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ABSTRACT

Ordered fuzzy numbers as generalization of convex fuzzy
numbers are defined together with four algebraic opera-
tions. For defuzzification operators, that play the main
role when dealing with fuzzy controllers and fuzzy in-
ference systems, new representation formulae are given.
Step ordered fuzzy numbers are considered. Approxi-
mation method based on forward neural networks is pre-
sented for determining defuzzification functionals when
training sets of data are given. Results of approximation
are given.

FUZZY NUMBERS

Fuzzy numbers (Zadeh, 1965) are very special fuzzy sets
defined on the universe of all real numbers R. In applica-
tions the so-called (L,R)–numbers proposed by Dubois
and Prade (Dubois & Prade, 1978) as a restricted class
of membership functions, are often in use. In most cases
one assumes that membership function of a fuzzy number
A satisfies convexity assumptions (Nguyen, 1978). How-
ever, even in the case of convex fuzzy numbers (CFN)
multiply operations are leading to the large grow of the
fuzziness, and depend on the order of operations.
This as well as other drawbacks have forced us to think
about some generalization. Number of attempts to in-
troduce non-standard operations on fuzzy numbers has
been made (Drewniak, 2001; Klir, 1997; Sanschez, 1984;
Wagenknecht, 2001). Our main observation made in
(Kosiński et.al., 2002a) was: a kind of quasi-invertibility
(or quasi-convexity (Martos, 1975)) of membership func-
tions is crucial. Invertibility of membership functions
of convex fuzzy number A makes it possible to define
two functions a1, a2 on [0, 1] that give lower and upper
bounds of each α-cut of the membership function µA of
the number A

A[α] = {x : µA(x) ≥ α} = [a1(α), a2(α)]

with a1(α) = µA|−1
incr(α) and a2(α) = µA|−1

decr(α) ,
where |incr and |decr denote the restrictions of the func-
tion µA to its sub-domains on which is increasing or
decreasing, respectively. Both functions a1(α), a2(α)
were used for the first time by the authors of (Goetschel
& Voxman, 1986) in their parametric representation of
fuzzy numbers, they also introduced a linear structure to
convex fuzzy numbers.

ORDERED FUZZY NUMBERS
In the series of papers (Kosiński et.al., 2002a; Kosiński
et. al., 2003b,a) we have introduced and then developed
main concepts of the space of ordered fuzzy numbers
(OFNs). In our approach the concept of membership
functions has been weakened by requiring a mere
membership relation .
Definition 1. Pair (f, g) of continuous functions such
that f, g : [0, 1]→R is called ordered fuzzy number A.

Notice that f and g need not be inverse functions of
some membership function. If, however, f is increasing
and g – decreasing, both on the unit interval I , and f ≤ g,
then one can attach to this pair a continuous function µ
and regard it as a membership function a convex fuzzy
number with an extra feature, namely the orientation of
the number. This attachment can be done by the formula
f−1 = µ|incr and g−1 = µ|decr. Notice that pairs (f, g)
and (g, f) represent two different ordered fuzzy numbers,
unless f = g . They differ by their orientations.
Definition 2. Let A = (fA, gA), B = (fB , gB) and C =
(fC , gC) are mathematical objects called ordered fuzzy
numbers. The sum C = A+B, subtraction C = A−B,
product C = A ·B, and division C = A÷B are defined
by formula

fC(y) = fA(y) ? fB(y) , gC(y) = gA(y) ? gB(y) (1)

where ”?” works for ”+”, ”−”, ”·”, and ”÷”, respec-
tively, and where A ÷ B is defined, if the functions |fB |
and |gB | are bigger than zero.

Scalar multiplication by real r ∈ R is defined as
r · A = (rfA, rgA) . The subtraction of B is the same
as the addition of the opposite of B, and consequently
B − B = 0, where 0 ∈ R is the crisp zero. It means
that subtraction is not compatible with the the extension
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principle, if we confine OFNs to CFN. However, the ad-
dition operation is compatible, if its components have
the same orientations. Notice, however, that addition, as
well as subtraction, of two OFNs that are represented by
affine functions and possess classical membership func-
tions may lead to result which may not possess its mem-
bership functions (in general f(1) needs not be less than
g(1)).

