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ABSTRACT 

The paper deals with continuous-time adaptive control 
of a tubular chemical reactor with the countercurrent 
cooling as a nonlinear single input – single output 
process. The nonlinear model of the reactor is 
approximated by an external linear model with 
parameters estimated via corresponding delta model. 
The control system structure with two feedback 
controllers is considered. The resulting controllers are 
derived using the polynomial approach. The method is 
tested on a mathematical model of the tubular chemical 
reactor. 
 
INTRODUCTION 

Tubular chemical reactor are units frequently used in 
chemical industry. From the system theory point of 
view, tubular chemical reactors belong to a class of 
nonlinear distributed parameter systems with 
mathematical models  described by sets of nonlinear 
partial differential equations (NPDRs). The methods of 
modelling and simulation of such processes are 
described e.g.  in (Luyben 1989), (Ingham et al. 1994) 
and (Dostál et al. 2008). 
It is well known that the control of chemical reactors, 
and, tubular reactors especially, often represents very 
complex problem. The control problems are due to the 
process nonlinearity, its distributed nature, and high 
sensitivity of the state and output variables to input 
changes. Evidently, the process with such properties is 
hardly controllable by conventional control methods, 
and, its effective control requires application some of 
advanced methods.  
One possible method to cope with this problem is using 
adaptive strategies based on an appropriate choice of a 
continuous-time external linear model (CT ELM) with 
recursively estimated parameters. These parameters are 
consequently used for parallel updating of controller‘s 
parameters. Some results obtained in this field were 
presented by authors of this paper e.g. in (Dostál et al. 
2004). 
 For the CT ELM parameter estimation, either the direct 
method or application of an external delta model with 

the same structure as the CT model can be used, e.g. 
(Middleton and Goodwin 1990) or (Mukhopadhyay et 
al. 1992). Although delta models belong into discrete 
models, they do not have such disadvantageous 
properties connected with shortening of a sampling 
period as discrete z-models. In addition, parameters of 
delta models can directly be estimated from sampled 
signals. Moreover, it can be easily proved that these 
parameters converge to parameters of CT models for a 
sufficiently small sampling period (compared to the 
dynamics of the controlled process), as shown in 
(Stericker and Sinha 1993).  
This paper deals with continuous-time adaptive control 
of a tubular chemical reactor with a countercurrent 
cooling. With respect to practical possibilities of a 
measurement and control, the mean reactant 
temperature temperature is chosen as the controlled 
output, and, the coolant flow rate as the control input. 
The nonlinear model of the reactor is approximated by a 
CT external linear model with a structure chosen on the 
basis of computed controlled output step responses. The  
control structure with two feedback controllers is 
considered, e.g. (Dostál et al. 2007). The resulting 
controllers are derived using the polynomial approach 
(Kučera 1993) and the pole assignment method, e.g. 
(Bobál et al. 2005). The method is tested on a 
mathematical model of a tubular chemical reactor. 
 
MODEL OF THE REACTOR 

An ideal plug-flow tubular chemical reactor with a 

simple exothermic consecutive reaction 
1 2k k

A B C→ →  in 
the liquid phase and with the countercurrent cooling is 
considered.  Heat losses and heat conduction along the 
metal walls of tubes are assumed to be negligible, but 
dynamics of the metal walls of tubes are significant. All 
densities, heat capacities, and heat transfer coefficients 
are assumed to be constant. Under above assumptions, 
the reactor model can be described by five PDRs in the 
form 
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with initial conditions  

( ,0) ( )s
A Ac z c z= , ( ,0) ( )s

B Bc z c z= , ( ,0) ( )s
r rT z T z= , 

( ,0) ( )s
w wT z T z= , ( ,0) ( )s

c cT z T z=  

and boundary conditions 

0(0, ) ( )A Ac t c t= (kmol/m3), 

0(0, ) ( )B Bc t c t= (kmol/m3), 0(0, ) ( )r rT t T t= (K),   

( , ) ( )c c LT L t T t= (K). 

