SCALABLE AND USER-FRIENDLY SIMULATION

Adrian Rutle*, Hao Wang'*, Robin T. Bye '8, and Ottar L. Osen'#8
* Department of Computing, Mathematics and Physics,
Bergen University College, Norway.
Email: aru@hib.no
1 Big Data Lab and ¥ Software and Intelligent Control Engineering Lab,
i Faculty of Engineering and Natural Sciences,
Aalesund University College, Norway.
Email: {hawa, roby, oco}@hials.no

KEYWORDS

Scalability; Parallel and GPU-programming; Agent-
based modelling and simulation; Virtual Prototyping;
Model-driven software development; Domain-specific
languages.

ABSTRACT

Simulation is an important technique for integrating
interacting models for predicting results of hypothetical
scenarios. A typical application area for simulators is
virtual prototyping (VP). In VP, simulators replace the
real-world prototype. Hence, the quality of the virtual
prototype depends on the quality of its simulations, which
in turn are highly dependent on the quality of the models
and the computational power, especially if visualization
and/or real-time constraints are required. Unfortunately
defining models is an error-prone activity which requires
domain-experts to have knowledge about the implement-
ation details and/or IT-technical concerns. In addition,
the bigger the dataset, the more computational power is
needed, which affects the cost, and in turn, the usability
of today’s simulators. To address both of these aspects,
we propose a user-friendly, adaptive and scalable agent-
based modelling and simulation framework with a hybrid
CPU/GPU/FPGA high performance computing platform.
The solution we describe provides domain-experts with a
a scalable, adaptive, and efficient simulator and enables
domain-experts to define high quality models without in-
depth IT-knowledge. We use a running example from the
particle transmission domain to illustrate our approach.

INTRODUCTION

In this paper we propose a user-friendly, adaptive and
scalable agent-based modelling and simulation (ABMS)
framework on a hybrid CPU/GPU/FPGA high perform-
ance computing (HPC) platform. An agent-based model
(ABM) is a class of computational models in which
multiple autonomous agents act and interact, typically
guided by some set of simple rules, such that some
collective behaviour emerges. Using this paradigm for
simulation, it is possible to recreate and predict a number
of complex phenomena observed in nature, e.g., a flock
of birds, a herd of land animals, or a school of fish
(Reynolds, 1987).

Address for correspondence: Adrian Rutle, Department of Computing,
Mathematics and Physics, Bergen University College, Postboks 7030,
NO-5020 Bergen, Norway.

Proceedings 29th European Conference on Modelling and
Simulation ©ECMS Valeri M. Mladenov, Petia Georgieva,
Grisha Spasov, Galidiya Petrova (Editors)

ISBN: 978-0-9932440-0-1 / ISBN: 978-0-9932440-1-8 (CD)

Agent-Based Modelling and Simulation

In general, an agent-based simulation process is based
on the emergence principle where the lower (micro) level
of systems determines a higher (macro) level of behaviour
(e.g., Bonabeau, 2002). Thus, simple behavioural rules
generate complex behaviour. Typically, agents are char-
acterised as rational; i.e., they are expected to be acting
according to what they perceive as their own interests,
such as reproduction, suitable environment, or economic
benefit, using heuristics or simple decision-making rules
(Bonabeau, 2002).

When designing an ABM, we need to consider the
following:

e granularity of the agents: how many agents are
needed to get a realistic behaviour.

e scalability: how well do the number of agents
and the resolutions of time and space scale when
compared with reality.

e decision-making rules and heuristics: what an agent
does next based on a set of parameters given by the
environment and the agent’s interests.

e behaviour over time: do the agents learn or are they
adaptive.

e topology: how the agents are related to each other
and how they interact with each other.

e the environment: how the environment affects the
agents’ behaviour.

While ABMs perhaps are mostly associated with com-
puter science, they are also used to model other domains
such as biology, ecology and social science (Niazi and
Hussain, 2011). Although ABM has good potential, it
requires domain-experts to have know-how about the
computational overheads involved with agents in terms of
time and space and their distribution in networks or grids.
Adding to the complexity is the fact that the location
of the agents in the environment and their responsive
behaviour are encoded in algorithmic form in computer
programs.