Relation of partial ordering in the spaceR of all OFN,
can be introduced by defining the subset of positive or-
dered fuzzy numbers: a number A = (f, g) is not less
than zero, and write

A ≥ 0 if f ≥ 0, g ≥ 0 , andA ≥ B ifA−B ≥ 0 . (2)

In this way the spaceR becomes a partially ordered ring.
Neutral element of addition in R is a pair of constant
function equal to crisp zero.

Operations introduced in the space R of all or-
dered fuzzy numbers (OFN) make it an algebra,
which can be equipped with a sup norm ||A|| =
max(sup

s∈I
|fA(s)|, sup

s∈I
|gA(s)|) if A = (fA, gA) . In R

any algebraic equationA+X = C forX , with arbitrarily
given fuzzy numbers A and C, can be solved. Moreover,
R becomes a Banach space, isomorphic to a Cartesian
product of C(0, 1) - the space of continuous functions on
[0, 1]. It is also a Banach algebra with unity: the multi-
plication has a neutral element - the pair of two constant
functions equal to one, i.e. the crisp one.

Some interpretations of the concepts of OFN have
been given in (Kosiński et.al., 2009a). Fuzzy impli-
cations within OFN are presented in (Kosiński et. al.,
2009b).

STEP NUMBERS

It is worthwhile to point out that the class of ordered
fuzzy numbers (OFNs) represents the whole class of con-
vex fuzzy numbers with continuous membership func-
tions. To include all CFN with piecewise continuous
membership functions more general class of functions
f and g in Def.1 is needed. This has been already
done by the first author who in (Kosiński, 2006) assumed
they are functions of bounded variation. The new space
is denoted by RBV . Then operations on elements of
RBV are defined in the similar way, the norm, how-
ever, will change into the norm of the Cartesian prod-
uct of the space of functions of bounded variations (BV).
Then all convex fuzzy numbers are contained in this
new space RBV of OFN. Notice that functions from BV
(Łojasiewicz, 1973) are continuous except for a count-
able numbers of points.

Important consequence of this generalization is the
possibility of introducing the subspace of OFN com-
posed of pairs of step functions. It will be done as fol-
lows. If we fix a natural number K and split [0, 1)
into K − 1 subintervals [ai, ai+1) , i = 1, 2, ...,K, i.e.

K−1⋃
i=1

[ai, ai+1) = [0, 1), where 0 = a1 < a2 < ... <

aK = 1, we may define step function f of resolution
K by putting value f(s) = ui ∈ R, for s ∈ [ai, ai+1),
then each such function f can be identified with a K-
dimensional vector f ∼ u = (u1, u2...uK) ∈ RK , the
K-th value uK corresponds to s = 1, i.e. f(1) = uK .
Taking pair of such functions we have an ordered fuzzy
number fromRBV . Now we introduce
Definition 3. By step ordered fuzzy number A of
resolution K we mean ordered pair (f, g) of functions
such that f, g : [0, 1]→R are K-step function.

We use RK for denotation the set of elements satisfy-
ing Def. 3. The set RK ⊂ RBV has been extensively
elaborated by our students in (Gruszczyńska & Krejew-
ska, 2008) and (Kościeński, 2010). We can identify RK

with the Cartesian product of RK × RK since each K-
step function is represented by its K values. It is obvious
that each element of the space RK may be regarded as
approximation of elements fromRBV , by increasing the
number K of steps we are getting the better approxima-
tion. The norm of RK is assumed to be the Euclidean
one of R2K , then we have a inner-product structure for
our disposal.