Here, t is the time, z is the axial space variable, c are 
concentrations, T are temperatures, v are fluid velocities, 
d are diameters, ρ are densities, cp are specific heat 
capacities, U are heat transfer coefficients, n1 is the 
number of tubes and L is the length of tubes. The 
subscript (⋅)r stands for the reactant mixture, (⋅)w for the 
metal walls of tubes, (⋅)c for the coolant, and the 
superscript (⋅)s for steady-state values. 
The reaction rates and heat of reactions are nonlinear 
functions expressed as 
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,   j = 1, 2 (6) 

 1 1 2 2( ) ( )r r A r BQ H k c H k c= −Δ + −Δ  (7) 

where k0 are pre-exponential factors, E are activation 
energies, ( )rH−Δ are in the negative considered 
reaction entalpies, and R is the gas constant. 
The fluid velocities are calculated via the reactant and 
coolant flow rates as 
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The parameter values with correspondent units used for 
simulations are given in Table 1. 
 

Table 1. Used parameter values 
 
L = 8 m n1 = 1200 
d1 = 0.02 m d2 = 0.024 m 

d3 = 1 m 
ρr = 985 kg/m3 cpr = 4.05 kJ/kg K 
ρw = 7800 kg/m3 cpw = 0.71 kJ/kg K 
ρc = 998 kg/m3 cpc = 4.18 kJ/kg K 
U1 = 2.8 kJ/m2s K U2 = 2.56 kJ/m2s K 
k10 = 5.61⋅1016 1/s k20 = 1.128⋅1018 1/s 
E1/R = 13477 K E2/R = 15290 K 
(-ΔHr1) = 5.8⋅104 kJ/kmol (-ΔHr2) = 1.8⋅104 kJ/kmol 

From the system engineering point of view, 
out( , )A Ac L t c= , out( , )B Bc L t c= , out( , )r rT L t T=  and 

out(0, )c cT t T=  are the output variables, and, ( )rq t , 

( )cq t , 0 ( )Ac t , 0 ( )rT t and ( )c LT t  are the input variables. 
Among   them,   for  the  control  purposes,  mostly  the 
coolant flow rate  can be taken into account  as the 
control variable, whereas other inputs entering into the 
process can be accepted as disturbances. In this paper, 
the mean reactant temperature given by 
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is considered as the controlled output. 
 
COMPUTATION MODELS 

For computation both steady-state and dynamic 
characteristics, the finite differences method is 
employed. The procedure is based on substitution of the 
space interval  0,z L∈< >  by a set of discrete node 
points { }iz for i = 1, … , n , and, subsequently, by 
approximation of derivatives with respect to the space 
variable in each node point by finite differences.  
 
Dynamic Model 

Using the finite differences method,  nonlinear PDEs (1) 
– (5) are approximated by a set of  nonlinear ODEs in 
the form 
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for 1, ... ,i n=  and 1m n i= − + , and, with initial 
conditions  

( ,0) ( )s
A Ac i c i= , ( ,0) ( )s

B Bc i c i= , ( ,0) ( )s
r rT i T i= , 

( ,0) ( )s
w wT i T i=  and ( ,0) ( )s

c cT i T i=  for 1, ... ,i n= .  

The boundary conditions enter into Eqs. (10) – (12) and 
(14) for i = 1 . 
Now, nonlinear functions in Eqs. (10) – (14) take the 
discrete form 
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for i = 1, … , n. 
The parameters b in Eqs. (10) – (14) are calculated from 
formulas 
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Here, the formula for computation of Tm takes the 
discrete form 
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Steady-state Model 

Computation of the steady-state characteristics is 
necessary not only for a steady-state analysis but the 
steady state values ( )sy i  also constitute initial 
conditions in ODRs (10) – (14) (here, y presents some 
of the variable in the set (10) – (14)). 
The steady-state model can simply be derived equating 
the time derivatives in (10) – (14) to zero.  
 
