
DOMAIN-SPECIFIC LANGUAGES FOR
AGILE URBAN POLICY MODELLING

Michel Krämer
Fraunhofer Institute for Computer

Graphics Research IGD, Competence
Center for Spatial Information Management
Fraunhoferstr. 5, 64283 Darmstadt, Germany

Email: michel.kraemer@igd.fraunhofer.de

David Ludlow and Zaheer Khan
University of the West of England (UWE)
Faculty of Environment and Technology

Coldharbour Lane, Bristol BS16 IQY, UK
Email: david.ludlow@uwe.ac.uk
Email: zaheer2.khan@uwe.ac.uk

KEYWORDS
Urban policy modelling, Urban planning, Domain-
Specific Languages, Human-computer interaction, Smart
cities

ABSTRACT
In this paper we present a new approach of performing
urban policy modelling and making with the help of ICT
enabled tools. We present a complete policy cycle that
includes creating policy plans, securing stakeholders and
public engagement, implementation, monitoring, and eval-
uating a particular policy model. ICT enabled tools can be
deployed at various stages in this cycle, but they require
an intuitive interface which can be supported by domain-
specific languages (DSLs) as the means to express policy
modelling aspects such as computational processes and
computer-readable policy rules in the words of the domain
expert. In order to evaluate the use of such languages, we
present a real-world scenario from the urbanAPI project.
We describe how DSLs for this scenario would look like.
Finally, we discuss strengths and limitations of our ap-
proach as well as lessons learnt.

INTRODUCTION
In general, a policy can be referred to as a plan of action
adopted by an individual, department, organisation, busi-
ness or government in a domain-specific problem context.
A policy model is a descriptive or graphical representa-
tion of the plan of action. The process of developing a
policy model can be referred as policy modelling. Ruiz
Estrada reviews more than 1,500 scientific articles and
discusses the evolution of policy modelling over the past
three decades (Ruiz Estrada, 2010). He suggests its clas-
sification into 12 categories. According to him, policy
modelling can be defined “as an academic or empirical
analytical research work that is supported by the uses of
different theories, quantitative or qualitative models and
techniques to evaluate the past (cause) and future (effect)
of any policy implication(s) on the society anywhere and
anytime.” Also his analysis reveals that there is a constant
increase of econometric models in policy modelling and a
significant lack of non-economic variables such as social,
political, technological and natural factors simultaneously,

which could increase vulnerability of policy modelling in
the policy-making process.

In response to the sustainable development agenda and
the rise of partnership-based urban planning, bottom-up
policy development approaches, with increasing public
participation for collaborative decision-making, are trans-
forming the traditional top-down policy modelling ap-
proaches (Lempert, 2002). In particular, sustainable urban
development necessitates ICT enabled tools to develop
and demonstrate alternative urban models to different
stakeholders and public for consultation as well as policy
and decision-making. In this regard, the use of modern
ICT enabled tools and techniques greatly improves the
overall policy-making process. However, these ICT en-
abled tools require use of innovative technologies such
as Web 2.0, 3D visualisation and simulations (Krämer
and Kehlenbach, 2013) as well as mechanisms to support
automated adoption of local action plans and proposed
policy changes.

In addition to the above, techniques from the machine
learning domain such as data mining or social mining can
be used to refine policy plans based on feedback gathered
from public participation or from the experience of ac-
tually implementing a particular policy (cf. Hanzl, 2007;
Maragoudakis et al., 2011). Therefore, ICT enabled tools
often need to perform rigorous analysis of data to take
appropriate actions against different events. The tools are
driven by operational or computational logic which needs
to be defined by domain experts—i.e. urban planners and
decision makers—who for that purpose typically have to
use a general purpose programming language or scripting
language such as Visual Basic.NET, Python, etc.

However, the real challenge can be related to expres-
siveness of these languages, intuitiveness and flexibility
in defining machine-readable rules for domain-specific
policies (Saleem et al., 2012). These languages are of-
ten hard to understand and to learn for non-IT personnel.
In order to avoid requiring the domain experts to have a
deep understanding of computer science or programming,
a sophisticated, yet easy-to-understand user interface is
needed. This interface should not be too generic but
instead reflect application-specific and domain-specific
issues. In this way, domain experts can focus on the actual
problem instead of technical details.

