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ABSTRACT 

In technical practice often occur higher order processes 
when a design of an optimal controller leads to 
complicated control algorithms. One of possibilities of 
control of such processes is their approximation by 
lower-order model with time-delay (dead time). The 
contribution is focused on a choice of a suitable 
experimental identification method and a suitable 
excitation input signals for an estimation of process 
model parameters with time-delay. The further 
contribution is design of an algorithm for digital 
control of high-order processes which are 
approximated by second-order model of the process 
with time-delay. The designed control algorithms are 
based on a predictive control strategy. The controller’s 
algorithm uses the digital modification of the Smith 
Predictor (SP). The program system 
MATLAB/SIMULINK was used for simulation 
verification of these algorithms.  
 
INTRODUCTION 

Some technological processes in industry are 
characterized by high-order dynamic behaviour or 
large time constants and time-delays. For control 
engineering, such processes can often be approximated 
by the FOTD (first-order-time-delay) model. Time-
delay in a process increases the difficulty of controlling 
it. However using the approximation of  higher-order 
process by lower-order model with time-delay  
provides  simplification of the control algorithms.      
Let us consider a continuous-time dynamical linear 
SISO (single input ( )u t  – single output ( )y t ) system 
with time-delay dT . The transfer function of a pure 

transportation lag is dT se−  where s is a complex 
variable. Overall transfer function with time-delay is in 
the form 

 ( ) ( ) dT s
dG s G s e−=  (1) 

where ( )G s is the transfer function without time-delay.  
Processes with time-delay are difficult to control using 
standard feedback controllers. When a high 
performance of the control process is desired or the 
relative time-delay is very large, a predictive control 
strategy must be used. The predictive control strategy 
includes a model of the process in the structure of the 
controller. The first time-delay compensation algorithm 
was proposed by (Smith 1957). This control algorithm 
known as the Smith Predictor (SP) contained a 
dynamic model of the time-delay process and it can be 
considered as the first model predictive algorithm. 
Historically first modifications of time-delay 
algorithms were proposed for continuous-time 
(analogue) controllers. On the score of implementation 
problems, only the discrete versions are used in 
practice in this time. 
The digital pole assignment SP was designed using a 
polynomial approach in (Bobál et al. 2011a). The 
design of this controller was extended by a method for 
a choice of a suitable pole assignment of the 
characteristic polynomial. The designed digital SP  was 
verified by simulation control of the fifth-order system 
which was identified by a second-order model with 
time-delay.    
  
IDENTIFICATION OF TIME-DELAY 
PROCESSES 

In this paper, the time-delay is obtained separately 
from an off-line identification using the least squares 
method (LSM). The measured process output ( )y k is 
generally influenced by noise. These nonmeasurable 
disturbances cause errors e in the determination of 
model parameters and therefore real output vector is in 
the form  

 = +y FΘ e  (2)       

It is possible to obtain the LSM expression for 
calculation of the vector of the parameter estimates  

 ( ) 1ˆ −
= T TΘ F F F y  (3) 

The matrix F has dimension (N-n-d, 2n), the vector y 
(N-n-d) and the vector of parameter model estimates 

Proceedings 26th European Conference on Modelling and
Simulation ©ECMS Klaus G. Troitzsch, Michael Möhring,
Ulf Lotzmann (Editors)
ISBN: 978-0-9564944-4-3 / ISBN: 978-0-9564944-5-0 (CD)



 

 

Θ̂ (2n). N is the number of samples of measured input 
and output data, n is the model order. 
Equation (3) serves for calculation of the vector of the 
parameter estimates Θ̂  using N samples of measured 
input-output data. The individual vectors and matrices 
in Equations (2) and (3) have the form 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1
1 2

1 2

1 1
1 2

1 2

y n d y n d y d
y n d y n d y d

y N y N y N n

u n u n u
u n u n u

u N d u N d u N d n

⎡ − + − + − − +
⎢− + + − + − +⎢= ⎢
⎢
− − − − − −⎢⎣

− ⎤
⎥+ ⎥
⎥
⎥

− − − − − − ⎥⎦

F

   (4) 

 ( ) ( ) ( )1 2T y n d y n d y N= + + + +⎡ ⎤⎣ ⎦y  (5) 