DEFUZZIFICATION FUNCTIONALS

In the course of defuzzification operation in CFN to a
membership function a real, crisp number is attached.
We know number of defuzzification procedures from the
literature (Van Leekwijck & Kerre, 1999). Continuous,
linear functionals on R give the class of defuzzification
functionals . Each of them, say φ, has the representation
by the sum of two Stieltjes integrals with respect to two
functions h1, h2 of bounded variation,

φ(f, g) =
∫ 1

0

f(s)dh1(s) +
∫ 1

0

g(s)dh2(s) . (3)

Notice that if for h1(s) and h2(s) we put λH(s) and
(1 − λ)H(s), respectively, with 0 ≤ λ ≤ 1 and H(s)
as the Heaviside function with the unit jump at s = 1,
then the defuzzification functional in (3) will lead to the
classical MOM – middle of maximum, FOM (first of
maximum), LOM (last of maximum) and RCOM (ran-
dom choice of maximum), with an appropriate choice of
λ. For example if for h1(s) and h2(s) we put 1/2H(s)
then the defuzzification functional in (3) will represent
the classical MOM – middle of maximum

φ(f, g) = 1/2(f(1) + g(1)) . (4)

New model gives the continuum number of defuzzifica-
tion operators both linear and nonlinear, which map or-
dered fuzzy numbers into reals. Nonlinear functional can
be defined, see (Kosiński & Wilczyńska-Sztyma, 2010),
as an example we have center of gravity defuzzification



functional (COG) calculated at OFN (f, g) is

φ̄G(f, g) =

1∫
0

f(s)+g(s)
2 [f(s)− g(s)]ds

1∫
0

[f(s)− g(s)]ds
. (5)

If A = c‡ then we put φ̄G(c‡) = c . When
1∫
0

[f(s) −

g(s)]ds = 0 in (5) a correction needs to be introduced.
Here by writing φ̄(c‡) we understand the action of the
functional φ̄ on the crisp number c‡ from R, which is rep-
resented by the pair of constant functions (c†, c†), with
c†(s) = c , s ∈ [0, 1].

In our understanding the most general class of con-
tinuous defuzzification functionals φ should satisfy three
conditions:

1. φ(c‡) = c ,

2. φ(A+ c‡) = φ(A) + c ,

3. φ(cA) = cφ(A) , for any c ∈ R and A ∈ R .

Here by writing φ(c‡) we understand the action of the
functional φ on the crisp number c‡ from R, which is
represented, in the case of RK , by the pair of constant
functions (c†, c†), with c†(i) = c , i = 1, 2, ...,K. The
condition 2. is a restricted additivity, since the second
component is crisp number. The condition 3. requires
from φ to be homogeneous of order one, while the con-
dition 1. requires

∫ 1

0
dh1(s) +

∫ 1

0
dh2(s) = 1, in the

representation (3).
On the space RK a representation formula for a gen-

eral non-linear defuzzification functional H : RK ×
RK → R satisfying the conditions 1.– 3., can be given
as a linear composition (Kosiński & Wilczyńska-Sztyma,
2010) of arbitrary homogeneous of order one, continu-
ous function G of 2K − 1 variables, with the 1D identity
function, i.e.

H(u, v) = u1 +G(u2 − u1, u3 − u1, ..., (6)
uK − u1, v1 − u1, v2 − u1, ..., vK − u1) ,

with
u = (u1, ..., uK) , v = (v1, ..., vK) .

Due to the fact that RK is isomorphic to RK × RK

we conclude, from the Riesz theorem and the condition
1. that a general linear defuzzification functional on RK

has the representation

H(u, v) = u · b+ v · d , (7)
with arbitrary b , d ∈ RK , such that 1 · b+ 1 · d = 1 ,

where · denotes the inner (scalar) product in RK and 1 =
(1, 1, ..., 1) ∈ RK is the unit vector in RK , while the pair
(1, 1) represents a crisp one in RK . It means that such
functional is represented by the vector (b, d) ∈ R2K . No-
tice that functionals of the type φj = ej , j = 1, 2, ..., 2K,

where ej ∈ R2K has all zero component except for 1 on
the j-th position, form a basis ofRK

∗ - the space adjoint
toRK , they are called fundamental functionals .

Notice that each real-valued function ψ(z) of a real
variable z ∈ R may be transformed to a fuzzy-valued
function on RBV , and even simpler on RK . Here we
have used the representation for u = (u1, ..., uK) and
for v = (v1, ..., vK).