Proceedings 27th European Conference on Modelling and
Simulation ©ECMS Webjørn Rekdalsbakken, Robin T. Bye,
Houxiang Zhang (Editors)
ISBN: 978-0-9564944-6-7 / ISBN: 978-0-9564944-7-4 (CD)

Survey

Analysis

Plan

Political
Commitments

Implementation

Evaluation and
Review

Acquisition of socio-economic and
environmental data

Developing customised
modelling and processing

Generating alternative
scenarios

Apply decision making models including stakeholder
engagement, citizen participation and political

endorsement

Application and interagency
collaboration

Monitoring, sustainability
indicators/environmental state

Policy Cycle

Figure 1: Policy development process

During policy modelling, urban planners often define
rules that later provide the basis for policy plans or final
policies (Guzy et al., 2008). For example, the municipal-
ity’s aim to reduce car traffic in the city could be expressed
with rules that set upper limits for the number of cars per
hour on specific streets (see the real-life example scenario
below). ICT enabled tools can automatically check if
these rules are met or—semi-automatically—assist do-
main experts in defining alternatives or new policy rules.
Typical ICT tools for that purpose are expert systems or
more generally rule-based systems. Expressing machine-
readable rules with such systems often requires the user
to have a background in computer science. Apart from
that, rule-based systems are typically rather generic and
flexible and do not focus on domain-specific issues.

Hypothesis
In consequence of the above, in this paper we investi-
gate a new way to express urban policy modelling aspects
such as computational processes and machine-readable
policy rules with so-called Domain-Specific Languages
(DSLs). A DSL is a language that is tailored to a spe-
cific application domain. It consists of terms (vocabulary)
from that application domain, so it is easily understand-
able by domain experts. At the same time, the DSL is
also machine-readable and—depending on the actual use
case—possibly executable. Consequently, a DSL can be
used to allow users with non-IT background to communi-
cate with the machine—i.e. to write computer programs
or scripts, to declaratively model data, etc.

To summarise, our hypothesis for this research work is
as follows:

“Domain-specific languages help urban planners to
control ICT tools in the policy cycle and to focus on the
actual problem—i.e. policy modelling—without requiring
them to have a deep understanding of technical details.”

Methodology
In order to evaluate the use of domain-specific languages
for urban policy modelling, in this paper we first present

the policy cycle which includes deploying policy plans,
public participation, implementation and monitoring as
well as gathering feedback and including it in future de-
cisions. After that we present the current state of the art
in domain-specific language design. In the second part
of this paper we describe a real-world scenario from the
urbanAPI project which is funded by the European Com-
mission (FP7 RTD). We describe the different stages of
the policy cycle that can be automated by ICT tools and
where DSLs can assist domain experts in their tasks. We
then show two example DSLs that are readable by both
policy actors as well as machines. Finally, we discuss
strengths, limitations and lessons learnt.

POLICY CYCLE

In order to support policy modelling using ICT, it is nec-
essary to understand the policy-making process. Figure 1
depicts a generic policy process as a cycle representing
different stages of the policy-making process (boxes). The
process begins with the ‘Survey’ stage that collects do-
main specific data—e.g. socio-economic and environmen-
tal relevant to the issue of urban development, etc.—either
by using surveys, polls, or ICT technologies—e.g. sensor
nets, etc.—for problem or issue identification.

The next stage of the policy making process (Analysis
stage) utilises data gathered at the survey stage, and pro-
vides an assessment of the territorial impacts, in respect of
socio-economic and environmental variables, that identify
the problem to be resolved by the plan.

The Plan stage is the formulation of a coherent strategy,
specified by the technical administration experts (urban
planners) in respect of a variety of policy objectives, that
address the problems identified in the analysis stage, and
which proposes a plan of action over a period of time (five
to ten-year period) to resolve these problems.

In the Political commitment stage urban planners pro-
vide a proposition for future development of the urban
territory typically subject to public and wider stakeholder
consultation, following which a political commitment is

made by elected officials of the municipality to the imple-
mentation of the plan.

Implementation of the plan (in the Implementation
stage) over the plan period of several years involves com-
mitments by a variety of public agencies acting in concert
to secure the objectives of the plan in order to respond
to the problems identified at the survey/analysis stages
and to provide a framework for private investment in the
development of the urban area.

The Evaluation and Review stage is focused around the
monitoring of the implementation of the plan to identify
the extent to which the plan is achieving the objectives
identified with the policies of the plan, and where it is
failing to fully meet the policy objectives of the plan, to
provide a basis for reformulation of the plan in the next
stage of the policy cycle.

The process repeats in a cycle in order to assess and
improve current policy implementation.