Virtual Prototyping and Simulation

Virtual prototyping (VP) is defined as the computer-
aided construction of digital product models and real-
istic graphical simulations for the purpose of design and
functionality analyses in the early stages of a product’s
development process (Pratt, 1995). These prototypes are
usually computer simulations of physical products that
can be presented, analysed, and tested in various aspects
like design and engineering, manufacturing, service and

recycling, as if the prototypes were real physical models
(Wang, 2002). One of the major aspects of VP consists
of the representation (i.e., modelling) of various parts
of the prototype. Using VP, one can easily construct
(or manufacture) a set of prototypes with different con-
figurations, behaviour and parameters. Another aspect
is the simulation of these prototypes for analysis and
experimentation purposes. VP engineers are experts in
their domains, however, good abstraction of software
technicalities, good modelling principles, and efficient
simulation configurations are also necessary in order to
make real advances in VP.

Domain-Specific Modelling Languages

A domain-specific modelling language (DSML) is a
high-level computer language specialised to the applica-
tion domain of modelling (e.g., see Fowler, 2010), with
a focus on describing the what, not the how. We have
designed a DSML which enables domain-experts to define
models of agents without knowledge of technical details
of the computations. Consequently, the domain-experts
can focus on the description of the problem which they
want to simulate. We use model-driven software engin-
eering (MDSE) (Brambilla et al., 2012), in particular a
metamodelling approach, for the definition of the DSML.
Please note that the description of the DSML and the
running example in this paper should be seen as a recipe
for how to create a modelling language which is simple
enough for domain-experts to deal with, and in addition
formal enough for simulator engines to simulate models
defined in these languages. That is, we outline here a
conceptual framework for creating user-friendly DSMLs
rather than presenting a full-scale modelling language.

Motivation and Aim

It is generally costly to develop ad-hoc simulators
tailored for separate test cases, and current simulators
are often too specific to be adaptable if we want to
investigate different what-if scenarios. This is one of the
reasons why simulation is not seeing a more widespread
use in research projects although most researchers know
the benefits and the insights one can get from simulation.
Another reason is that deploying or even using simu-
lators often require too much technical overhead which
makes their usage less viable for the domain-experts.
Our approach for tackling this problem is based on the
development of a generic simulator able to abstracting the
details away from the users. Among other features, the
simulator should provide a user-friendly interface which
enables domain-experts to define simulation scenarios
without knowledge of the implementation details.

Another challenge is that of scalability. It is well-
known that the result of a simulation is highly related to
the granularity of the agents, the size/complexity of the
existing data/environment, and generally the resolutions
of the simulated time and space representations. If we
have enough data about the environment, one can simulate
the system in a near-realistic way. Employing analytical
models is impractical because changes in settings have
limitations in modelling important details and features of
real world complex systems. Simulation models, how-
ever, provide the flexibility to accommodate arbitrary

stochastic elements, and generally allow modelling of all
the required complexities and dynamics of real world
applications without resolving to undue simplifying as-
sumptions. Obviously, however, a large amount of data
and calculations will require a lot of processing power,
which can be a challenge and may require optimisation
at various levels.

In this paper, methods and approaches of simulation
and of the solution of optimisation problems shall be
linked to solve optimisation problems faster or make the
obtained solutions more usable (under realistic condi-
tions). Moreover, in most cases one wants to get feedback
on changing different parameters almost in real-time. Our
aim for addressing these challenges is based on using
a hybrid CPU/GPU/FPGA HPC platform to design and
develop a scalable simulator engine.

In the following, we outline our descriptions of a
DSML with a running example and discuss aspects of
user-friendly scenario definition; then we present our
approach to a scalable simulator using a hybrid HPC
platform, before we refer to some related work. Finally,
we draw some conclusions and point to future work.

DOMAIN-SPECIFIC MODELLING
LANGUAGE

First we introduce a running example, then we explain
the modelling language which is used by the domain-
experts to define their models and simulation scenarios.
We adopt a MDSE methodology to develop a user-
friendly DSML that enables domain-experts to define
their models and simulation scenarios. MDSE is a branch
of software engineering in which models are the first-
class entities of all the phases of the development process.
In MDSE one can define a modelling language as a
metamodel and automatically generate support tools for
the language, such as an editor and a syntax checker,
using various language workbenches and frameworks
(e.g., Epsilon (Kolovos et al., 2005), Eclipse Modeling
Framework (EMF) (Steinberg et al., 2008), MetaEdit
(MetaCase, 2007), or Diagram Predicate Framework
(Rutle, 2010)). A metamodel is a model which defines the
types and relationships between types used in a modelling
language. We say that a model which is defined by the
modelling language conforms to this metamodel.