Steady-state and Dynamic Characteristics 

Typical reactant temperature profiles along the reactor 
tubes computed for 0 2.85s

Ac = , 0 0s
Bc = , 0 323s

rT = ,  

0 293s
cT =  and 0.15s

rq =  for various  coolant flow rates 
are shown in Fig. 1. A presence of a maximum on the 
reactant temperature profiles is a common property of 
many tubular reactors with exothermic reactions. 
A dependence of the reactant mean temperature on the 
coolant flow rate is shown in Fig. 2. The form of the 
curve documents a nonlinear relation between   
supposed controlled output and the coolant flow rate 
which is considered as the control input.  
Dynamic charakteristics were computed in the 
neighbourhood of the chosen operating point 

30.27 m / ss
cq = , 334.44 Ks

mT = . For the dynamic 
analysis and subsequent control purposes, the controlled 
output is defined as a deviation from the steady value 

 ( ) ( ) ( ) s
m m my t T t T t T= Δ = − . (19) 

 Such form is frequently used in the control. The 
deviation of the coolant flow rate is denoted as  
 ( ) s

c c cq q t qΔ = − .  (20)  

The responses of the output to the coolant flow rate step 

changes are shown in Fig. 3.  
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Fig. 1. Reactant temperature profiles for various 

              coolant flow rates. 
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Fig. 2. Dependence of the reactant mean 

                    temperature on the coolant flow rates. 
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Fig. 3. Reactant mean temperature step responses. 

 
The above shown responses document nonlinear 
behaviour of the reactant mean temperature.  
 
CT AND DELTA ELM 

For the control purposes, the control input variable are 
considered in the form 
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This expression enables to obtain control input and 
controlled output variables of approximately the same 
magnitude. 
A choice of the CT ELM structure does not stem from 
known structure of the model (1) – (5) but from a 
character of simulated step responses. It is well known 
that in adaptive control a controlled process of a higher 



order can be approximated by a linear model of a lower 
order with variable parameters. Taking into account 
profiles of curves in Fig. 3 with zero derivatives in t = 0, 
the second order CT ELM has been chosen in the form 
of the second order linear differential equation 
 1 0 0( ) ( ) ( ) ( )y t a y t a y t b u t+ + =  (22) 

and, in the complex domain, as the transfer function 

 0
2

1 0
( )

b
G s

s a s a
=

+ +
. (23) 

Establishing the δ operator 

 
0

1q
T

δ −=  (24) 

where q is the forward shift operator and T0 is the 
sampling period, the delta ELM corresponding to (22) 
takes the form 

 2
1 0 0( ) ( ) ( ) ( )y t a y t a y t b u tδ δ′ ′ ′ ′ ′ ′ ′+ + =  (25) 

where t′ is the discrete time. When the sampling period 
is shortened, the delta operator approaches the 
derivative operator, and, the estimated parameters ,a b′ ′  
reach the parameters a, b of the CT model (22). 
 
DELTA MODEL PARAMETER ESTIMATION 

Substituting 2t k′ = − , equation (25) can be rewriten to 
the form 

2
1 0 0( 2) ( 2) ( 2) ( 2)y k a y k a y k b u kδ δ′ ′ ′− + − + − = − . (26) 

Establishing the regression vector 

 ( )( 1) ( 2) ( 2) ( 2)T k y k y k u kδ δ− = − − − − −Φ  (27) 

where   

 
0

( 1) ( 2)( 2) y k y ky k
T

δ − − −− =  (28)  

the vector of delta model parameters 

 ( )1 0 0( )T k a a bδ ′ ′ ′=Θ  (29) 

is recursively estimated using least squares method with 
exponential and directional forgetting (Bobál et al. 
2005) from the ARX model  

 2 ( 2) ( ) ( 1) ( )Ty k k k kδ δδ ε− = − +Θ Φ  (30) 

where  

 2
2

0

( ) 2 ( 1) ( 2)( 2) y k y k y ky k
T

δ − − + −− =  (31)  

CONTROLLER DESIGN 

The control system with two feedback controllers is 
depicted in Fig. 4.  
In the  scheme, w is the reference signal, v  denotes the 
load disturbance, e the tracking error, u0 output of 
controllers,  u   the   control  input  and  y the  controlled 
output. The  transfer  function  G(s) of the CT ELM is 
given by (23).  
The reference w and the disturbance v are considered as  

- -

v 

ew u u0 y 
 R CT ELM

Q 

 
 

Fig. 4. Control system with two feedback controllers 
 
the step functions with transforms  

 0( )
w

W s
s

= ,  0( )
v

V s
s

= . (32) 

