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ABSTRACT

Microservice-based software architectures are a recent
trend, stemming from solutions that have been designed and
experimented in big software companies, that aims to support
devops and agile development strategies. The main point is that
software architectures, similarly to what happens in SOA, are
decomposed into very elementary tasks, that can be developed,
maintained and deployed in isolation by small independent
teams, and that compose an application by means of simple
interactions. The resulting architecture is advocated to be more
maintainable, less prone to failures, more agile, but obviously
impacts on performances. In this paper we provide a simula-
tion based approach to explore the impact of microservice-
based software architectures in terms of performances and
dependability, given a desired configuration. Our approach
aims at giving a first approximation estimation of the behavior
of different classes of microservice-based applications over a
given system configuration, to characterize the infrastructure
from the point of view of the service provider under a
randomly generated realistic overall workload: to the best
of our knowledge, there is not any other analogous decision
support tool available in literature.

I. INTRODUCTION

Microservice-based software architectures are a technical
solution that emerged from the industry sector to face the
challenges that the market of cloud applications has created.
Competition requires a continuous update and upgrade of
applications that become larger and larger and serve simul-
taneously a very big number of users and requests, while
the design, maintenance and deployment of larger and larger
code bases results in more and more complex development
and management cycles, exposing applications to a higher

risk of fault propagation or more extended consequences
of erroneous behaviors, due to coding errors. Microservice-
based architectures support the decomposition of complex
monolithic applications into a (high) number of very simple
services, each responsible of elementary actions within the
logic of the execution flow of an application, and interacting
by means of simple (generally HTTP based or socket based)
communication protocols.

A first advantage of this choice is a decoupling of mi-
croservices, each of which may be developed, maintained
and administered by a different team, and each of which
may be managed in a continuous integration mode, typical of
agile development paradigms. Moreover, the small size of a
microservice allow a small code base (based on an independent
stack, seamlessly with respect to the stack used by the other
microservices), a smaller team, and an easy integration of new
team members with a shorter training.

A second advantage is the potential improvement of ap-
plication resilience and scalability, as, being each service
run independently, faults will not result in a crash of the
whole application, and a different number of replicas of each
microservice may be executed when and if needed, depending
on the workload. Together with the use of containers, the
increase in workload may be mitigated: anyway, in general,
lower performances are reasonably expected with respect to
monolithic applications.

While there is a simplification of the development cycle
of microservices, the general structure of the application
becomes more complex, because of the fact that planning and
general design must suffer a lack of control, and, potentially,
of optimization, on what is delegated to each microservice
development team. The overall management of the execution
environment and of the infrastructure, that is the most of
what is left to the global level, heavily affects the general
performances of the application, but with a high level of
decentralization of responsibilities and control leverages. In
this paper we investigate, with a stochastic simulation based
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modeling approach, the general behavior of microservice-
based applications with respect to performances, dependability
and scalability, on a given infrastructure. The goal is to obtain
a conceptual tool to provide methodological guidelines for the
management of the infrastructure.

This paper is organized as follows: next Section provides
related works, while Section III gives an overall introduction
to microservice-based software architectures and applications;
Section IV describes the simulation approach and the modeling
framework; Section V offers the results of the test experiments
that have been performed; finally, conclusions close the paper.

