle of a philosopher activity
consists of 5 steps: 1) entering the loop, 2) in statement
(port right), etc.

MODELS DYNAMIC

States
A state of a model is represented as a sequence of agents’
states. To describe the current state of an agent we need a
tuple with four pieces of information: agent mode (am),
program counter (pc), context information list (ci) and
parameters values tuple (pv).

A passive agent is always in one of two modes: waiting
or taken. The former one means that the agent is inactive
and waits for another agent to call one of its accessible
procedures. In such a situation its pc is equal to zero and
ci contains names of accessible procedures. The taken
mode means that one of the passive agent procedures has
been called and the agent executes it. In such a case,
ci contains the name of the called procedure (i.e. the
name of the port used for current communication). The
pc points out the index of the next statement to be exe-
cuted or the current statement if the corresponding active
agent is waiting.

If α0 system layer is considered, an active agent can
be in one of the following modes: finished, init, run-
ning, waiting. The init mode means that an agent has not
started its activity yet, while the finished one means that
it has already finished its work. The waiting mode means
that an active agent is waiting either for a synchronous
communication with another active agent or for a cur-
rently inaccessible procedure of a passive agent, and the
running mode means that an agent is performing one of
its steps. In case of the waiting or running mode, ci con-
tains additional information about the events an agent is
waiting for, or about a passive agent that uses the consid-
ered active agent context. For any agent, pv contains the
current values of the agent parameters.

A detailed description of agents states can be found



in (Szpyrka et al., 2011b).

Transitions
Transitions describe execution of single steps in an Alvis
model. The transitions list for models with the α0 system
layer is given in Table 2.

Table 2: Set of transitions
Symbol Description
tstart starts an inactive agent
texit terminates an agent or a procedure
tin performs communication (input side)
tout performs communication (output side)
tloop enters a loop
tjump jumps to a label
tif enters an if statement
tselect enters a select statement
texec performs an evaluation and assignment
tnull performs an empty statement

0:
Ph1: (running,1,[],())
Ph2: (running,1,[],())
Ph3: (running,1,[],())
Ph4: (running,1,[],())
Ph5: (running,1,[],())
F1: (waiting,0,[out(get)],(False))
F2: (waiting,0,[out(get)],(False))
F3: (waiting,0,[out(get)],(False))
F4: (waiting,0,[out(get)],(False))
F5: (waiting,0,[out(get)],(False))

Listing 2: Structure of the code layer

The initial state for the considered model of dining
philosophers is presented in Listing 2. All active agents
are running and are about to execute the tloop transi-
tion. All passive agents are waiting for a communication
through their get port. Suppose the Ph2 agent executes
its first step. Its state changes into

Ph1: (running,2,[],())

while states of other agents remain unchanged. Then, if
the same agent executes the tin transition, states of Ph1
and F5 agents change into:

Ph1: (running,2,[proc(F5.get)],())
F5: (taken,1,[out(get)],(False))

It means that:

• F5 is running in the Ph1 agent’s context
(am(Ph1) = running and proc(F5.get) ∈
ci(Ph1));

• the get procedure of F5 has been called (am(F5) =
taken and ci(F5) = [out(get)]);

• the first step of the procedure is about to execute
(pc(F5) = 1);

LTS graphs
States of an Alvis model and transitions among them are
represented using a labelled transition system (LTS graph
for short). An LTS graph is an ordered graph with nodes
representing states of the considered system and edges
representing transitions among states.

Due to practical reasons, such an LTS graph gener-
ated automatically for an Alvis model takes the textual
form. Then it is converted into the Binary Coded Graphs
(BCG) format and used as input data for the CADP tool-
box (Garavel et al., 2007). CADP offers a wide set of
functionalities, ranging from step-by-step simulation to
massively parallel model-checking.

The LTS graph generated for the five philosophers ex-
ample has the following properties (as reported by CADP
tool) :

• 111486 states,

• 447735 transitions,

• 31 labels,

• 1 deadlocked state,

• provides deterministic behaviour for all labels.

The detailed analysis of the generated LTS graph is dis-
cussed in the next section.