Running example of Borgundfjorden Simulator

In the running example we consider the local fjord
Borgundfjorden as a case-study. A big amount of data and
a number of models already exist in different formats at
different institutions in the geographical area surrounding
the fjord. For example, the municipality of Aalesund
has sewage data; a company called PatoGen has data
about different kinds of viruses and micro organisms and
their concentrations in the fjord; Havforskningsinstituttet
has data on waves, temperatures and currents; and the
Virtuelle Mgre of Aalesund University College (AAUC)
has data on oceanographic maps. Integrating all these
models and creating a realistic model of the fjord is one
of the important goals for many researchers and domain-
experts in research areas such as biology, fish farms,
particle transmissions, and urban management. We use
a simulator for integration of these data, mainly because
most of these data need to be put in context in order to

get an overall picture of what is going on in the fjord.
In addition, using a simulator can help us in finding
answers to interesting research questions and hypotheses,
and could be used to find patterns and relationships which
we have not thought of yet.

The presented example, the methodology and the data
integration could easily be generalised for usage in other
fjords, or even other environments. For example, we could
build on our previous work (Alaliyat et al., 2013; Bye,
Rutle, Stene and Yndestad, 2015), where we among other
things used an agent-based model to simulate pathogen
transmission between aquaculture sites in the Romsdals-
fjord (see Figure 1). As noted in our literature review of

°®
°
°

Figure 1: Aqua farms in Romsdalsfjorden. Courtesy of
Alaliyat et al. (2013).

VP in (Bye, Osen and Pedersen, 2015), VP can also be
used to facilitate integrated planning and visualisation of
large construction projects. Using our integrated simulator
as a VP tool for the planning of new fish farms, public
management and/or private companies could take into
account factors such as pathogen transmission between
fish farms related to ocean currents such as those in
Figure 2 and be able to optimally position the new fish
farms to reduce the risk of fish disease and provide
optimal living conditions for the fish by simulating a large
number of what-if scenarios involving pathogen particles,
vessel traffic related to spreading of pathogen, more fish
farms in the future, urban and industrial sewage, and so
on (Bye, Rutle, Stene and Yndestad, 2015).

\ e

Sagrreias
A :] -
S5 N -

o)
N
.\ < N

‘7

“esrd
ceeeersy,
eq s,

Figure 2: Snapshot of ocean currents in Romsdalsfjorden.
Courtesy of Alaliyat et al. (2013).

repulse ;| [

<<Agent>>
Particle

- position
- forceVector
- weight

adhere

simulate() : ForceVector

Figure 3: A metamodel of the sample modelling language
used for modelling particles.

Metamodel

As a simulation case, a marine biologist may want
to see the impact of a particular particle type or micro
organism transmission through Borgundfjorden at a given
time of the year. With the DSML and simulator we
describe here, the domain-experts would only need to
describe the particles of interest and their properties,
for example their weight, their start position, and other
properties like which particles/surfaces they are likely to
adhere to or repulse, and then run the simulation for a
given time into the future, or in the past. Designing the
metamodel of the DSML is an activity which is usually
delegated to the language designers or specialised IT-
personnels who tightly cooperate with the domain experts.
A simplified metamodel for the simulation case is shown
in Figure 3. From this metamodel, we can generate a
language editor so that domain-experts can define models
representing simulation cases.

Language Editor

As a sample model, consider a set of particles A,
B, C, D, and E, where A could adhere to B and E,
while it is repulsed by C and D. In addition, B could
adheres to D and C adhere to E. This information is
then captured as instances of the metamodel shown in
Figure 3. A sample language editor generated based on
the metamodel in Figure 3 is shown in Figure 4. The
figure shows a simplified view of the model and the
language. The palette area shows the types which were
defined in the metamodel, and the drawing canvas shows
the particles and their relationships. Furthermore, using
the language enables the domain-experts to see and define
other interesting relationships in the model, for instance,
how the relations between the particles A and B as well
as B and C affect the relation between A and C.

Focusing on What Rather than How

Using this language, even the fact that the simulation
is agent-based is hidden from the domain-experts. The
focus of the experts is on the description of the domain,
not how things are represented. Internally, these models
are translated to agents which run in the simulator and
predict the behaviour of the system. This translation
to implementation is described in more details in later
sections.