APPROXIMATION OF DEFUZZIFICATION
FUNCTIONALS

Ultimate goal of fuzzy logic is to provide foundations
for approximate reasoning. It uses imprecise proposi-
tions based on a fuzzy set theory developed by L.Zadeh,
in a way similar to the classical reasoning using precise
propositions based on the classical set theory. Defuzzifi-
cation is the main operation which appears in fuzzy con-
trollers and fuzzy inference systems where fuzzy rules
are present. It was extensively discussed by the authors
of (Van Leekwijck & Kerre, 1999). They have classified
the most widely used defuzzification techniques into dif-
ferent groups, and examined the prototypes of each group
with respect to the defuzzification criteria.

The problem arises when membership functions are
not continuous or do not exist at all. Here on particular
subsets of fuzzy sets, namely step ordered fuzzy numbers
approximation formula of a defuzzification functionals
will be searched based on some number of training data.
This is a quite new problem never investigated within
step ordered fuzzy numbers.

Problem formulation Let finite set of training data be
given in the form of N pairs: ordered fuzzy number and
value (of action) of a defuzzification functional on it, i.e.
TRE = {(A1, r1), (A2, r2), ..., (AN , rN )} . For a given
small ε find a continuous functional H : RK → R
which approximates the values of the set TRE within
the error smaller than ε, i.e. max

1≤p≤N
|H(Ap) − rp| ≤

ε , where (Ap, rp) ∈ TRE .

Problem may possess several solution methods, e.g.
a dedicated evolutionary algorithm (Kosiński, 2007;
Kosiński & Markowska-Kaczmar, 2007) or an artificial
neural network. We have use the representation (6) of
the searched defuzzification functional in which a homo-
geneous, of order one, function Ψ appears. It means that
values of this function are determined from its arguments
situated on the unit sphere S2K−1 in 2K − 1 D space.
Here an artificial neural network will be in use.

Training and test sets used in the further section (from
now denoted as TRE and TES, respectively) have the
following form. Set of N elements is composed of N
pairs of OFN and value of a defuzzification functional on
it, i.e.: {(A1, r1), (A2, r2), ..., (AN , rN )}. We are train-
ing an artificial neural network on this set to find the ap-
proximated form of the functional.



NEURAL NETWORK SIMULATIONS

In order to make approximation of linear and the non-
linear defuzzification functionals on step ordered fuzzy
numbers (SOFN) a package of artificial neural networks
(ANN) has been used. Since each SOFN is represented
by a vector of 2K number, each input to artificial neural
networks has 2K real-valued components. In our case it
was:

• MLP neural network with one hidden layer:

– 20 inputs

– 5 neurons in hidden layers

– 1 output neuron

• 500 iterations

• data set:

– training - TRE0, TRE4

– testing - TES0, TES4

Data generation

The procedure to generate TRE and TES sets was the
following.

1. Generate 60 random points on a 2K − 1 dimen-
sional hyper-sphere, where K = 10. Let ϕ =
(u2, u3, ..., uK−1, v1, v2, ..., vK) be one of these
points. All points fulfill the conditions un < un+1

and vm > vm+1. This ensures that the generated
fuzzy numbers have a trapezoidal shape. In the fur-
ther parts this assumption has been omitted.

2. Generate two sets of fuzzy numbers using the fol-
lowing methods of generating a value of u

• u = 0

• u is a random value from (−4, 4)

3. For each fuzzy number find the defuzzified value
and split the sets in ratio 2:1 to form:

• TRE0 and TES0 from fuzzy numbers with
u1 = 0

• TRE4 and TES4 from fuzzy numbers with
u1 ∈ (−4, 4)

The general strategy was to train the network with data
sets having 2K inputs and an output representing the dis-
crete values of fuzzy output values and the crisp output
calculated according to selected standard defuzzification
algorithms. For the linear defuzzification we have used:
MOM (middle of maximum), LOM (last of maximum)
and FOM (first of maximum).

