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ABSTRACT 

Data-aware scheduling in large-scale heterogeneous 
computing systems remains a challenging research 
issue, especially in the era of Big Data. Design of all 
data-related components of the popular distributed 
environments, such as Data Clouds (DCs), Data Grids 
(DGs) and Data Centers supports the processing, 
analysis and monitoring of the big data generated by 
various sources at computing centers by the end-users, 
devices and services. The above facts leave no doubts 
that data scheduling must be integrated in a single joint 
process together with the scheduling of computer tasks 
and applications. Therefore, many of the current 
optimization issues need to be changed and new 
requirements have to be considered in the scheduling 
process. This includes data transmission times, data 
processing times, availability of the data servers, safety 
and authentication in the data access processes. This 
paper presents a new version of the Expected Time to 
Compute Matrix model (ETC Matrix) for the case of 
data-aware independent batch scheduling in physical 
network in DGs and DCs environments. Simple genetic-
based schedulers have been developed for experimental 
justification of the significance of the presented 
problem.  

INTRODUCTION 

s, such as grid and cloud 
environments, are the large-scale global infrastructures 
enabling the remote access to variety of data types and 
applications, and large amount of data bases. Data in 
such systems can be generated also by multiple highly 
distributed users, different types of services and sources 
such mobile devices, computing applications, social 
networks, enterprise, cameras etc. The researchers must 
to face the problem of scheduling such big data,  but 
also they must develop new methodologies and models 
for an effective management  of large volumes of data 
and information. Common scheduling issues in 
distributed environments are mainly concerned with the 
task processing CPU-related requirements which are 
makespan, flowtime, resource usage, energy utilization 
etc. (Kolodziej 2012). In all similar approaches, typical 
data-related scheduling criteria, such as data processing 

and transmission time, data availability, data access and 
security requirements, are not considered. 
The reality, where data facilities can be located 
anywhere, with different access rights and 
administrative domains, is far more different from the 
current assumptions. 
Scheduling with data-awareness has been considered in 
many research works on cluster computing, DGs 
infrastructures and also recently in DCs (Buyya et al.  
2005).Most of the provided surveys concentrates on 
data processing optimization issues along with data 
servers reliability in the data centers. Other approaches 
focused on data transmission scheduling and data 
allocation (Kosar and Balman 2009) for effective 
resource/storage utilization or energy-aware scheduling 
in large-scale data centers (Kliazovich et al. 2010; 
Kolodziej et al. 2011). 
GridBatch (Liu and Orban 2008 ) can be a good 
example for large-scale data-intensive issues in cloud 
environments. The significant survey challenge is to 
efficiently process the huge amount of data in such 
infrastructures and the major issue is the scheduling 
process with the data transmission criteria. 
In this work, a new version of the Expected Time to 
Compute Matrix (ETC Matrix) model is defined for 
Computational Grids (CGs)  and the physical layers of 
the cloud environments, which are considered with new 
requirements like the data transmission and separation 
data from transformation (Zeadally et al. 2011; 

 Xhafa 2010). 
The main aim of this paper is to define the scheduling 
process with the criteria mentioned above, as a multi-
objective global optimization problem, similarly to the 
classical grid scheduling with ETC Matrix model (Ali et 
al. 2000a).Grid schedulers in the proposed model have 
both DGs and CGs features to meet the required 
performance of grid-enabled applications (
and Xhafa 2011a; Xhafa 2011b).   
This work is a simple extension of our previous results 
presented in (Szmajduch 2014). We implemented the 
developed model in the dynamic grid scenarios for three 
types of grid environments: small (nb tasks/nb of hosts), 
medium (the same) and large (the same) grids. 
The remainder of the paper is structured as follows. In 
the next section, the modified data-aware ETC Matrix 
model for independent batch scheduling and major 
scheduling requirements are defined. The analysis of the 
empirical results is then described. The last section is 
the paper summary and conclusions. 
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DATA-AWARE EXPECTED TIME TO COMPUTE 
(ETC) MATRIX MODEL 
We consider a batch scheduling problem of independent 
processed tasks, which need for their execution multiple 
data packages located at various heterogeneous data 
hosts, in physical computational infrastructures such as 
large-scale cluster, grid or the Infrastructure as a Service 
(IaaS) layer of the cloud system. The required data 
collection can be replicated at different servers, 
databases and can be delivered to the computational grid 
by the different capabilities networks (see Fig. 1). 
Such data-aware grid system may be composed of 
elements denoted as follows: 

a  meta-tasks N = {t1,...,tn}defined as a batch of 
independent tasks,  
a set of computing grid nodes M = {m1,...,mm}
available for a given batch; 
a set of data-files F = { f1,..., fr} needed for the 
batch execution, 
a set of data-hosts D = {dh1,...,dhs} dedicated for 
the data storage purposes, having the necessary data 
services capabilities. 