AUTOMATING POLICY MODELLING
From theoretical computer science point of view, poli-
cies are defined by rules—i.e. conditions and respective
actions—that implement software business and computa-
tional logic—e.g. software security policies, etc. These
rules can also be used for the policy development pro-
cess (see the example rules from the real-life scenario
presented below). We differentiate between three levels:

i) rules for defining the operational or computational
logic for ICT tools used at different stages of the
process;

ii) rules for describing policy restrictions and expecta-
tions that can be automatically checked by ICT tools
or semi-automatically evaluated by domain experts
with the help of ICT tools;

iii) rules to integrate process stages in order to automate
the flow of information from one stage to the next
stage.

The first level necessitates machine-readable domain-
specific vocabulary with common semantics and reusable
syntax that can be used by ICT enabled tools to collect
and rigorously process the data, generate alternative sce-
narios, perform decision-making and monitor and assess
the overall impact of the policy implementation. This
information can be reused in the next policy development
cycle.

The second level requires a vocabulary that is easy to
comprehend for the domain expert and for decision mak-
ers or other stakeholders who—in respect to a bottom up
policy modelling approach and a participatory process—
need to understand the rules for the urban plans. At the
same time the language must be machine-readable so it
can be used for automatic rule evaluation. It therefore
needs a well-defined grammar and syntax.

The third level necessitates defining interoperable in-
terfaces between ICT enabled tools. This enables tools at

different stages of the process to interact with each other
and to facilitate flow of information from one stage to the
next stage.

However, it is difficult to fully automate the policy
development process due to necessary engagement of dif-
ferent stakeholders including citizens and policy-makers
at different process stages. Nevertheless, ICT enabled
tools can provide a semi-automated approach to support
socio-technical interactions, data collection, modelling,
processing and analysis, and visualisation of alterna-
tive domain-specific scenarios for collaborative decision-
making (Batty, 2007). In response to the requirements
of the three levels described above, we propose to use
domain-specific languages as the interface to the user or
domain expert. We will present an example use case be-
low where we use DSLs for computational logic and for
describing policy restrictions.

DOMAIN-SPECIFIC LANGUAGES
In computer science domain-specific languages are used
for a number of purposes. For example, in the UNIX op-
erating system configuration files are typically written in
custom languages. In agile software development domain-
specific languages are used to quickly adapt to changing
user requirements. DSLs are also used for machine-to-
machine communication. In the IETF protocol specifi-
cations, for example, textual, ASCII-based DSLs avoid
platform-dependent details such as encoding issues that
would normally arise with binary communication proto-
cols.

In recent times, DSLs have gained a lot of interest, es-
pecially in the scientific community. One of the most
actively pursued topics is DSL design. Mernik et al. dif-
ferentiate between five phases of DSL development: de-
cision, analysis, design, implementation and deployment
(Mernik et al., 2005). The analysis phase is one of the
most important ones since it includes specifying user re-
quirements (Tairas et al., 2009). Mernik et al. identify
three common ways to develop a new DSL:

• the DSL will be implemented based on an existing
language which will be included completely (so-
called internal DSLs are an example for this);

• an existing language will be limited to the means
needed for the application domain;

• application-specific vocabulary and language con-
structs will be added to an existing language.

Apart from that, DSLs can of course be developed
from scratch as well. Such languages are typically called
external DSLs since they are not embedded into or based
on an existing language. In his book “Domain-Specific
Languages” Martin Fowler describes a number of methods
for developing parsers for such languages (Fowler, 2010).
The drawback of external DSLs is that you cannot rely
on existing language constructs or compiler components.
However, they allow for a much more flexible design

since they are not bound to the syntax and grammar of a
host language and the possible restrictions implied by that.
Based on this, the DSLs that we describe in the example
use case below are external ones.

Since DSLs are used more and more often in modern
software systems, there’s a growing need for language
maintainability. DSLs ought to help reduce maintenance
costs in large software systems, but this can only work
if maintaining the DSLs itself is not too costly. There-
fore some work has already been done in the area of
language modularisation. Hudak tries to reuse compiler
components such as lexer and parser as well as semantic
analysis (Hudak, 1998). Irazabal and Pons present a mod-
ularisation technique based on Xtext (Irazabal and Pons,
2010). They import several partial language definitions
and merge them into a new single one.

We also identified the problem of maintaining DSLs as
well as learnability and commonality as utterly important
for our approach. More details on this can be found below
in the section on ‘building DSLs for urban planning’.