II. RELATED WORKS

At the state, there is not a wide academic literature about
microservices, while there is plenty of good technical refer-
ences related to implementation, cases and practical issues.
Microservices architectures, as they are intended in the cur-
rently agreed definition, have been introduced in [1]. For
a fast and readable introduction to the main themes about
microservices in the cloud we suggest the reader to refer to
[2], while for a systematic mapping of existing literature about
the microservice architecture we suggest [3], to which we
also redirect the readers for a more extensive reference list.
In [4] the authors discuss, with a quite complete and solid
analysis of all the aspects related to the executing architecture,
the workload characterization of microservice architectures,
with an experimental approach that benchmarks a monolithic
application versus two different microservice versions, one
based on a monothread support and one based on a multithread
support, with very interesting results. In [5] and [6] the
analysis focus instead on the costs and the benefits of the
deployment of monolithic versus microservices and of mono-
lithic versus AWS Lambda versus microservices architectures,
considering both cloud customer or cloud provider operated
systems. In [7] the scalability of the Docker container is
evaluated, in different conditions, considering it as a new type
of system workload. A similar study has been developed in
[8], that identifies the challenges for a full development of
containers based systems. For what concerns the operating
condition, [9] describes a proposal for resilience testing, while
[10] formulates a proposal for a decentralized autonomic
behaviour for microservice architectures. Finally, for what
concerns applications, the web offers a lot of proposals and
descriptions: we rather prefer here to refer to a couple of peer
reviewed papers, [11] and [12], as a starting point for readers,
for their clear and systematic presentation.

III. MICROSERVICE ARCHITECTURES

A microservices based software architecture is an applica-
tion composed of a number of software services that may
be independently deployed and that directly interact with one
another with lightweight mechanisms [4]. Each microservice
is executed in a separate process. In general, a microservice
is executed as a native process of the host, by means of
a container, that is an abstraction layer capable of virtual-
izing resources with a low, but non negligible, impact on

!"#$%&'$("#')*+&',-
.//0"#+1%2-

3!4- 3!5- 3!6-

7!4- 7!5-

80%9,-:'$('$-;$%(",'$-

Nµs

NVM

Fig. 1. General schema of a microservices based architecture

performances, and providing isolation. The technology stack
may or may not allow multithreading, introducing a further
element of complexity for the evaluation of performances: a
multithreading solution may be more efficient by exploiting
pooling, but suffers e.g. from blocking caused by I/O request
waits; a single thread solution does not, but processes need
more resources than threads. The use of containers allows
a microservices based application to be seamlessly migrated
as a whole, as it is commonly used for an agile deployment
from the development to the production environment, that is
generally cloud based. However, in the practice an application
spans over a large number of different containers, that may
theoretically get up to the number of microservices, to allow
the enactment of agile development processes. This has an
impact on performances as well, because the interactions
between the microservices need a virtualized network between
containers. Finally, the number of active containers is also a
leverage to scale performances up and down when needed to
fit the dynamics of the workload. As described in [2], Fig.
1 shows a graphical representation of the relations between
microservices (µs), virtual machines (VM) and nodes (HM -
Hardware Machines). As usual in cloud computing, each node
can host several VMs and partition resources among them.
Moreover, each VM can host several microservices that are
used to implement the application.

Each container is executed within the operating system (OS)
of which it virtualizes the resources, as a process, and provides
its services by means of a client-server logic. When run
in cloud environments, containers are executed within VMs.
Consequently, containers are executed on the OS provided by a
VM that in turn is executed on the computing nodes by means
of the host OS or a hypervisor, eventually together with other
VMs. The computing resources of the node, that is generally a
multiprocessor and/or multicore architecture, are so managed
in order to map each thread of a microservice to a core and
each process to a processor.

Within the cloud infrastructure, VMs are managed accord-
ing to the internal policies that provide elasticity and power
management features. VMs may be migrated, shelved or
launched when needed, similarly to what happens to threads
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within containers and to containers within a VM. A correct
estimation of the best policies for the provider, consequently,
requires models that may allow to understand the overall
effects of the interactions within and between the different
levels, and evaluate the role of the various available param-
eters. We already dealt with performance modeling of cloud
architectures [13] [14] and multithreaded applications [15]: in
the following we will focus on the microservice architecture,
including all the architectural details of the whole cloud stack
that are relevant for performance evaluation.