The transfer functions of both controllers are in forms 

 ( ) ( )( ) , ( )
( ) ( )

r s q sR s Q s
p s p s

= =  (33) 

where q , r and p  are coprime polynomials in s 
fulfilling the condition of properness  deg degr p≤   
and  deg degq p≤  .  
The controller design described in this section appears 
from the polynomial approach. The general 
requirements on the control system are formulated as its 
internal properness and stability, asymptotic tracking of 
the reference and load disturbance attenuation. The 
procedure to derive admissible controllers can briefly be 
performed as follows: 
Let the polynomial t has the form 
 )(~)()( sqsrst += . (34) 

Then, the control system stability is ensured when 
polynomials p~  and t are given by a solution of the 
polynomial equation 
 )()()()(~)( sdstsbspsa =+  (35) 

with a stable polynomial d on the right side. Evidently, 
the roots of d determine the closed-loop poles. 
Taking into account the transform of the tracking error 

 [ ]1( ) ( ) ( ) ( )E s a p bq W s b pV s
d

= + −  (36) 

and both transforms (32), the asymptotic tracking and 
load disturbance attenuation are provided by 
polynomials p~ and q~  having the form 

 ( ) ( )p s s p s= ,  ( ) ( )q s s q s= . (37) 

Subsequently, the transfer functions (33) take forms 

 ( )( )
( )

q sQ s
p s

= ,  ( )( )
( )

r sR s
s p s

=  (38) 

and, a stable polynomial p(s) in their denominators 
ensures the stability of controllers.  
Now, the polynomial t can be rewritten to the form 
 ( ) ( ) ( )t s r s s q s= + . (39) 

Taking into account the solvability of (35) and the 



condition of internal properness, the degrees of 
polynomials in (35) and (38) can be easily derived as 
 deg deg degt r a= = , deg deg 1q a= − ,  
 deg deg 1p a≥ − ,  deg 2degd a≥ .  (40) 

Denoting deg a = n, polynomials t, r and q have  forms 
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and, relations among their coefficients are 
 0 0r t= ,  i i ir q t+ =  for 1, ... ,i n= . (42) 

Since by a solution of the polynomial equation (35) 
provides calculation of coefficients ti, unknown 
coefficients ri and qi can be obtained by a choice of 
selectable coefficients 0,1iβ ∈  such that 

 i i ir tβ= ,  (1 )i i iq tβ= −  for 1, ... ,i n= . (43) 

The coefficients iβ  distribute a weight between 
numerators of transfer functions Q and R.  
Remark: If 1iβ = for all i, the control system in Fig. 4 
reduces to the 1DOF control configuration (Q = 0). If 

0iβ = for all i, and, both reference and load disturbance 
are step functions, the control system corresponds to the 
2DOF control configuration. 
For the second order model (23) with deg 2a = , the 
controller's transfer functions take specific forms 
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where 
 0 0r t= , 1 1 1r tβ= , 2 2 2r tβ= ,  
 1 1 1(1 )q tβ= − , 2 2 2(1 )q tβ= − . (45) 

The controller parameters then result from a solution of 
the polynomial equation (35) and depend upon 
coefficients of the polynomial d. The next problem here 
is to find a stable polynomial d that enables to obtain 
acceptable stabilizing controllers.  
In this paper, the polynomial d with roots determining 
the closed-loop poles is chosen as 

 2( ) ( ) ( )d s n s s α= +  (46) 

where n is a stable polynomial obtained by spectral 
factorization 

 ( ) ( ) ( ) ( )a s a s n s n s∗ ∗=  (47) 

and α is the selectable parameter. 
Note that a choice of d in the form (46) provides the 
control of a good quality for aperiodic controlled 
processes.  
The coefficients n then are expressed as  

 2
0 0n a= ,  2

1 1 0 02 2n a n a= + −  (48) 

and, the controller parameters p0 and t can be obtained 

from solution of the matrix equation 
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where 
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Now, it follows from the above introduced procedure 
that tuning of controllers can be performed by a suitable 
choice of selectable parameters β and α. 
The controller parameters r and q can then be obtained 
from (45). 
The adaptive control system is shown in Fig. 5. 
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Fig. 5. Adaptive control scheme. 
 