Xtext is a language workbench written in Java and
based on the Eclipse Modeling Framework (EMF) and
ANTLR as the underlying language recognition tool
(http://www.eclipse.org/Xtext). It allows domain-specific
languages up to general purpose languages to be defined.
In recent times, Xtext has gained prominence and is used
for a wide range of applications in the Java community—
e.g. the Xtend language that adds useful features to Java,
Spray which is a DSL for the Graphiti framework, etc.
While Xtext is quite popular its main purpose is to quickly
create DSLs for single, separated use cases. As we show
later our approach depends on modularity and reusable
language constructs. In our experience Xtext currently
does not support this enough.

DOMAIN-SPECIFIC LANGUAGES FOR POLICY
MODELLING
In this section we will present how domain-specific lan-
guages can be applied to the policy-making and im-
plementation process (policy cycle), otherwise charac-
terised as policy modelling. We will first describe an
example scenario from the urbanAPI FP7 EU project
(http://urbanapi.eu). After that we will discuss at what
stages ICT enabled tools and DSLs can be used reason-
ably. Finally, we will present an example DSL that is both,
readable by domain experts and by machines.

Example scenario
In the urbanAPI project, the city of Bologna, Italy is pur-
suing urban planning and environmental objectives. Khan
and Ludlow describe the use case as follows (cf. Khan
and Ludlow, 2011, pp. 43–55). The initiatives “Ambiente
Vitale” and “Di nuovo in centro” aim for creating new
public and green spaces as well as improving the mobility
system. In this context, one specific area is of most inter-
est. The San Vitale district is one of the oldest parts of the
city with a rather heterogeneous and complex infrastruc-

ture. The area has a large population density of 17,464
citizens per km2 (3,370 citizens in an area of 192,962 m2).
It is very close to the University of Bologna which makes
it a popular area for student residence, the urban elite,
and—given its location in the heart of the historic city—
numerous tourists. In their spare time, citizens of the
San Vitale district participate in committees and cultural
associations which organise many events during the year.
There are many commercial activities centred around the
district’s core mostly led by immigrants. To summarise,
the district is heterogeneous in many ways, in its wide-
spread, ancient infrastructure as well as in its population
and cultural life. This has previously led to some oddities
and infrastructure problems the municipality would like
to avoid.

The urban planners are aware that the initiatives for re-
structuring this district require to involve all stakeholders.
In order to enable public participation, the municipality
plans to deploy ICT enabled tools including a 3D virtual
reality (VR) application available on the Internet. This ap-
plication will allow urban planners to present their plans
to a wide audience and hence raise the awareness among
citizens about future developments.

One central part of improving the mobility system in
the San Vitale district is to reduce car traffic and instead
extend public transportation by adding new bus routes for
example. The city already owns a wide range of data that
can be used for the 3D VR application including build-
ing footprints and heights, land use, coverage and zoning
information. In order to estimate the consequences of
changing the mobility system, the municipality plans to
exploit GSM data (Global System for Mobile Communi-
cations). This data is gathered by mobile devices such
as mobile phones, smartphones, tablet PCs or even car
sensors. Within the urbanAPI project GSM data will be
used to simulate traffic on the streets of Bologna. The sim-
ulation results will be included in the 3D VR application.

DSLs in the policy cycle
As described above, rules can be used at various levels:
to define operational or computational logic, to describe
policy requirements, and to provide platform-independent
machine-to-machine communication between the differ-
ent tools at the various stages in the policy cycle. In this
section we will furthermore show at what stages DSLs
can be used reasonably. Note that the different stages are
rather complex in that they include not only data process-
ing or visualisation but also statistical modelling, moni-
toring and human interaction. In the following we will
only focus on tasks that can be supported by ICT tools
and DSLs in particular.

In the scenario depicted above, the municipality of
Bologna has already gone through the first stage of the
cycle (“Survey”). They have gathered data such as build-
ing footprints and heights which can be used to create a
simple 3D building block model. They also possess basic
socio-economic, transport, utility, vegetation, census data,
etc. In stage two (“Analysis”) they therefore pre-process

the data. Here they can make use of automated, rule-
based processes. A typical DSL that would drive such an
automated process could look like this:

When there is a building footprint f
and there is a corresponding

building height h
then extrude f by h.

This script would create a simple 3D building block
model of the city of Bologna. It could drive a standard
geographical information system (GIS) that manages the
municipality’s cadastre consisting of building footprints
(typically 2D polygons) as well as respective building
heights attached as metadata or attributes. GISs usually
already provide a set of well-known geometrical functions
like the polygon extrusion used in this script. Basically,
the DSL terms map to GIS functions and parameters (or
more precisely function arguments). The term ‘there is’
maps to an object query based on its type (‘building foot-
print’), ‘building height’ maps to an attribute, whereas the
term ‘corresponding’ links the attribute to the respective
building footprint. Finally, the term ‘extrude’ maps to the
polygon extrusion function whereas ‘h’—i.e. the building
height—is the function’s first argument.