BRefE P e

4 > B ROIOIONIERalette

Particle
:adhere repulse —
B« Al N
Adhere
s
:adhere repflse adhere adhere
Repulse
——
D E

Figure 4: The language editor corresponding to the
metamodel in Figure 3 and a sample particle model

defined by the modelling language.

metamodel of
7| var/models/particles | Locate model

— /var/models/fishes | Locate model

A Particl / /var/models/maps | Locate model

Adnege
Repulse / start position of things ~ Start positions
Rate of proliferation Proliferation
——— e of things FATES
/ /
/ ’ |
Set defaults
A7 Simulate

Fish
Herring <——— Salomon —

/ eats
—_—
eats oty
igs |

Eatable
/

Transformation *

I—IF’C for simulation

e
waldy

Weather Currents
Data Data

Maps
Figure 5: A general architecture for model integration and
simulation.

USER-FRIENDLY SCENARIO DEFINITION

The responsibility and usage of the DSML is limited
to the definition of the models. The simulator should
also have an interface which enables domain-experts to
integrate data and stage their scenarios. For instance,
the simulator could have a module for choosing and
uploading a weather model (forecast or historical data)
for a given position in a given time period, a module for
choosing wave and current models for that same time
period and position, and one for choosing the ocean-
ographic maps. In addition to these (relatively) static
data, the domain-expert should also be able to upload
the particle model (see Figure 4) as well as a model
describing different kinds of fishes and their eating habits,
and use the simulator interface to define a start position
for the particles (perhaps with different positions for
different particle types), a rate of proliferation (how many
particles are put into the simulator per time unit, for how
long, and when), and which start direction and speed the
particles have. Figure 5 depicts a general architecture of
the framework in which various models can be integrated
and configured for simulation. The simulator should be
able to generate all this information using high-quality
pseudo-random number generators (PRNGs), as well as
reproduce simulations by fixing the seed of a PRNG.

Next for the domain-expert is to choose which algorithms
to be used for the calculation of the next positions for each
particle, and how detailed and accurate the simulation
must be run. Again, defaults should be proposed by
the simulator. There are other applications of simulation
which makes the design of a user-friendly interface for the
simulator necessary. For instance, making observations on
whether the simulation results match the real results from
past real world experiments and data would strengthen
to what extent one can trust the simulation results. This
could be put in a machine learning context to train the
simulator in order to come up with more precise results.

Finally, we note that domain-experts generally can not
be expected to be programmers; they are cyberneticians,
mechanical engineers, electrical engineers, zoologists,
microbiologists, meteorologists, etc. They know their
own domain, and in most cases work together in order
to define simulation scenarios. We do not expect the
domain-experts to use command-line, or to be familiar
with artificial intelligence, machine learning or other
algorithms. On the other hand, we do expect that domain-
experts have a reasonable minimum knowledge on what
simulation is, how it works, what could be expected
from simulation, what is needed as input, and in which
cases one can choose provided defaults, and so on. Thus,
user-friendliness requires that the concepts and constructs
in the modelling language are those which are used
by the domain-experts. Usually, graphical languages are
easier to understand by domain-experts, however, any
language which has concepts that come directly from the
domain may be considered user-friendly. In cases where
a graphical syntax may add complexity, one may choose
to add a textual syntax for the language. As additional
features, domain-experts (or simulation-experts) could use
meta-tools to reason about the results of their simulations,
for instance, how accurate or realistic the simulations are,
whether the results can be trusted, and whether the results
be compared to/aligned with actual observations.

LARGE SCALE AGENT-BASED SIMULATIONS
WITH HPC PLATFORM

In this section we outline our approach to the develop-
ment of a scalable, generic simulator which is able to do
high quality simulations efficiently. The approach is based
on a fair and efficient scheduling algorithm to schedule
computational resources in distributed simulator engines.

In order for ABMS to be (near-) realistic, the simu-
lation needs to deal with large amount of agents, which
incurs heavy computational workload. As we have ob-
served in the HPC community, super computers have
already been built with a hybrid CPU and GPU archi-
tecture to make use of the large pool of processing units
in GPUs, e.g., Titan, a super computer built in Oak
Ridge with a combination of GPUs and traditional CPUs,
was ranked No. 1 in the Top500.org November 2012
list (TOP500.0org, 2012). In addition, we have seen in
recent years fast development of FPGAs, the performance
of which starts matching that of GPUs with much less
power consumptions (Kestur et al., 2010). For this reason,
FPGAs are being adopted in new HPC architectures. More
importantly, the new OpenCL 2.0 standard makes it much
easier to program across different CPU, GPU, and FPGA

architectures (Abdelfattah et al., 2014; Chen and Singh,
2012; Segal et al., 2014). We aim to experiment with
different configurations considering the advantages and
disadvantages of CPU, GPU, and FPGA.