The tasks workload vector is 
used todefine the computational load of the meta-task, 
where  is the evaluation of the computational load of 
task  (measured in Millions of Instructions (MI)). Each 
task needs a batch of data files 

 for its correct 
computation. Such batch is copied and located at the 
following data servers . The  is a part of the .
Each file  is replicated on and 
available from the set of data hosts . Each data host 
is assumed to be able to serve multiple data files at a 
time and data replication is a priori defined as a separate 
replication process. 

The computing capacity vector 
is used to define the performance efficiency of the 
available computational server for a given set. The 
element of the vector denotes the computing capacity of 
the server and is expressed in a Million of Instructions 
Per Second (MIPS). 
The ready times vector 

characterize the calculation of the 
prior load of every machine from the  set.
To estimate the completion times of tasks allocated at a 
specific computational server an Expected Time to 
Compute (ETC) matrix model (Ali et al. 2000a) is 
adapted. 
The particular elements of the ETC matrix are estimated 
as the proportion of the vectors  and  coordinates, 
which are: 

                 (1)

For every single pair machine  and task  in Eq. (1) 
the value of the matrix element  primarily 
depend on the computing speeds of the machines. 
However also the diversity of tasks and sources in the 

system has to be reflected and taken into account. 

For that reason, this model use the Gaussian distribution 
to produce the elements of both vectors and .
What is more when considering data-aware scheduling 
is the estimation of the data transfer time. The time 
needed to transfer each, necessary for the execution of 
the task , data file  from the 
data host  to the server  is marked as  

 and can be computed as follows: 

                               (2) 

Fig. 1 Data-aware meta-task grid scheduling problem. 



The  stands for the response time of the 
data server and is evaluated as a difference between the 
time of the demand send to   and the time when the 
first byte of the data file  reached the machine  for 
processing the task . The size of the data file 
required for the execution of the task is defined by 

 and is expressed in Mbits. Where the 
bandwidth of the logical link connecting  and  is 
denoted by  and expressed with Mbits/time 
unit. 
The  are the elements which form the Data 
Response Times matrix denoted as . Similarly to 
the vectors  and ,the data response times are 
generated using the standard Gaussian distribution.
The major scheduling factors in the ETC matrix model 
are the resources completion times. The 

 defines the calculated completion 
time of the task on machine  as the wall-clock time 
measured from the task submission till its completion. 
In data-aware approach it highly depends on the 
computing and transmission times specified in Eq. (1) 
and Eq. (2). 
The data transfer time can have different influence on 
the task completion time depending on the method 
which is used to process the data file by the task. Two 
possible scenarios are presented in Figure 2. 

for the computation of the task are delivered to the 
machine before the execution of all the tasks, from the 
tasks batch, assigned to his machine, including task 
Every transfer bandwidth is calculated due to the 
number of possible synchronized data transfers. In such 
case the completion time on machine  of the task  is 
expressed by: 

                    (3) 

with the difference that the rest of data required for the 
execution of every task on this particular machine 
(including task ) is delivered while executing the 
tasks. In this case, the delivery times of the streamed 
data files are concealed by execution times of the tasks, 
thus the completion time of the task on machine  is 
calculated with a different, following equation: 

                     (4) 

where  represents the data files batch which is 
delivered before the execution of the task  and 
obviously all other tasks belonged to this machine. 
This survey considered the data hosts as, separated from 
the computing resources, data storage centers. 

 

Fig.2. Two variants of task completion times estimation 
assigned to the machine mi with k data files needed for 
the task execution. 

Scheduling criteria 

The overall data-aware batch scheduling procedure is 
performed in the following steps: 

obtain the information about resources that are 
available in the system, 

obtain the information about unsettled tasks, 

establish the location of data hosts where the data 
files needed for the tasks completion are placed, 

prepare a set of tasks and calculate a schedule for 
this set on available machines and data hosts, 

allocate the tasks, 

monitor the process and re-scheduled the tasks 
which failed. 