The DSL used in this script is clearly readable and eas-
ily understandable. At the same time it uses a well-defined
grammar and can thus be processed by machines. We use
the keywords When and then here—instead of the more
commonly used ones If and then—in order to mimic
declarative production rules. Production rule systems are
typically event-based, so that when something happens
then the rule-based system will perform some specified
action. In our case this means that we can keep the rule
system running, so that when a new building footprint and
a corresponding height is added to the data set then the
3D building model will automatically be created.

After preparing the data, the urban planners might want
to define rules for their scenario. For example, they want
to reduce traffic on street A. At the same time they do
not want the traffic on street B—which is an alternative
to A—to increase. Therefore they would like to close A
for cars and create new bus routes in order to provide an
alternative for using the car. In order to evaluate later if
the policy has been implemented successfully, the munici-
pality evaluates passively collected GSM (Global System
for Mobile) data from active mobile phones for street A
and B to measure the number of cars passing by during the
day. Such functionality is provided by the Public Motion
Explorer application developed in the urbanAPI project.
Using a DSL, this task can be performed automatically by
ICT tools based on the acceptance criteria defined by the
urban planners. A DSL for these criteria could look like
as follows:

The number of cars on street A per
day was 3000.

The number of cars on street A per
day has to be 0.

The number of cars on street B per
day was 2000.

The number of cars on street B per
day has to be lower than 2500.

The idea of defining acceptance criteria in such man-
ner can also be found in computer science in the area
of Behaviour-Driven Development (BDD) where DSLs
help developers to create machine-readable, executable
code that is also understandable by their clients—i.e. the
domain experts (see North, 2009).

These acceptance criteria can now be used in the con-
secutive stages of the cycle: during stakeholder engage-
ment and for monitoring. The 3D visualisation, for exam-
ple, can be driven by these rules. The main purpose of this
application is to simulate the policy’s consequences by
visualising the 3D building model in combination with in-
formation about traffic density based on GSM data. When-
ever one of the rules above do not apply, the user will be
notified. For example, we can use the following rule to
update the display:

When the number of cars on street B
per day is higher than 2500

then display street B in red.

Again, we are using a production rule here. Due to
its event-based nature the display will automatically be
updated whenever something in the GSM data set has
changed or whenever a stakeholder has interacted with
the system—e.g. by changing some of the parameters
such as number of maximum cars per street.

During the public participation stage, involving engage-
ment with urban stakeholders including citizens, machine
learning techniques such as data mining and social mining
can be used to analyse how stakeholders react to the policy
plan (Hanzl, 2007). For instance, the municipality might
use information from the Internet such as page views,
comments, likes/dislikes, etc. (Charalabidis et al., 2012,
p. 157) to analyse the public opinion and to gain feedback
on the policy plan (cf. Maragoudakis et al., 2011). The
results from this analysis can be used to improve the ac-
ceptance criteria. “Improving” means in this case adding
new rules. For example, during stakeholder engagement
one might notice that street C is also often used as an
alternative to A. Hence, it might be useful to also consider
C in the acceptance criteria:

The number of cars on street C per
day was 500.

The number of cars on street C per
day has to be lower than 600.

Furthermore, after the policy has been implemented
and its consequences are monitored these rules can be
used to automatically assess the policy’s success. The
results gained from this, which will be identified in the
monitoring and plan evaluation stage of the policy process,
can then be incorporated into another round of the policy
cycle.

Building DSLs for urban planning
As described above, the DSLs presented in this paper are
external ones. They are not based on an existing language
and they are not embedded into a host language. The
main advantage of this approach is that the DSLs can
be designed independently and therefore better tailored
to the use case and the user requirements. However, this
also might necessitate several small DSLs for the different
stages of the policy cycle. The example use case above
contains at least two of them.

In order to avoid having domain experts to learn a
whole lot of different languages, we suggest to use lan-
guage modularization—as described, for example, by Hu-
dak (1998) or Irazabal and Pons (2010)—and to define a
common vocabulary. This makes sure domain experts rec-
ognize words, terms and expressions they already know
from other languages which makes it a lot easier for them
to learn a new one. At the same time, the languages we
propose here can be used in different stages of the policy
cycle. For example, the rules defined in the plan stage can
later be used in the evaluation stage as well. We’d like to
point out that the semantics underlying the rules stays the
same between the different stages—the meaning of the
rules does not change—but the execution might differ. In
one case, the rules are used to change the visualization
in the political commitment stage, and later exactly the
same rules are used to automatically evaluate the policy.