 ( ) ( ) ( )1 2T ˆ ˆ ˆe n d e n d e N= + + + +⎡ ⎤⎣ ⎦e  (6) 

 1 2 1 2
T

n n
ˆ ˆ ˆˆ ˆ ˆ ˆa a a b b b⎡ ⎤= ⎣ ⎦Θ  (7) 

Most of higher-order industrial processes can be 
approximated by a model of reduced order with pure 
time-delay. Let us consider the following second order 
linear model with a time-delay 

 ( ) ( )
( )

1 1 2
1 1 2

1 21
1 21

d d
d

B z b z b z
G z z z

a z a zA z

− − −
− − −

− −−

+
= =

+ +
 (8) 

The term z-d represents the pure discrete time-delay. 
The time-delay is equal to 0dT  where 0T is the 
sampling period. 
Our experience proved that quality of system 
identification when the higher-order process is 
identified by the lower-order model is very dependent 
on the choice of an input excitation signal ( )u k . The 
best results were achieved using a Random Gaussian 
Signal (RGS). The MATLAB code  

 u=idinput(N,'rgs',[0 B],[Umin, Umax]) 

generates an RGS of the length N, where [0 B] 
determines the frequency passband. Umin, Umax 
defines the minimum and maximum values of u. The 
signal level is such that Umin is the mean value of the 
signal, minus one standard deviation, while Umax is 
the mean value plus one standard deviation. Gaussian 
white noise with zero mean and variance one is thus 
obtained for levels [-1, 1], which are also the default 
values.                      

Consider that model (8) is the deterministic part of the 
stochastic process described by the ARX (regression) 
model 

 
( ) ( ) ( )

( ) ( ) ( )
1 2

1 2

1 2

1 2 s

y k a y k a y k

b y k d b y k d e k

= − − − − +

+ − − + − − +
 (9) 

where ( )se k is the random nonmeasurable component. 
The vector of parameter model estimates is computed 
by solving equation (3)  

 ( ) 1 2 1 2
ˆ ˆˆ ˆ ˆT k a a b b⎡ ⎤= ⎣ ⎦Θ  (10) 

and is used for computation of the prediction output.  

 
( ) ( ) ( )

( ) ( )
1 2

1 2

1 2

1 2

ˆ ˆ ˆy k a y k a y k
ˆ ˆb u k d b u k d

= − − − − +

− − + − −
 (11) 

The quality of identification can be considered 
according to error, i.e. the deviation 

 ( ) ( ) ( )ˆ ˆe k y k y k= −  (12) 

In this paper, the error was used for suitable choice of 
the time-delay 0dT . The LSM algorithm (3) – (7) is 
computed for several time-delays 0dT and the suitable 
time-delay is chosen according to quality of 
identification based on the prediction error (12). 
 
Stable process 

Consider the following fifth order linear system 

 
( )5 5 4 3 2

2 2( )
5 10 10 5 11

AG s
s s s s ss

= =
+ + + + ++

 (13) 

System (13) was identified by discrete model (11) 
using off-line LSM (3) – (6) for different time-delay 

0 0; 0 5 sdT T .= . A criterion of the identification 
quality is based on sum of squares of error  

 ( ) ( )2
2

ˆ
1

ˆ
N

e
k

J d e k
=

=∑  (14) 

This criterion represents accuracy of process 
identification. From Fig. 1, it is obvious that value of 
the criterion (14) decreases when the number of time-
delay steps d increases in the interval [ ]0,4d ∈ (it is 
obvious, that criterion (14) has minimum for some 
higher d).  This is caused by the fact that the increase 
of the number of time-delay steps in the above-
mentioned interval improves estimation of the static 
gain 

 1 2

1 2

ˆ ˆ
ˆ

ˆ ˆ1g
b b

K
a a
+

=
+ +

 (15) 

The difference between estimates of the static gain ˆ
gK  

of the discrete model (8) and the continuous-time 



 

 

model (13) plays important role for the quality of 
identification because the identification time was 
relatively long    (300 s) with regard to the response 
time (about 15 s).       
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Figure 1: Criterion of Quality Identification for 

[ ]0,4d ∈  
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Figure 2: Comparison of step responses yc, yd for        

d = 0 (process (13)) 
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Figure 3: Comparison of step responses yc, yd for        

d = 2 (process (13)) 
 