This process has been presented graphically in Figure 3 
below. 



 
       Fig.3. Phases of the data-aware batch scheduling. 

The main data-aware scheduling criteria are very similar 
to those desired in common scheduling systems where 
data file transfers are not considered. It includes 
minimization of the completion time, makespan and 
average flowtime, defined as follows: 

the minimizing completion time of the set of tasks 
is defined as follows: 

 ,       (5) 

where  is calculated in Eq. 3 or Eq. 
4according to data transfer mode; 

minimizing makespan  computed as: 

               (6)

where  is calculated as the sum of 
completion times of all the tasks assigned to machine 

 by using either Eq. 3or Eq. 4. 

minimizing average flowtime  For a machine 
the flowtime can be computed as a workflow of 

the tasks chain on this machine, specifically: 
 

                  (7) 

The cumulative flowtime for the entire system is 
denoted as the sum of   factors, namely: 

                                              (8) 

In the end, the scheduling aim is to minimize the 
average flowtime  for single machine, which is defined 
as below: 

.                              (9) 

The above formal definitions of the major scheduling 
criteria are based on the ETC matrix model, which is 
very helpful in formulating such equations.The 

parameters form the completion 
vector

.The full list of 
the major scheduling criteria defined in terms of 
completion times and ETC matrix, is presented in 
(Kolodziej 2012). 

EXPERIMENTS

The aim of a simple experimental analysis is to show, 
how much the data access and transfer can possibly 
delay the whole scheduling process. The scheduling 

Fig 4. General template of the GA-scheduler implementation. 



considered in the experiments were the makespan and 
average flowtime calculated by using Eqs. 6 and 9. The 
results of data-aware scheduling were compared with 
the results achieved in the conventional scheduling, 
where data transfer times are ignored. In such a case it is 
assumed that all necessary data is stored at 
computational nodes and ready for use, which is not the 
realistic scenario. For the analysis both data transfer 
scenarios specified in 
Section II are considered. Therefore, the completion 
times in Eq. 5 are estimated using Eq. 3in the first 
scenario, and Eq. 4in the second scenario. 

We used as the scheduler in our experiments a simple 
genetic-based scheduler presented in Fig. 4. This is a 

 strategy often used for 
solving classical combinatorial optimization problems 
(see Xhafa et al. 2007; Pinel et al. 2011; Michalewicz 
1992).We configured the genetic operators in the 
following way:  

selection  Linear Ranking, 
crossover  Cycle Crossover, 
mutation  Rebalancing, 
replacement  Steady State. 

All those genetic operators are commonly used in 
solving the large-scale combinatorial problems. The 
detailed definition of those operators and schedule 
representation can be found in (). 

The input parameters for the scheduler are presented in 
Table 1 

TABLE 1. Settings of the genetic scheduler. 

Parameter Value 

 / 3 
mut_prob 0.15 
cross_prob 0.9 
nb_of_epochs 
max_time_to_spend 

The number of individuals in base populations shown 
as  and 
of individuals in offspring populations ,  and .
The parameters cross_prob, mut_prob are used for the 
notation of the crossover and mutation probabilities. 
The nb_of_epochs denotes the maximal number of main 
loop executions of the algorithm. Each loop execution is 
interpreted as genetic epoch. The maximal number of 
such epochs is defined as the main global stopping 
criterion for the scheduler. However, if the execution of 
those epochs will take much time, the algorithm is 
stopped after 25 s (max_time_to_spend). 

The main reason of our choice of such a simple 
scheduler was to demonstrate the impact of the data 
transfer and access on the optimization of the 
scheduling criteria. Therefore, we wanted to use a 
simple method, easy for the implementation in the 
performed analysis. However, this is just an early stage 
of our research in the domain and of course we plan to 
conduct a comprehensive analysis of the effectiveness 
of various heuristic-based schedulers in data-aware 
scheduling.  

The experiments have been conducted by using the  
Sim-G-Batch  data grid simulator defined in (Kolodziej 
et al. 2012). The main input data for the simulator is:

the workload vector of tasks, 
the computing capacity vector of machines, 
the vector of prior loads of machines, and 
the ETC matrix of estimated execution times of 
tasks on machines 
the data host response times. 