Implementing an agent-based simulator runtime with
disparate data sets requires complex scheduling decisions.
CPU and communication resources needs to be measured,
and the computation of agents moved to the appropriate
cluster node.

The simulator engine must adapt dynamically to the
hardware available, scaling the simulation according to
current work load and real-time needs. By abstracting
away much of the concurrency and communication com-
plexities, the simulator can facilitate time and cost effect-
ive development of new simulators. These new simulators
can run in parallel, separate or together, shining new light
on complex problems.

Large scale simulations require massive amount of
computing power. If the dataset grows in length (with
time), the CPU requirement typically increases linearly,
whereas adding more parameters, objects, agents, and so
on, likely yield an exponential increase in the required
computing power. In order to get sufficient resolution in
its simulation results, the model must be able to incorpor-
ate more than 100 million concurrent agents. Scheduling
algorithms can be utilized to ensure that the computation
of an agent is localized to the cluster node most capable
to its needs. Agents in need of high memory bandwidth
and/or floating point calculations are automatically run on
GPU powered nodes. The complexity of the distributed
nature of the simulator core is abstracted away from
the researcher, leaving them free to concentrate on the
research problems.

Features of the simulator engine

Among the most important features of the simulator
engine we can mention:

e Storage and management system for research data:
Support storage of large datasets from various re-
search groups. There will be a pluggable architec-
ture to translate and import the various datasets
into the simulator core. We design and develop a
website and database system which can be used for
upload, download, export and import of data.

e Simulator core: The simulator core will dynamic-
ally scale its performance according to the number
and type of hardware nodes available. A partic-
ular simulation run on the simulator engine core
is broken down into modules called agents. The
communication and scheduling module will do real-
time measurements of the current running simula-
tion and dynamically redistribute the agents accord-
ing to their calculation and communication needs.

e Support time-efficient implementations of new sim-
ulators: Concentrating on ease of use, the simulator
toolkit will make simulations a viable research tool
for a larger group of researches.

e Visualization tool: the simulation engine will utilize
existing commercial and open 3D engines to sup-
port visualizations of the simulations. We will in-
vestigate various 3D engines in our new 3D visual-
ization laboratory in Aalesund University Collage.

RELATED WORK

Modelling and simulation is gaining an increasing
interest due to the access to powerful, cheap computers.
The literature on modelling and simulation research could
be divided into two subgroups: Those that focus on the
software tools and APIs dedicated for running simula-
tions, and those that focus on representation of data and
modelling techniques. We will discuss some tools and
frameworks related to these two groups below.

The Agent Modeling Platform

The Agent Modeling Platform (AMP) (Agent Model-
ing Platform, n.d.) is an Eclipse Project which focuses
primarily on providing tools for ABM. In AMP, ex-
tensible frameworks and exemplary tools are provided
for representing, editing, generating, executing and visu-
alising ABMs and any other domain requiring spatial,
behavioural and functional features. The two main AMP
components are Agent Modeling Framework (AMF) used
for modeling of agent systems; and (AXF, AGF and
Escape) used for execution and exploration of those
agent systems. AMP may generate code (from models)
for target platforms like Repast Symphony, Escape and
Ascape (Macal and North, 2009; North and Macal, 2007;
Inchiosa and Parker, 2002) , and other platforms could
be supported with minor efforts. However, AMP does
not follow any of the FIPA (Poslad, 2007) guidelines and
standards.

The Java Agent Development Environment

Java Agent Development Environment (JADE) (Bel-
lifemine et al., 2007) is a completely distributed mid-
dleware system with a flexible and extensible infrastruc-
ture. The framework provides a run-time environment
for agent-based applications that implements the life-
cycle support features required by agents, the core lo-
gic of agents themselves, and a rich suite of graphical
tools. Since JADE is written in Java, it benefits from
Java language features and third-party libraries, and thus
offers a rich set of programming abstractions allowing
developers to construct JADE multi-agent systems with
relatively minimal expertise in agent theory. However,
while JADE is only a middleware system facilitating
implementation of agents, it does not provide a simu-
lation infrastructure/engine for running the simulations.
Furthermore, JADE is designed to be used by (Java)
programmers, meaning that other scientific staff must rely
on programmers and agent engineers to develop and run
simulations.