 ( )
1 2

1
1 2

0 0424 0 0296
1 1 6836 0 7199

d
A

. z . zG z z
. z . z

− −
− −

− −

+=
− +

 (16) 

for sampling period 0 0 5 sT .=  (16) with different d are 
shown in Figs. 2 – 4, where yc is the step response of 
the model (13) and yd are step responses of  the 
discrete models (16) for individual numbers of time-
delay steps d.  
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Figure 4: Comparison of step responses yc, yd for        

d = 3 (process (13)) 
 
From Figs. 2 – 4 it results that a suitable model (16) for 
the design of the predictive controller is the model with   
d = 2. Its structure is simple and it relatively well 
approximates the dynamic behaviour of the 
continuous-time model (13). 
 
Non-minimum phase process 

Consider the following fifth-order linear system with 
non-minimum phase  

 
( )

5 4 3 2

2 1 5
( )

5 10 10 5 1B

s
G s

s s s s s
−

=
+ + + + +

 (17) 
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Figure 5: Comparison of step responses yc, yd for        
d = 2 (process (17)) 



 

 

Process (17) was identified by model (8) with a time-
delay d = 2 and sampling period 0 0 5 sT .= . The 

discrete model is in the following form 

 ( )
1 2

1 2
1 2

0.7723 0.8514
1 1 6521 0 6920B

z zG z z
. z . z

− −
− −

− −

− +=
− +

 (18) 

The comparison of the step responses of the 
continuous-time model (17) and the discrete model 
(18) is shown in Fig. 5. 
 
DIGITAL SMITH PREDICTOR 

Although time-delay compensators appeared in the mid 
1950s, their implementation with analogue technique 
was very difficult and these were not used in industry. 
Since 1980s digital time-delay compensators can be 
implemented. The digital time-delay compensators are 
presented e.g. in (Palmor and Halevi 1990, Normey-
Rico and Camacho 1998). The discrete versions of the 
SP and its modifications are suitable for time-delay 
compensation in industrial practice.  
 
Structure of Digital Smith Predictor 

 
Figure 6: Block Diagram of a Digital Smith Predictor 

 
The block diagram of a digital SP (see Hang et al.  
1989, Hang et al.  1993)  is shown in Fig. 6. The 
function of the digital version is similar to the classical 
analogue version. The block ( )1

mG z− represents 
process dynamics without the time-delay and is used to 
compute an open-loop prediction. The difference 
between the output of the process y  and the model 
including time-delay ŷ  is the predicted error pê  as 
shown is in Fig. 1 where u , w and e  are the control 
signal, the reference signal and the error. If there are no 
modelling errors or disturbances, the error between the 
current process output and the model output will be 
null and the predictor output signal pŷ will be the time-
delay-free output of the process. Under these 
conditions, the controller ( )cG s can be tuned, at least 
in the nominal case, as if the process had no time-
delay. The primary (main) controller ( )1

cG z−  can be 
designed by the different approaches (for example 
digital PID control or methods based on algebraic 
approach). The outward feedback-loop through the 

block ( )1
dG z−  in Fig. 1 is used to compensate for load 

disturbances and modelling errors. The dash arrows 
indicate the tuned parts of the Smith Predictor.  
 
Digital PID Smith Predictor 

Hang et al. (1989, 1993) used the Dahlin PID 
algorithm (Dahlin 1968) for the design of the main 
controller ( )1

cG z− . This algorithm is based on the 
desired close-loop transfer function in the form 

 ( )1
1

1
1e

eG z
z

α−
−

−

−=
−

;  0

m

T
T

α =  (19) 

where mT  is a desired time constant of the first order 
closed-loop response. It is not practical to set mT  to be 
small since it will demand a large control signal ( )u k  
which may easily exceed the saturation limit of the 
actuator. Then the individual parts of the controller are 
described by the transfer functions 

  ( ) ( )
( )

( )
( )

1
1

1

1

11c

ˆe A z
G z

B̂z

α− −
−

−

−
=

−
; ( ) ( )

( )
1

1
1

1
m

ˆz B
G z

Â z

−
−

−
=   

 ( ) ( )
( )

1
1

1 1

d

d

ˆz B z
G z ˆz B

− −
−

−=  (20) 

where ( ) ( )1
1 21

1
z

ˆ ˆˆB B z b b−

=
= = + .  