IV. SIMULATION APPROACH AND MODEL

As, to the best of our knowledge, there is not at the
moment a general simulation approach for microservice ar-
chitectures, nor there are extensive characterizations of their
parameters available, the simulation approach adopted in this
paper is designed to produce a first approximation glance
on the general behavior of these systems without a single
reference scenario: the goal is to provide an estimation of
performance and dependability for different configurations.
Consequently, the approach is based on a parametric gener-
ation of a large number of different possible microservices
applications, defined as oriented graphs, with a parametric
random resource usage and fault probability per microservice,
that are mapped onto a parametric architecture, in which
the number of servers (in a cloud), the number of VMs
per server, the number of containers per VM can be varied:
moreover, a fault probability is assigned to every component
of the architecture. The workflow of the approach is depicted
in Fig. 2. A set of applications is generated, according to
chosen parameters, by a scenario generator, that instantiates
a simulation per case. Simulations are run by an event based
simulator that has been specificly designed for this paper. The
simulator produces performance and dependability metrics,
and the results of simulations are then processed by a statistics

processor that produces an overall performance profile of the
given system configuration(s), described as a function of the
different parameters and the scenarios.

More in details, in this work we used Montecarlo simulation
to generate several random application topologies and study
their performance and availability, and proper maximum en-
tropy probability distributions, to avoid biasing due to the lack
of assessed models, or the Zipf distribution in analogy to web
traffic characterizations.

In each simulated scenario (see Fig. 1) an application is
split in Nµs microservices, and it can be executed by users
at rate of λu requests per second. Microservices are allocated
within proper containers in VMs executed on the top of host
machines provided by a cloud infrastructure, the total number
of available VMs, according to the contract, is denoted with
NV M . We defined most parameters with stochastic numbers
generated with probability distributions. In this case study,
we assume that the number of microservices Nµs has a
Poisson distribution with parameter λµs. Next, we consider
that the number of VMs on which microservice containers
are deployed NVM is a fraction of β of Nµs, to represent that

scenario n......scenario 2

scenario n......scenario 2

perform. 1

scenario 1

simulator

scenario
generator

statistics

performance
profile

Fig. 2. The workflow of the simulation approach

subsets of containers can be allocated on the same VM. In
particular, we define:

NV M =
⌈

β ·Nµs

⌉

(1)

Each microservice can be invoked a random number of times
during the execution of the application. We assume this ran-
dom number to be geometrically distributed, with an average
vi for each microservice i. We assume that not all the mi-
croservices are equally used in serving a request. Some can be
essential, and will consequently be called several times during
the execution (e.g. verification of user identity), while some
other ones might be required only in special circumstances.
We thus assign to each microservice i, 1 ≤ i ≤ Nµs, a random
average number of executions vi, according to a popularity
level. In particular, we assume that microservices with a lower
index i are more popular (i.e. have a larger average number of
executions) than services with a high index. Popularity follows
a modified Zipf distribution, characterized by 4 parameters: c

(the scale parameter), s (the shape parameter), q (the shift
parameter) and α (the randomness parameters). Let ui be a
random number, uniformly distributed in the range [0,1]. We
compute, for each randomly generated scenario, the average
number of calls to a microservice i as:

vi =
c

(i+ q+α ·u)s (2)

We assume that the execution time for each microservice i

is exponentially distributed with average Si. In each scenario
for any micorservice i the value of Si is randomly defined
according to an Erlang distribution with kS stages, and average
λS. In order to consider VM faults, Mean Time To Failure
(MTTF) and Mean Time To Repair (MTTR) parameters are
sampled for both the VMs (infrastructure faults) and the
microservices (software faults). In particular, such parameters
are MT TFVM , MT TRVM , MT T Fµs and MT T Rµs. For each
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random scenario generated, we sample the previous parameters
from four different Erlang distributions, each one characterized
by its number of stages (kMT T FVM , . . . ,kMT T Rµs), and average
time (λMT T FVM , . . . ,λ MT T Rµs).