VERIFICATION WITH CADP
Deadlocks belong to basic properties in the formal ver-
ification domain. As it was shown before the verified
system has one deadlock. The CAPD tool can pro-
vide not only the number of deadlocks but also paths
leading to them. Finding deadlocks in this tool can be
achieved by running a built-in function via the Ecalyptus
graphical environment or by checking a property speci-
fied in the regular alternation-free µ− calculus (Garavel
et al. (2007)) (In fact CADP allows users to check mod-
els with other formalisms but only the alternation-free
µ − calculus is used in this article). The following for-
mula is used to check whether each state has at least one
successor.

[ true* ] < true > true

Obviously, this property does not hold in the presented
example. As a proof CADP returns the following path
leading to the deadlocked state:

"loop(Ph1)" -> "loop(Ph2)" ->
"loop(Ph3)" -> "loop(Ph4)" ->
"loop(Ph5)" -> "in(Ph1)" ->
"in(Ph2)" -> "in(Ph3)" ->
"in(Ph4)" -> "in(Ph5)" ->
"exec(F1)" -> "exec(F2)" ->
"exec(F3)" -> "exec(F4)" ->
"exec(F5)" -> "out(F1)" ->
"in(Ph2)" -> "out(F2)" ->
"in(Ph3)" -> "out(F3)" ->
"in(Ph4)" -> "out(F4)" ->
"in(Ph5)" -> "out(F5)" ->
"in(Ph1)"



The "loop(Ph1)" label stands for a loop statement ex-
ecuted by the first philosopher, "out(F3)" stands for an
out statement executed by the passive agent F1, etc.

Liveness is another commonly used system property.
It can be expressed as “something good eventually hap-
pens”. Let us define “something good” in terms of the
presented example:

< true* . "in(Ph1)" .
true* . "in(Ph1)" > true

In this property specification "something good" takes the
form of eating. Eating requires taking both forks which
is represented by executing in sequence methods of pas-
sive agents that represent forks. Calling a passive agent
procedure is performed by executing the in statement. In
other words, the question is if there is a path where the
philosopher number one executes the in statement twice.
This property is true and the CADP’s verification engine
can provide a trace that proves it.

@ ( true* . "in(Ph1)" .
true* . "in(Ph1)"
and not ( "in(Ph2)" or

"in(Ph3)" or
"in(Ph4)" or
"in(Ph5)"

)
)

The above property is true and the proof is presented in
Fig. 2. To save space most of the states leading to the
interesting circle was omitted.

Another interesting situation in system modelling is
a livelock. It takes a place when a system is consequently
processing some statements but without doing any useful
work. As it was assumed before, a desirable behaviour
of an agent can be represented by picking a fork. Thus,
an example of a livelock is a situation when there exists
a cycle where no in statement is executed – forks remain
on the table all the time. Let us consider the following
formula:

@ ( not ( "in(Ph1)" or
"in(Ph2)" or
"in(Ph3)" or
"in(Ph4)" or
"in(Ph5)"

)
)

According to the system specification (see Fig. 1 and
Listing 1) the above property is false. After executing
at most five steps an in statement has to be performed.
However, a livelock can be easily introduced by using the
select statement with a delay branch or the ready state-
ment in a guard (Szpyrka et al. (2011b)).

SUMMARY
The article presents an example of the practical applica-
tion of the Alvis language and a basic informal knowl-
edge about its syntax and semantic. The included exam-
ple presents how an Alvis model can be designed and

verified. Alvis evolved from process algebras and is in
fact a formal modelling language but it takes the form of
an imperative programming language. Such a represen-
tation seems to be more convenient from the engineering
point of view. It should be underlined that the exam-
ple presented in this paper refers to the α0 system layer,
when Alvis behaves similar to the CCS process algebra.
Other system layers provide ability to check a developed
system in exactly specified circumstances like the num-
ber of processors or a scheduling algorithm. The results
obtained from such a verification may differ from the pre-
sented ones. Moreover, they will represent the system
behaviour taking into account a chosen computer envi-
ronment, not an abstract parallel execution.
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