Modelica

Modelica is an object-oriented equation-based mod-
elling language suited for modelling complex physical
systems containing, e.g., mechanical, electrical, elec-
tronic, hydraulic, control, etc., subcomponents (Fritzson,
2015). Modelica comes with a large set of reusable
models and functions from various domains. In addition,
models defined using the Modelica language can be
simulated with a large number of both commercial and
free simulation environments. Furthermore, simulation
of complex environments containing a large number of

agents (especially when the agents are supposed to be
simulated using different simulation tools) is identified as
a challenge which modelling and simulation environments
like GridLAB-D try to solve using Functional Mockup
Units (FMU) (Elsheikh et al., 2013).

Our Approach

In our approach, we abstract away from programming
details, FIPA standards and simulation infrastructure by
proposing DSMLs suitable for the domain-experts. Then,
we use model transformation techniques, based on our
knowledge on MAS and HPC simulations, to generate
agent code which will be following FIPA standards and
well-proved simulation guidelines. Some of the relevant
work that we can build upon for our approach is listed
below.

Hybinette et al. (2006) developed a middleware paired
with a standard parallel discrete event simulation kernel
so as to realize distributed and parallel ABMS. Parker
(2007) created a distributed Java-based ABM for disease
transmission and managed to simulate 300 millions agents
with 38 GB memory in about 2 hours. Mengistu and Tro-
ger (2008) analysed large scale ABMS in grid execution
infrastructures.

Recently, GPU and FPGA are attracting attention in the
simulation community. Oak Ridge National Lab advoc-
ates the use of GPU and realized ABMS using a cluster
of GPUs using a combination of MPI and CUDA (Peru-
malla, 2009; Aaby et al., 2010), they obtained 30x spee-
dups compared to a CPU-based implementation. Cui et al.
(2011) used FPGA and achieved a speedup of 290x with
2 millions agents, compared to the C implementation.

CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a conceptual frame-
work for the definition of domain-specific modelling
languages (DSMLs) which are of particular usage for
modelling multi-agent-based systems. Along with a user-
friendly configuration of simulation scenarios, we believe
that scientists with no particular knowledge in program-
ming can benefit from using our methodology for both
definition of complex models and simulation of these
models. A hybrid CPU/GPU/FPGA HPC platform makes
large scale simulations with millions of agents feasible.

By the use of our proposed framework it will be easy
to define models that for instance may be used in Virtual
Prototyping (VP). VP is not limited to testing a thing
or a physical object prior to building it, it can as well
be applied to a technique or a method. In our specific
case, the Borgundfjord, our model could be used with
VP techniques to find good cleanup procedures or to find
perfect locations for fish farms.

Another research question is related to the use of
the gathered and integrated data from experiments to
search for patterns, which may or may not be thought
of by the domain-experts. For instance, there may be a
relationship between a certain type of boat traffic and
the transmission of certain diseases, or there may be a
relationship between a certain weather condition and a
certain pattern of transmission, etc. This is a problem
addressed by the big-data domain, which, given an event-
log, one can find possible relationships between different
events, or between causes, effects and consequences of

different events. We would like to address this idea in
future work.

Data and models from different domains inevitably will
come in a variety of formats and level of details. Integra-
tion of these models into a common simulation scenario
represents a challenge. We consider two options for trans-
forming the knowledge described in these models; either
(i) a single simulation system with distributed agents
in a grid, or (ii) several simulation systems with dis-
tributed agents which communicate using co-simulation
techniques. Techniques involving a functional mockup
interface (FMI) and function mockup units (FMUs) may
prove useful or even necessary and will be investigated
in future work.

ACKNOWLEDGEMENT

The authors wish to thank Arne Styve at Aalesund
University College for his valuable insight and comments
in the preparation of this manuscript.

REFERENCES

Aaby, B. G., Perumalla, K. S. and Seal, S. K. (2010), Efficient
simulation of agent-based models on multi-GPU and multi-
core clusters, SIMUTools 2010: 3rd ICST International Con-
ference on Simulation Tools and Techniques, ACM, pp. 29:1—
29:10. http://dl.acm.org/citation.cfm?id=1808143.1808181

Abdelfattah, M. S., Hagiescu, A. and Singh, D. (2014), Gzip
on a Chip : High Performance Lossless Data Compression
on FPGAs using OpenCL, IWOCL 2014: 2nd International
Workshop on OpenCL, ACM.