A. VMs allocation

Many allocation policies can be described in our model. In
particular, for each VM j we denote with M j ⊆ {1, . . . ,Nµs}
the set of microservices that are executed over it. The set M j

forms a partition:
⋃

1≤Nµs
A j = {1, . . . ,Nµs}, and A j ∩ Ak =

/0, ∀1 ≤ j,k ≤ NVM . In this work we have considered two
policies, addressed in the following as case I and case II.
The case I policy defines an elementary strategy according to
which containers are cyclically assigned to VMs taken from a
list obtained as a random permutation of available VM number
identifiers. When the application execution starts, a container
is assigned to the first VM in list, then the next is assigned
to the following VM in list, and so on; if the VM list is over,
containers are assigned starting again from the top of the list.
In this way each VM has at least one container, and services
are assigned to computing resources in a random way.
The case II strategy instead tries to compact the containers
according to their demand. The two containers with the
smallest requirements are merged together on the same VM,
creating a new single ”equivalent” container whose demand is
the sum of the ones of the services that are combined. The
equivalent container replaces the two merged services, and the
process is repeated until there is just one equivalent container
per VM. In this way, the average utilization of the VMs is
maximized, creating a more balanced system.
Other strategies that can be easily included in the model can
for example be based on the actual load, overall utilization, or
containers can be assigned to VMs taking into account their
task and requirements.

B. Performance indexes

Given these scenario and parameters we are able to evaluate
system performance by computing the indexes we report in
the following. The load introduced in the cloud infrastructure
by any microservice i is easily derived as:

Di = vi ·Si (3)

By counting the number of containers assigned to each VM
we can compute VMs load and utilization. Hence, for any VM
j we have the load defined as

D j = ∑

i∈M j

Di (4)

Remembering that λu is the rate at which users requests for
the application arrives to the system, the utilization Uj for any
VM j, when the system is stable, can be computed as:

Uj = λu ·D j (5)

In the same way, one particular configuration is stable only if
Equation 5 is strictly less then one for all VMs, or equivalently
if:

λu <
1

max
1≤ j≤NVM

D j
(6)

Throughput Xi of a container i is computed as Xi = λu · vi;
the average response time of a VM j and the average system
response time R as:

R j =
D j

1−Uj
R =

NVM

∑

k=1

R j (7)

The availability of the application A = AVM ·Aµs is computed
as the product of the availabilities of the VMs (AVM) and of
the microservices (Aµs) used during one application execution.
Since each VM j and each microservice i is characterized by
its own mean time to failure and mean time to repair, we can
define their corresponding availability as:

AVMj =
MT T FVMj

MT T FVMj +MTT RVMj

(8)

Aµsi =
MT TFµsi

MT T Fµsi +MTT Rµsi

(9)

However, since not all microservices are required during each
application execution, the fault of a machine will not always
cause a failure. Let us call pVMj and pµsi respectively the
probabilities that VM j or microservice i are used during a
call to the application. Then effective availability Â can be
computed as:

ÂVMj = 1 · (1− pVMj )+AVMj · pVMj

= 1− (1−AVMj ) · pVMj (10)

Âµsi = 1− (1−Aµsi) · pµsi (11)

Due to the geometric assumption, and since each microservice
i is called an average of vi times, we have:

pµsi = Pr

{

Geom

(

1

vi + 1

)

> 0

}

=
vi

vi + 1
(12)

The probability that VM j is used during a call to the
application must instead consider the fact that at least one
microservices i allocated over it is required, which could be
expressed as:

pVMj = 1− ∏

i∈M j

(

1− pµsui

)

(13)

The final values of AVM and Aµs can then be computed as:

AVM =
NV M

∏

j=1

ÂVMj , Aµs =
Nµs

∏

i=1

Âµsi (14)
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V. EXPERIMENTS

In the following we report the results obtained from a set
of experiments. For each configuration, we have generated
between 5000 to 100000 random applications (depending on
the fraction of stable cases), and we have collected both
average values and distributions. We show the outcome in three
different classes: infrastructure, performance, and availability.
In all the following case studies we have set the parameters
corresponding to the popularity and the average service time
as reported in Table I.

TABLE I
COMMON PARAMETERS FOR ALL THE EXPERIMENTS

c 6 q 2
α 1 s 1.5
λS 100 ms. ks 4

λMT T FV M
1000 h. λMT T RV M

2 h.
λMT T Fµs 500 h. λMT T Rµs 6 min.