A language’s vocabulary is influenced by the domain it
is used in as well as user requirements. In order to find a
common, reusable vocabulary we propose to make use of
techniques known from different areas:

• methods from the semantic web, especially ontology
engineering to find domain-specific terms (concepts)
and relations;

• object-oriented design, in particular methods to build
a domain model;

• techniques from software requirements analysis such
as interviewing, contextual inquiry or apprenticing.

An example how a DSL vocabulary can be engineered
using these techniques is described by Mauw et al. (2004)
and later by Tairas et al. (2009) who suggest to start with
creating an ontology (or using an existing one if already
available) and then applying additional formal domain
analysis methods.

DISCUSSION AND CRITICAL ANALYSIS
The Bologna example, identified above, demonstrates the
ways in which the complexities of the policy modelling
process can be facilitated by ICT tools. 3D visualisa-
tion itself provides a major advance in communication
between the policy-making community (urban planners
and the political domain) and urban stakeholders, includ-
ing citizens (Al-Kodmany, 2002). The representation of
plan proposals for a particular locality, in this case urban

neighbourhood, in a real-life (3D) manner offers a sig-
nificant advance on previous two-dimensional and plan
based communications in which misunderstandings by
the urban stakeholders regarding the nature of the policy
proposals have been widely reported.

However, ICT enabled policy modelling is a complex
process that deals with multiple variables. It consists of
socio-technology interactions and often it is difficult for
the end-user community to understand the complexity of
underlying IT tools and languages. In order to facilitate
end-user community engagement, DSLs are identified
to define rules for policy development using an intuitive
language and interface.

The Bologna example shows that DSLs can indeed be
utilised to drive the ICT enabled policy cycle. Scripts and
rules written in such a language are easy to understand
for domain experts, because they use a domain-specific
vocabulary. At the same time, they are machine-readable,
since the DSLs have a well-defined grammar and syntax.

DSLs also have some drawbacks (cf. Axelsson et al.,
2009). Since they are tailored to a specific application
domain and sometimes only to a single use case, they
are also rather limited regarding their expressiveness and
reusability. A DSL designed for traffic simulation pro-
vides means for this specific application only. This means
that the same DSL cannot be used for any other use case.

The aim of using DSLs is twofold. On the one hand,
they consist of a limited vocabulary which makes them
easy to comprehend and to learn. On the other hand, the
mere number of different DSLs can overtax users if for
each application they have to learn a new language. The
key to designing reusable DSLs is to find a good balance
between uniqueness of the language—i.e. how much it
is targeted to a specific use case—and commonality. In
particular, using a common vocabulary for several similar
languages will make them easier to learn. Good language
design of multiple DSLs therefore starts with defining a
basic set of words and expressions from which the more
specific languages can then be derived.

From an urban planning perspective, it is frequently
argued that the urban planning is highly specific to each
locality defined by national and local legislative provi-
sions, structural frameworks and procedural requirements
that greatly limit the development of common ICT solu-
tions that enhance the plan making and plan implemen-
tation process. This local specificity of urban planning
requirements for ICT development in support of urban
planning is certainly evident. Nonetheless, the opportu-
nity for the development of generic ICT tools supporting
urban planning is evident in the fundamental proposition
that cities and towns of Europe, and indeed globally are
subject to common drivers of change (economic, social
and environmental) that invite and benefit from common
solutions.

Common solutions based on generic ICT applied at
the local level offer benefits in numerous ways, not least
from the perspective of multi-scale governance, in enhanc-
ing communication between the levels of government,

whereby upper levels can communicate more effectively
with lower-level organisations that have common informa-
tion requirements and provide common information out-
puts. Generic and common ICT solutions applied to the
cities of Europe also create substantial market opportunity
promising procedural efficiencies and cost minimisation.

The generic form of the policy cycle and its stages sug-
gests capturing multiple models/view points—e.g. com-
plex socio-technical interactions between different actors
and entities, information model, activity model, etc. Also,
each stage itself presents a specific view point suitable for
certain type of stakeholders. For instance, the ‘evaluation
and review’ stage should generate necessary information
for policy makers to make a decision. Such a multi-model
structure heavily relies on a common domain specific vo-
cabulary that not only helps in defining common concepts
that can be used across models and stages of policy cy-
cle but also underpins a DSL for communicating across
multiple models and stages of the policy cycle. However,
in this paper we focused on using DSLs for describing
computational logic for ICT tools used at different stages
as well as for modelling policy restrictions that can be
automatically or semi-automatically checked by domain
experts with the help of ICT tools. Communicating across
multiple models and stages remains a topic for future
research.