Table 1 presents the final training MSE (for
RSME[%]) for all the used methods. Table 2 presents

Figure 1: Neural network structure

the final training gradient for all the used methods. The
error was calculated as

Error2 =
1
P

i=P∑
i=1

(H(Ai)− ri)2 .

We have used the Lavenberg-Marquardt adaptation algo-
rithm.

Training Set MOM LOM FOM
TRE0 1.196156E-11 1.17966E-11 3.2052E-11
TRE4 8.22773E-10 1.51997E-9 3.1339E-9

Table 1: Final training RMSE

Training Set MOM LOM FOM
TRE0 3.57907E-6 1.14851E-6 1.09344E-6
TRE4 0.001232 0.0001864 0.00311

Table 2: Final training gradient

The validation of our neural network is done by test-
ing the network with TES0 and TES4 data sets gener-
ated with all of the following defuzzification methods :
MOM(middle of maximum), LOM (last of maximum)
and FOM (first of maximum).

The validation of data TES0 and TES4 defuzzified
with MOM strategy converges successfully. The results
are presented at the figures: for TRE0 MSE [%] (Figure
2), gradient (Figure 3), for TRE4 RMSE (Figure 4), gra-
dient (Figure 5). Similar results have been obtained for
other defuzzification methods. On the X axis we have
we have number of iterations. In histograms the number
of sample appears.

Performed simulation proved that ANN can success-
fully represent the defuzzification strategies. Linear ap-
proximations of defuzzification functionals with MOM,
LOM and FOM were correct. The trained ANN approxi-
mations for all the methods were successfully tested with
TES0 and TES4 data sets. Table 3 presents the final vali-
dation RMSE for all the used methods.



Testing Set MOM LOM FOM
TES0 1.781138E-5 3.020065E-5 0.0001056
TES4 4.300E-9 2.02054E-6 0.0006829

Table 3: Final linear validating RMSE[%]

NONLINEAR DEFUZZIFICATION FUNCTIONAL
Similar method has been used for nonlinear defuzzifica-
tion functional, namely for the center of gravity (COG).
The validation of data TES0 and TES4 defuzzified with
COG strategy converges successfully.
Transfer functions

The first layer transfer function is given by the for-
mula:

f(x) =
2

1 + e−2x
− 1

The hidden layer transfer function is given by g(x) = x ,
and the output is given by

Y = g(X) = X =
5∑

j=1

Φjλj +B

where Φj = f(ϕj) = f(
∑20

i=1 ui ∗ωi,j +bj) . Hence we
have

Y =
5∑

j=1

f(
20∑

i=1

uiωi,j +bj))λj +B .

The weights and other parameters can be listed in the
form of tables. Due to the lack of the space it is not pre-
sented here.

CONCLUSION
The present paper brings an outline of the results of ap-
proximation of defuzzification functional of step ordered
fuzzy number that have been obtained with a help of the
tool of the computational intelligence, namely of artifi-
cial neural networks. We can conclude that the tool is
helpful. It is rather evident that further research in this
field should follow.
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Kosiński W., Prokopowicz P., Ślȩzak D., (2005). Calculus with
fuzzy numbers in: Proc. Intern.Workshop on Intelligent
Media Communicative Intelligence, Warszawa, September,
2004, L.Bolc, T. Nishida, Z. Michalewicz,(eds), LNCS, vol.
3490, pp. 21-28 Springer, Heidelberg, (2005).
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Kościeński K., (2010). Modul of step ordered fuzzy numbers
in control of material point motion, in Polish, PJWSTk,
Warszawa, 2010.
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Figure 2: MOM on TRE0:
MSE [%] and Gradient
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Figure 3: MOM on TES0:
MSE [%]
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Figure 4: MOM on TES4:
MSE [%] and Gradient
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Figure 5: MOM on TES4:
RMSE
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Figure 6: COG on TRE0:
RMSE and gradient
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Figure 7: COG on TES0:
RMSE
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Figure 8: COG on TES4:
RMSE and gradient
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Figure 9: COG on TES4:
RMSE