Since ( )1
mG z− is the second order transfer function, 

the main controller ( )1
cG z− becomes a digital PID 

controller having the following form: 

 ( ) ( )
( )

1 2
1 0 1 2

11c

U z q q z q z
G z

E z z

− −
−

−

+ +
= =

−
 (21) 

where 0 1 1 2 2ˆ ˆq , q a , q aγ γ γ= = =  using by the 

substitution ( ) ( )1 1ˆe / Bαγ −= − . The PID controller 
output is given by  

( ) ( ) ( ) ( ) ( )0 1 21 2 1u k q e k q e k q e k u k= + − + − + −  (22) 

Some simulation experiments using this digital SP are 
introduced in (Bobál et al. 2011).  
 
Digital Pole Assignment Smith Predictor 

The digital pole assignment SP was designed using a 
polynomial approach in (Bobál et al. 2011).    
Polynomial control theory is based on the apparatus 
and methods of linear algebra (see e.g. Kučera 1991, 
Kučera 1993).  The design of the controller algorithm 
is based on the general block scheme of a closed-loop 
with two degrees of freedom (2DOF) according to    
Fig. 7. 
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Figure 7: Block Diagram of a Closed Loop 2DOF 
Control System 

 
The controlled process is given by the transfer function 
in the form  

 
1

1
1

( ) ( )( )
( ) ( )p

Y z B zG z
U z A z

−
−

−= =  (23) 

where A and B are the second order polynomials. The 
controller contains the feedback part Gq and the 
feedforward part Gr. Then the digital controllers can be 
expressed in the form of discrete transfer functions 

 ( ) ( )
( )

1
1 0

11
11r

R z r
G z

p zP z

−
−

−−
= =

+
 (24) 

 ( ) ( )
( ) ( )( )

1 1 2
1 0 1 2

1 1 1
11 1q

Q z q q z q z
G z

P z p z z

− − −
−

− − −

+ +
= =

+ −
 (25) 

According to the scheme presented in Fig. 7 and 
Equations (21) – (23) it is possible to derive the 
characteristic polynomial  

 1 1 1 1 1( ) ( ) ( ) ( ) ( )A z P z B z Q z D z− − − − −+ =    (26) 

where 

 ( )1 1 2 3 4
1 2 3 41D z d z d z d z d z− − − − −= + + + +  (27) 

The feedback part of the controller is given by solution 
of the polynomial Diophantine equation (26). The 
procedure leading to determination of controller 
parameters in polynomials Q, R and P (24) and (25) is 
in (Bobál et al. 2005). The asymptotic tracking is 
provided by the feedforward part of the controller 
given by solution of the polynomial Diophantine 
equation 

 ( )1 1 1 1 1( ) ( ) ( ) ( )wS z D z B z R z D z− − − − −+ =  (28) 

For a step-changing reference signal value 
( )1 11wD z z− −= −  holds and S is an auxiliary 

polynomial which does not enter into controller design.  
For a step-changing reference signal value it is possible 
to solve Equation (27) by substituting z = 1 

 ( )1 1 2 3 4
0

1 2

1(1)
(1)

d d d dDR z r
B b b

− + + + +
= = =

+
 (29) 

The 2DOF controller output is given by 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
0 0 1 2

1 1

1 2

1 1 2

u k r w k q y k q y k q y k

p u k p u k

= − − − − − +

+ + − + −
 (30) 

The control quality is very dependent on the pole 
assignment of the characteristic polynomial 

 ( ) 4 3 2
1 2 3 4D z z d z d z d z d= + + + +  (31) 

inside the unit circle. The simple method for choice of 
individual poles is based on the following approach. 
Consider 1DOF control loop where controlled process 
(23) with second-order polynomials A and B is 
controlled using PID controller which is given by 
transfer function  

 ( ) ( )
( )

( )
( )

1 1 2
0 1 21

1 1

1

1q

Q z q a z a z
G z

P z z

− − −
−

− −

+ +
= =

−
 (32)             

Substitution of polynomials A, B, Q, P into Equation 
(26) yields the following relation 