Agent Modeling Platform (n.d.), Project Web Site. http://www.
eclipse.org/amp/.

Alaliyat, S., Osen, O. L. and Kvile, K. O. (2013), An Agent-
Based Model To Simulate Pathogen Transmission Between
Aquaculture Sites In The Romsdalsfjord., ECMS, pp. 46-52.

Bellifemine, F. L., Caire, G. and Greenwood, D. (2007), Devel-
oping Multi-Agent Systems with JADE, Wiley.

Bonabeau, E. (2002), Agent-based modeling: Methods and
techniques for simulating human systems, Proceedings of
the National Academy of Sciences 99(suppl 3), 7280-7287.
http://www.pnas.org/content/99/suppl_3/7280.abstract

Brambilla, M., Cabot, J. and Wimmer, M. (2012), Model-
Driven Software Engineering in Practice, 1st edn, Morgan
& Claypool Publishers.

Bye, R. T., Osen, O. L. and Pedersen, B. S. (2015), A sim-
ulator for intelligent virtual prototyping of offshore cranes,
Proceedings of the 29th European Conference on Modelling
and Simulation (ECMS’15). To appear.

Bye, R. T., Rutle, A., Stene, A. and Yndestad, H. (2015),
Nautilus21: A generic, integrated, and scalable 3D ocean
simulator for scientific exploration and management of Nor-
way’s coastal waters and fjords, Proceedings of the 2nd Fjord
Conference (Fjordkonferansen 2014), Fjordkonferansen, To
appear.

Chen, D. and Singh, D. (2012), Invited paper: Using OpenCL
to evaluate the efficiency of CPUS, GPUS and FPGAS for
information filtering, FPL 2012: 22nd International Confer-
ence on Field Programmable Logic and Applications, IEEE,
pp. 5-12.

Cui, L., Chen, J., Hu, Y., Xiong, J., Feng, Z. and He, L. (2011),
Acceleration of Multi-Agent Simulation based on FPGA, FPL
2011: International Conference on Field Programmable Logic
and Applications, IEEE, pp. 470-473.

Elsheikh, A., Awais, M., Widl, E. and Palensky, P. (2013),
Modelica-enabled rapid prototyping of cyber-physical energy
systems via the functional mockup interface, Modeling and

http://www.eclipse.org/amp/
http://www.eclipse.org/amp/

Simulation of Cyber-Physical Energy Systems (MSCPES),
2013 Workshop on, pp. 1-6.

Fowler, M. (2010), Domain-Specific Languages, Addison-
Wesley Professional.

Fritzson, P. (2015), Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach,
2 edn, Wiley, Hoboken, NIJ.

Hybinette, M., Kraemer, E., Xiong, Y., Matthews, G. and
Ahmed, J. (2006), SASSY: A Design for a Scalable Agent-
Based Simulation System using a Distributed Discrete Event
Infrastructure, WSC 2006: the Winter Simulation Conference,
pp- 926-933.

Inchiosa, M. E. and Parker, M. T. (2002), Overcoming design
and development challenges in agent-based modeling using
ascape, Proceedings of the National Academy of Sciences
99(suppl 3), 7304-7308.

Kestur, S., Davis, J. D. and Williams, O. (2010),
BLAS Comparison on FPGA,CPU and GPU, ISVLSI
2010: IEEE Computer Society Annual Symposium
on VLSI, IEEE Computer Society, pp. 288-293.
http://caxapa.ru/thumbs/282284/ISVLSI_FINAL.pdf

Kolovos, D., Rose, L. and Paige, R. (2005), The Epsilon Book.
http://www.eclipse.org/gmt/epsilon/doc/book/.

Macal, C. M. and North, M. J. (2009), Agent-based Modeling
and Simulation, A. Dunkin, R. G. Ingalls, E. Yiicesan, M. D.
Rossetti, R. Hill and B. Johansson, eds, Proceedings of the
2009 Winter Simulation Conference, WSC 2009, Hilton Aus-
tin Hotel, Austin, TX, USA, December 13-16, 2009, WSC,
pp. 86-98. http://dx.doi.org/10.1109/WSC.2009.5429318

Mengistu, D. and Troger, P. (2008), Performance Optimiz-
ation for Multi-agent Based Simulation in Grid Environ-
ments, CCGRID 2008: 8th IEEE International Symposium
on Cluster Computing and the Grid, IEEE, pp. 560-565.