CONCLUSION

In this paper we presented a new approach to model urban
policies using domain-specific languages (DSLs). These
languages can be used to drive ICT tools which assist
urban planners during policy making. We presented a
complete policy cycle consisting of different stages in-
cluding plan making, public participation and evaluation.
Through a real-life scenario from the urbanAPI project
we demonstrated how DSLs can be used reasonably in
the various stages of the policy cycle. Scripts written in
such DSLs help domain experts to control the ICT tools
without requiring them to have a deep understanding in
computer science or programming.

Sustainable urban development is transforming the re-
lationship between the urban planning community and
urban stakeholders, requiring enhanced engagement and
partnership based urban planning. The ICT enabled urban
planning applications discussed in this paper provide a
major opportunity to deliver the required participatory
bottom-up urban planning. Full realisation of this op-
portunity is critically dependent upon the transition from
the current heterogeneity of urban planning systems to
one where generic ICT modules can successfully operate.
The key to this is twofold. First, the policy-making cycle
and model of plan production and implementation is in
itself generic. The policy-making cycle utilises different
information sources, according to different locally defined
procedures, but fundamentally the policy-making cycle is
common to all planning agencies.

The second requirement in order to create the oppor-
tunity for generic ICT urban planning applications is the
recognition that there are many pathways to the desired
result of good urban planning. In other words, substitu-
tion of certain current working practices by alternative
procedures at the local level will permit the adoption of
generic ICT solutions and thereby the necessary transfor-
mation of urban planning as a stage in the attainment of
fully collaborative sustainable development.

In addition, we think the success of generic ICT tools
greatly depends on intuitive user interfaces. DSLs as they
are presented in this paper can provide such interfaces.
They can drive the automated policy cycle and at the same
time they are understandable by stakeholders who can
therefore clearly see the decisions behind urban policies.

Basically, DSLs have been used quite successfully in
computer science already to build intuitive user interfaces
that are understandable by non-IT experts. However, un-
til now they have not been applied to the area of urban
policy modelling and making. We consider this paper
the first step towards supporting the participatory, bottom-
up approach to urban planning, and intuitive interfaces
(i.e. DSLs) the key factor to its success. However, con-
crete application of this approach including a practical
meta-model and a common vocabulary for urban planning
DSLs remains a topic for future research.

ACKNOWLEDGEMENT
Research presented here is partly carried out within the
project “urbanAPI” (Interactive Analysis, Simulation and
Visualisation Tools for Urban Agile Policy Implementa-
tion), funded from the 7th Framework Program of the
European Commission, call identifier: FP7-ICT-2011-7,
under the grant agreement no: 288577, started in October
2011.

REFERENCES

Al-Kodmany, K. (2002). Visualization tools and methods in
community planning: from freehand sketches to virtual real-
ity. Journal of planning Literature, 17(2):189–211.

Axelsson, E., Sheeran, M., Stenström, P., Dévai, G., Horváth,
Z., and Vajda, A. (2009). Domain Specific Languages: state
of the art and future directions. Ericsson Software Research
Day, Stockholm, Sweden.

Batty, M. (2007). Cities and complexity: understanding cities
with cellular automata, agent-based models, and fractals.
The MIT press.

Charalabidis, Y., Triantafillou, A., Karkaletsis, V., and Loukis,
E. (2012). Public policy formulation through non moderated
crowdsourcing in social media. In Tambouris, E., Macintosh,
A., and Sæbø, Ø., editors, Electronic Participation, volume
7444 of Lecture Notes in Computer Science, pages 156–169.
Springer Berlin Heidelberg.

Fowler, M. (2010). Domain Specific Languages. Addison-
Wesley Longman.

Guzy, M. R., Smith, C. L., Bolte, J. P., Hulse, D. W., and Gregory,
S. V. (2008). Policy research using agent-based modeling to
assess future impacts of urban expansion into farmlands and
forests. Ecology and Society, 13(1):37.

Hanzl, M. (2007). Information technology as a tool for public
participation in urban planning: a review of experiments and
potentials. Design Studies, 28(3):289–307.

Hudak, P. (1998). Modular domain specific languages and tools.
Fifth International Conference on Software Reuse, pages 134–
142.