  
( )

( )

1 1 1 1
0

1 1 1 1
0

ˆ ˆˆ( ) 1 ( ) ( )

ˆ ˆ( ) 1 ( ) ( )

A z z B z q A z

A z z B z q D z

− − − −

− − − −

− + =

⎡ ⎤= − + =⎣ ⎦
 (33) 

where 

 ( ) ( )1 1 2 1 1 2
1 2 1 21 ; ˆ ˆˆ ˆˆ ˆA z a z a z B z b z b z− − − − − −= + + = +  (34) 

are polynomials with model parameter estimates.  
From Equation (33) it is obvious that polynomial 
( ) 2

1 2A z z a z a= + + is included in polynomial D(z) 
(31). Its parameter estimates are known from process 
identification.  The second two poles are dependent on 
the parameter (see expressions (19, 20)) 

 
( )

0
1 2

1 e
q ˆ ˆb b

α−−
=

+
;  0

m

T
T

α =  (35) 

 which is function of time constant mT (free setting 
parameter of the controller). By increasing mT ,   the 
control response is slower (respective without 
overshoot).           
 
SIMULATION VERIFICATION DIGITAL SP 
CONTROLLER ALGORITHM 

As simulation examples of digital SP controller 
algorithm, the processes (13) and (17) were chosen. By 
the identification procedure, the discrete models (16) 
and (18) for sampling period 0 0 5 sT .=  were obtained.  
A simulation verification of the designed controller 
was performed in MATLAB/SIMULINK environment.  
A typical used control scheme is depicted in Fig. 8. 
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Control of stable process (13) 

1. Simulation conditions: 
Time constant 1 5mT .= , characteristic polynomial  

( ) 4 3 2
1 2.5167 2.2390 0.7959 0.0839AD z z z z z= − + − +   

Simulation control results of the model ( )AG s with 
1 5mT .=  are shown in Figs. 9 and 10.  

 
 

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

Time [s]

w
, y

 

 

w
y

 
 

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Time [s]

u

 

 

u

 
Figure: 9 Control of the Model ( ); 1.5A mG s T =  
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Figure: 10 Pole Map of the Polynomial 1AD  

 
2. Simulation conditions: 
Time constant 3mT = , characteristic polynomial  

( ) 4 3 2
2 2.5932 2.3144 0.7611 0.0454AD z z z z z= − + − +  

Simulation control results of the model ( )AG s with 
3mT =  are shown in Figs. 11 and 12.     
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Figure: 11 Pole Map of the Polynomial 2AD  

Figure 8: SIMULINK Control Scheme 
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Figure: 12 Control of the Model ( ); 3A mG s T =  

 
Control of non-minimum phase process (17)  

Simulation conditions: 
Time constant 7mT = , characteristic polynomial  

( ) 4 3 2-3.3252 4.1981 2.3836 0.5135BD z z z z z= + − +  
 
Simulation control results of the model ( )BG s  with 

7mT =  are shown in Figs. 13 and 14. 
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Figure: 13 Pole Map of the Polynomial BD  
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Figure: 14 Control of the Model ( ); 3B mG s T =  

For small the time constant mT , the control process 

could be unstable.  
  
CONCLUSION 

Digital Smith Predictor algorithm for control of the 
higher-order processes was designed. The higher-order 
process was identified by the second-order model with 
time delay. For the process identification of the time-
delay was used the off-line least squares method, as 
excitation signal was generated Random Gaussian 
Signal using MATLAB code idinput( ). The controller 
algorithm is based on polynomial design (pole 
assignment approach). The method for a choice of 
suitable poles of the characteristic polynomial was 
designed. The polynomial controller was derived 
purposely by analytical way (without utilization of 
numerical methods) to obtain algorithm with easy 
implementability in industrial practice. The control of 
two modifications of the firth-order processes (stable and 
non-minimum phase) were verified by simulation. 
Results of simulation verification in both cases 
demonstrated very good of control quality. 
Unfortunately, digital Smith Predictor is not suitable for 
the control of unstable processes. The proposed digital 
Smith Predictor will be verified in real-time laboratory 
conditions for the control of the heat exchanger. 
Adaptive versions of digital Smith Predictors are 
designed in (Bobál et al. 2011b).   
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