MetaCase (2007), Metaedit+ workbench.
http://www.metacase.com/mwb/

Niazi, M. and Hussain, A. (2011), Agent-based com-
puting from multi-agent systems to agent-based mod-
els: a visual survey, Scientometrics 89(2), 479-499.
http://dx.doi.org/10.1007/s11192-011-0468-9

North, M. J. and Macal, C. M. (2007), Managing Business Com-
plexity: Discovering Strategic Solutions with Agent-Based
Modeling and Simulation, Oxford University Press, Inc., New
York, NY, USA.

Parker, J. (2007), A flexible, large-scale, distributed agent based
epidemic model, WSC 2007: Winter Simulation Conference,
IEEE, pp. 1543-1547.

Perumalla, K. S. (2009), Switching to high gear: Opportunities
for grand-scale real-time parallel simulations, DS-RT 2009:
IEEE International Symposium on Distributed Simulation and
Real-Time Applications, pp. 3—10.

Poslad, S. (2007), Specifying Protocols for Multi-agent Sys-
tems Interaction, ACM Trans. Auton. Adapt. Syst. 2(4).
http://doi.acm.org/10.1145/1293731.1293735

Pratt, M. J. (1995), Virtual prototypes and product models in
mechanical engineering, Virtual Prototyping—Virtual environ-
ments and the product design process 10, 113-128.

Reynolds, C. W. (1987), Flocks, Herds, and Schools: A Distrib-
uted Behavioral Model, Proc. ACM SIGGRAPH Computer
Graphics, Vol. 21, ACM, Anaheim, California, pp. 25-34.

Rutle, A. (2010), Diagram Predicate Framework: A Formal
Approach to MDE, PhD thesis, Department of Informatics,
University of Bergen, Norway.

Segal, O., Margala, M., Chalamalasetti, S. R. and Wright, M.
(2014), High Level Programming Framework for FPGAs in
the Data Center, FPL 2014: 24th International Conference on
Field Programmable Logic and Applications, IEEE, pp. 1-4.

Steinberg, D., Budinsky, F., Paternostro, M. and Merks, E.
(2008), EMF: Eclipse Modeling Framework 2.0 (2™ Edi-
tion), Addison-Wesley Professional.

TOP500.0rg (2012), November 2012 List. www.top500.org

Wang, G. G. (2002), Definition and review of virtual proto-
typing, Journal of Computing and Information Science in
engineering 2(3), 232-236.

AUTHOR BIOGRAPHIES

ADRIAN RUTLE' holds PhD and MSc degrees in
Computer Science from the University of Bergen (UiB),
Norway. Rutle is associate professor at the Department
of Computing, Physics and Mathematics at the Bergen
University College (HiB), Norway. Rutle’s main interest
is applying theoretical results from the field of Model-
driven Software Engineering to practical domains. He
also conducts research in the fields of modelling and
simulation of various physical environments using Multi-
Agent Systems. His main expertise is the development of
formal modelling frameworks as well as domain-specific
modelling languages, based on multi-level metamodelling
and formal, diagrammatic constraint definitions. He has
also experience in using graph-based logic for reasoning
about static and dynamic properties of models; as well
as in using model transformations for the definition of
semantics of modelling languages.

HAO WANG 2 holds a PhD and a BEng, both in Com-
puter Science. He is currently an associate professor and
the head of big data lab with the Faculty of Engineering
and Natural Sciences at the Aalesund University College.
He is interested and has worked in big data, distributed
systems, safety-critical systems, real-time systems, and
security. He has extensive collaborations with industrial
companies and academic institutes.

ROBIN T. BYE® graduated from the University of
New South Wales, Sydney with a BE (Hons 1), MEngSc,
and a PhD, all in electrical engineering. Dr. Bye began
working at the AAUC as a researcher in 2008 and has
since 2010 been an associate professor in automation
engineering. His research interests belong to the fields of
artificial intelligence, cybernetics, and neuroengineering.

OTTAR L. OSEN is MSc in Cybernetics from the
Norwegian Institute of Technology in 1991. He is the
head of R&D at ICD Software AS and an assistant
professor at AAUC.

lwww.rutle.no
2www.haowang.no
3www.robinbye.com

http://www.eclipse.org/gmt/epsilon/doc/book/
http://www.rutle.no
http://www.haowang.no
http://www.robinbye.com