A. Infrastructure

The figures of this section plot indexes related to the system
structure: their purpose is to show the main features that the
applications generated with the considered set of parameter
distributions have. Fig. 3 shows minimum, average, and maxi-
mum of the demand load on each VMs. The parameters setting
is λu = 1 call / sec., λµs = 10 ms., β = 66%, the VM selection
policy is Case I. As we can see, the popularity mechanism
creates a few microservices that are heavily loaded: for this
reason the average demand is more skewed towards the
minimum.

The probability distribution of the number of VMs for
different values of β is reported in Fig. 4: the savings that
could be made in number of VMs with a lower value of β

become important only when the application is composed by
a large number of microservices.

The probability distribution of the number of microservices
is showed in Fig. 5 as function of the λµs: the Poisson
distribution provides a good way to generate meaningful
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topologies when only a rough idea on the average number
of microservices is available.

B. Performance

In this section performance indexes are reported. We first
analyze the system response time versus the user demand.
Fig. 6 shows the probability distribution of the response time
with increasing values of λu, λµs = 10, and β = 66%, the
VM selection policy is Case I. As expected the system reacts
more slowly when microservices execution demand is higher.
Moreover, the probability distributions are defective, since
as the load increases, there is a higher chance of obtaining
unstable topologies that are excluded from the output.

In Fig. 7 mean response time and average percentage of
stable runs are compared in case I and II versus the user
load λu, with λµs = 10 and β = 66%. Since mean values
are considered, confidence intervals are reported. Case II
outperforms the response time of Case I, with the exception
of the case with the highest value of λu. The reason lies in
the fact that with this value the model has a relevant number
of unstable runs.

After the evaluation versus the user load, we studied the
indexes as a function of the number of VMs. Fig. 8 reports
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the probability distribution of VMs utilization with different
values of β .Parameters are λu = 12, λµs = 10, the VM
selection policy is Case I. When the percentage of VMs is
lower, each VM get more microservices to be executed and
hence the overall VMs utilization is higher.

Fig. 9 shows the distribution of the minimum, average, and
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maximum VMs utilization in each topology, with different
policies. Parameters are λu = 12, λµs = 10, and β = 50%. The
utilization in Case I is lower, but as it is showed in Fig. 7 this
policy is less unstable, indeed the VM selection is random and
it can happen that some VM get higher load then the others.

The distribution of the minimum, average and maximum
throughput of the microservices in each simulation run is
reported in Fig. 10. As it can be seen, although both cases
has the same throughput (since this parameter is determined by
the application and not by its deployment on the infrastructure)
Case II policy performs better than the Case I, having a larger
number of configuration in which the system is stable.

C. Availability

Finally, we evaluated the system from the availability point
of view. Fig. 11 shows the overall, microservices, and VMs
unavailability, with λu = 1, λµs = 10, and β = 66%. The Erlang
distribution used to generate the MTTF and MTTR are all
characterized by 10 stages. The other parameters are reported
in Table I. As it can be seen, in this scenario most of the
faults are caused by software error in microservices rather than
problems with the VMs.

The probability distribution of the availability versus VMs
and microservices MTTFs are reported in Fig. 12 and Fig.
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13 respectively, with λu = 8, λµs = 20, and β = 66%, Case II
policies is used. As expected, the higher the MTTF, the higher
the probability to have better availability.

VI. CONCLUSIONS

In this paper we proposed an approach for performance eval-
uation of infrastructures that support the execution of a mix
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of microservice-based software applications. Our approach, to
the best of our knowledge, is the first parametric simulation
approach that allows providers to model such architectures in a
general case of an aggregated heterogeneous tunable workload
mix, to support decisions in the design, maintenance and man-
agement of microservice-based infrastructures. Future works
include further parameterization of the simulation approach,
the exploration of massive real workloads for a better modeling
approach, the extension of the simulation support for more
infrastructural configurations, and a more accurate validation
campaign when sufficient data will be available about traces
from real, production infrastructures. Finally, the simulator
will be extended in order to include energy issues.
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