Irazabal, J. and Pons, C. (2010). Supporting Modularization in
Textual DSL Development. XXIX International Conference
of the Chilean Computer Science Society, pages 124–130.

Khan, Z. and Ludlow, D. (2011). urbanAPI Deliverable D2.1:
User Requirements Definition, version 032.

Krämer, M. and Kehlenbach, A. (2013). Interactive, GPU-based
urban growth simulation for agile urban policy modelling. In
Proceedings of the 27th European Conference for Modelling
and Simulation (ECMS).

Lempert, R. (2002). Agent-based modeling as organiza-
tional and public policy simulators. Proceedings of the Na-
tional Academy of Sciences of the United States of America,
99(Suppl 3):7195–7196.

Maragoudakis, M., Loukis, E., and Charalabidis, Y. (2011).
A review of opinion mining methods for analyzing citizens
contributions in public policy debate. In Tambouris, E., Mac-
intosh, A., and Bruijn, H., editors, Electronic Participation,
volume 6847 of Lecture Notes in Computer Science, pages
298–313. Springer Berlin Heidelberg.

Mauw, S., Wiersma, W. T., and Willemse, T. A. C. (2004).
Language-driven system design. International Journal of
Software Engineering and Knowledge Engineering, 14:625–
664.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When and
how to develop domain-specific languages. ACM Computing
Surveys, 37(4):316–344.

North, D. (2009). Behaviour-Driven Development. Retrieved
February 9, 2013, from http://behaviour-driven.
org/.

Ruiz Estrada, M. A. (2010). What is Policy Model-
ing?. SciTopics. Retrieved February 8, 2013, from
http://www.scitopics.com/What_is_Policy_
Modeling.html.

Saleem, M., Jaafar, J., and Hassan, M. (2012). A Domain-
Specific Language for Modelling Security Objectives in
a Business Process Models of SOA Applications. AISS:
Advances in Information Sciences and Service Sciences,
4(1):353–362.

Tairas, R., Mernik, M., and Gray, J. (2009). Using ontologies
in the domain analysis of domain-specific languages. In
Chaudron, M. R. V., editor, Models in Software Engineering,
volume 5421 of Lecture Notes in Computer Science, pages
332–342. Springer Berlin Heidelberg.

AUTHOR BIOGRAPHIES
MICHEL KRÄMER is deputy department head of the
Spatial Information Management competence center of
the Fraunhofer Institute for Computer Graphics Research
IGD in Darmstadt, Germany. His research interests
are in Compiler Construction, Language Recognition
and Artificial Intelligence as well as Big Data and
Cloud Computing. He’s development lead of the 3D
GIS area and has contributed to various open source
products. As the Scientific Manager of the urbanAPI
project he’s responsible for software architecture and
the project’s scientific progress. Michel Krämer holds
a master’s degree in computer science from the THM
University of Applied Sciences, Gießen, Germany
where he’s now also a lecturer. His email address is
michel.kraemer@igd.fraunhofer.de.

DAVID LUDLOW is member of the EU Expert Group
on the Urban Environment, and the EU Expert Group
contributing to the preparation and definition of the
EU Thematic Strategy on Urban Environment (6th
Environment Action Programme). He gained detailed
knowledge of the subject area of European urban
and regional environmental planning and sustainable
development as well as the development of information,
communication and technology (ICT) applications for
sustainable urban management. He is responsible for the
development and implementation of more than 40 major
EU funded research projects, as well as publications
of pan European significance. His email address is
david.ludlow@uwe.ac.uk.

ZAHEER KHAN is postdoctoral Research Fellow in
the Faculty of Environment and Technology of UWE
and holds Bachelors, Masters and PhD degrees in com-
puter science. He has over 10 years of experience in
academic research and teaching. His research interests
are use of ICT technologies for smart cities, urban man-
agement and policy modelling. His main expertise lies in
the application of the state-of-the-art technologies from
distributed computing, grids, clouds, sensor web, soft-
ware engineering, business process management, data
management, software agents, and geospatial informa-
tion systems in multi-disciplinary application domains.
He has been working on the large-scale collaborative
SAGE multi-agent system, FP6 Health-e-Child, FP6
HUMBOLDT, FP7 LifeWatch projects, and is leading
requirements specifications and evaluation work pack-
age in the FP7 UrbanAPI project. His email address is
zaheer2.khan@uwe.ac.uk.

http://behaviour-driven.org/
http://behaviour-driven.org/
http://www.scitopics.com/What_is_Policy_Modeling.html
http://www.scitopics.com/What_is_Policy_Modeling.html