CONTROL SIMULATION 

Also the control simulations were performed in a 
neighbourhood of the operating point 30.27 m / ss

cq = ,  

334.44 Ks
mT = ,. For the start (the adaptation phase), the 

P controller with a small gain was used in all 
simulations. 
The effect of the pole α on the controlled output 
responses is transparent from Fig. 6. Here, two  values 
of α were selected. The control simulation shows 
sensitivity of the controlled output to α. The higher 
values of this parameter speed the control, however, 
they provide greater overshoots (undershoots). Other 
here not shown simulations demonstrated that a careless 
selection of the parameter α can lead to controlled 
output responses of a poor quality, to oscillations or 
even to the control instability. Moreover, an increasing 
α leads to higher values and changes of the control 
input as shown in Fig. 7. This fact can be important in 
control of real technological processes. 
The controlled output y response for two values β2 is 
shown in Fig. 8. It can be seen that an effect of this 
parameterer is insignificant.  
The controlled output responses documenting an effect 
of the parameter β1 are in Fig. 9. There, a higher value 
of β1 results in greater overshoots (undershoots) of the 
controlled output. 
Corresponding control input responses can be seen in 
Fig. 10. It can be seen that an increasing β1 leads to 
greater values of inputs. 
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Fig. 6. Controlled output y1 responses: effect of α 

             (β1 = 1, β2 = 0.5). 
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Fig. 7. Coolant flow rate responses in control of 

               reactant mean temperature – effect of α 
                 (β1 = 1, β2 = 0.5). 
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Fig. 8. Controlled output responses: effect of β2 

               (α = 0.1, β1 = 1). 
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Fig. 9. Controlled output responses: effect of β1 

               (α = 0.15, β2 = 0). 
 
Of interest, the evolution of estimated CT ELM 
parameters in control of the reactant mean temperature 
is shown in Fig. 11. 
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Fig. 10. Coolant flow rate responses in control of 

              reactant mean temperature – effect of β1 
              (α = 0.15, β2 = 0). 
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Fig. 11. CT ELM parameter evolution  (α = 0.15, 

              β1 = 1,  β2 = 0). 
  
A presence of an integrating part in the controller 
enables rejection of various step disturbances entering 
into the process. As an example, step disturbances 
attenuation for the output y is presented. Step 
disturbances 3

0 0.15 kmol / mAcΔ = , 30.03 m / srqΔ = −  
and 0 2KrTΔ =  were  injected into the nonlinear model 
of the reactor in times 220svt = , 440svt =  and 

640svt = . The controller parameters were estimated 
only in the first (tracking) interval t < 200 s. The 
authors' experiences proved that an utilization of 
recursive identification using the delta model after 
reaching of a constant reference and in presence of step 
disturbances decreases the control quality. From this 
reason, during interval t ≥ 200 s, fixed parameters were 
used. The controlled output responses y are shown in 
Fig. 12. 
To illustrate an effect of an additive random  
disturbance, the result of the controlled output y 
simulation in a presence of the random signal 

0( ) ( ) s
A Av t c t c= −  is shown in Fig. 13.  

 
CONCLUSIONS 

In this paper, one approach to continuous-time adaptive 
control of the mean reactant temperatures in a tubular 
chemical reactor  was proposed. The control strategy is 
based on the preliminary steady-state and dynamic 
analysis of the process and on the assumption of the 
temperature measurement along the reactor. The 
proposed algorithm employs an alternative continuous- 
time external linear model with parameters obtained 
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Fig. 12. Controlled output in presence of  step 

                disturbances (α = 0.15, β1 = 0.5, β2 = 0). 
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Fig. 13. Controlled output in the presence of 

                 random disturbance in 0Ac  (α = 0.15). 
 
through recursive parameter estimation of a 
corresponding delta model. The control system structure 
with two feedback controllers is considered. Resulting 
continuous-time controllers are derived using the 
polynomial approach and given by a solution of the 
polynomial equation. Tuning of their parameters is 
possible via closed-loop pole assignment. The presented 
method has been tested by computer simulation on the 
nonlinear model of the tubular chemical reactor with a 
consecutive exothermic reaction. The simulation results 
demonstrate an applicability of the presented control 
strategy.  
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