The parameters of the simulator are presented in Table 
2. We consider in our experiments three grid size 
scenarios are defined: small (64 hosts/1024 tasks), 
medium (128 hosts/2048 tasks), and large (256 
hosts/4096 tasks). The capacities of the resources, data 
transmission times and the workloads of tasks are 
randomly generated by the Gaussian distributions. This 
is the dynamic case, so the number of hosts and tasks 
can be different in the different time units (add_host, 
delet_host, add_task, delete_task parameters) It is 
assumed that all tasks submitted to the system must be 
scheduled and all machines in the system can be used. 
The sizes of data files and the bandwidth are generated 
by the uniform distributions defined for the following 
intervals [2;1600] and [10;100] respectively. 

 



TABLE 2. Settings of the simulator. 

Small Medium Large 
Init. hosts 64 128 256 
Max. hosts 70 135 264 
Min. hosts 58 121 248 
MIPS N (1000, 175) 
Add host N (562500, 84375) N (500000, 75000) N(437500, 65625) 

Delete host N(625000, 93750) 
Total tasks 1024 2048 4096 
Init. tasks 768 1536 3072 
Workload N (250000000, 43750000) 

Interarrival E (3906.25) E (1953.125) E (976.5625) 
Data Respond Time N (100, 35)
Host select ALL 
Task select ALL 

Number of runs 30 

Results 

The results of the experiments achieved in the scenarios 
(see Section II) and No Data Transfer 

(NDT) case are presented in Table 3 (makespan) and 4. 
(average flowtime).The results were averaged over 30 
independent runs of the simulator with [±s.d.] s.d-
standard deviation values. Both makespan and average 
flowtime are expressed in arbitrary (but not concrete) 
time units. 

In both makespan and average flowtime optimizations, a 
big differences in the achieved results is observed in the 
additional data transfer and no data transfer cases. In a 
data-aware scheduling, s
the achieved results (for  makespan and flowtime) in 
Medium grid and Large grid infrastructures are better 
than for the prior load of all data files before the task 

In Small grid the results are 
similar for both scenarios.

TABLE 3. Makespan results ( S.D.) (inarbitrary time unites (S.D.  standard deviation)). 

Scenario Small Medium Large 
751166581.648 

( 44117322.872) 
860885586.314 

( 49641822.213) 
927657348.425 

( 38411457.341) 
762942252.985 

( 42989403.987) 
820238735.873 

( 39103304.032) 
889227303.643 

( 21393320.672) 
NDT 4534354074.674 

( 432550682.566) 
489261762.387 

( 41873795.873) 
491155422.873 

( 39721132.235) 

TABLE 4. Average flowtime results ( S.D.) (inarbitrary time unites (S.D. standard deviation)). 

Scenario Small Medium Large 
1589661820.816 

( 436299327.723) 
3190329034.728 

( 827910218.673) 
6398508188.267 

( 546372083.478) 
1597014554.934 

( 718565549.521) 
3009072850.369 

( 276260267.376) 
5908237732.186 

( 895036487.371) 
NDT 1087665145.384 

( 103328184. 256) 
2141758180.791 
( 17796699.367) 

4241955274.638 
( 799690481.526) 

CONCLUSIONS AND RESEARCH DIRECTIONS  

This paper presents the new version of ETC Matrix 
model for batch scheduling in the physical clusters, 
where separate computing and data servers are located. 
In this model, the completion times of all tasks assigned 
to the computing nodes of the network have included 
the data transmission times. Two data transmission 
scenarios were considered with prior load of all files 
necessary for the execution of assigned tasks, and with  

the ad-hoc delivery of just requested (necessary) data 
files during the task execution. The implementation of 
this model and further experimental analysis were 
performed in the case of dynamic grid infrastructure, 
were number of network nodes and assigned tasks may 
vary in different time intervals. The results of the 
performed experiments show that omitting the data 
transfer phase in the scheduling process may lead to the 
bad estimations of the scheduling times, and more 
general scheduling costs. 



The performed analysis in its early stage. The presented 
work is a simple extension of the previous analysis 
published in (Szmajduch 2014).The author plans to 
extend it to the virtual resources and databases and the 
extended cloud infrastructures, where the mobile 
devices (smartphones, tablets, laptops, etc.) are 
considered as the computational nodes of the physical 
cloud layer and can additionally store and generate the 
data. This will allow to validate proposed model in 
much more realistic cloud scheduling scenarios, but also 
will increase the complexity of the scheduling problem. 
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