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ABSTRACT 

HVLV environments are characterized by high product 
variety and small lot production, pushing companies to 
recursively design and optimize their production 
systems in a very short time to reach high-level 
performance. To increase their competitiveness, 
companies belonging to these industries, often SMEs 
working as third parties, ask for decision-making tools 
to support them in a quick and reactive reconfiguration 
of their production lines. Traditional discrete event 
simulation models, widely studied in the literature to 
solve production-related issues, do not allow real-time 
support to business decisions in dynamic contexts, due 
to the time-consuming activities needed to re-align 
parameters to changing environments. Data-driven 
approach overcomes these limitations, giving the 
possibility to easily update input and quickly rebuild the 
model itself without any changes in the modeling code. 
The proposed data-driven simulation model has also 
been interfaced with a commonly-used BI tool to 
support companies in the iterative comparison of 
different scenarios to define the optimal resource 
allocation for the requested production plan. The 
simulation model has been implemented into a SME 
operating in the footwear industry, showing how this 
approach can be used by companies to increase their 
performance even without a specific knowledge in 
building and validating simulation models. 

 
INTRODUCTION 

As suggested by the name, High Variety/Low Volume 
(HVLV) environments are manufacturing scenarios 
characterized by high product variety, frequent 
production order changes and small lot dimensions. As 
reported by White and Prybutok (2001), another 
possible definition of HVLV could be “non-repetitive 
companies”, where all the production stages operate on 
a non-repetitive base (Portioli-Staudacher and 
Tantardini, 2012). In this context, frequent changes of 
production mix have to be managed, often requiring the 
re-optimization or even re-design of production flows. 
HVLV represents a strategic choice for all the 

companies that aims to provide quick and reactive 
production, such as the ones working in dynamic and 
uncertain contexts like the fashion industry. For 
instance, a HVLV approach is frequently chosen by 
SMEs that, due to their size, have low volumes to 
produce and several clients to work with as third-party 
suppliers, facing with the trade-off between flexibility 
and high efficiency (Katic and Agarwal, 2018). Most of 
the manufacturing SMEs operates as job-shop, declared 
to be a HVLV manufacturing environment requiring 
skilled and flexible workforce to produce a wide range 
of products (Haider and Mirza, 2015; Huang and Irani, 
2003). Each production unit produces a large variety of 
part types in small batches, characterized by their own 
routing and sequenced tasks (Slomp et al., 2009). The 
existing literature on HVLV is focused on the 
improvement of operational efficiency (Adrodegari et 
al., 2015; Cransberg et al., 2016; Hendry et al., 2013), 
even using approaches often adopted in high volume 
and low variety mass markets (Thomassen and Alfnes, 
2017). For instance, even it is a common 
misunderstanding that lean is suitable for mass 
production only, it has been proposed to guarantee 
flexible productions in high variety environment 
(Haider and Mirza, 2015; Slomp et al., 2009). In lean 
paradigm, the elimination of non-value-added activities 
and wastes, such as overproduction and buffer, aims to 
reduce lead time, guaranteeing more responsiveness to 
customer demand (Haider and Mirza 2015). Other 
causes of waste are represented by long waiting and 
queue times that may occur due to the over-saturation of 
resources (Haider and Mirza 2015) or unbalanced 
scheduling plan (Fernandes et al, 2014; Fernandes et al, 
2020), resulting in large work in process (WIP). The 
identification and monitoring of an appropriate set of 
indicators represents a key aspect especially within 
dynamic contexts, where changes in key performance 
indicators (KPIs) have to be immediately followed by 
the most appropriate reaction. As shown in literature 
(Haider and Mirza 2015; Slomp et al., 2009), main KPIs 
for production performance are WIP, lead time (LT), 
productivity, takt time (TT) and resource utilization. 
Despite the clear gainable benefits, KPIs monitoring and 
resource balancing are time-consuming activities, 
especially in HVLV contexts where they have to be 
often conducted due to the frequent change of 
production mix. In fact, each item  has its own 



 

 

production cycle in terms of tasks list, sequence and 
processing time, requiring production layout 
reconfiguration and re-assignment of tasks to resources 
(Haider and Mirza, 2015). Even if discrete-event 
simulation (DES) is widely used to optimize and predict 
the performance of job shops, frequent changes in 
production orders and unexpected events, typical of 
HVLV environments, ask for real-time models able to 
evaluate different scenarios in a very short time. Data-
driven is an approach to simulation to overcome the 
long time needed to build and validate models in real 
environment, automatically re-building the model from 
data stored into structured dataset without any need to 
run programming code (Wang et al., 2011). According 
to this, they can be applied to both traditional and 
intelligence manufacturing systems (Zhang et al., 2019), 
interacting with real environments to update simulation 
models with on-field feedback (Goodall et al., 2019). In 
this paper, the data-driven approach has been used to 
give quick tips to final users to easily re-build the 
simulation model to optimize and balance resources’ 
workload recursively. The proposed parametric data-
driven model for HVLV scenarios has been applied in a 
footwear SME, representing the fashion industry one of 
the main dynamic sectors due to the high variants to be 
managed (d’Avolio et al., 2016), where simulation has 
already been successfully applied for optimizing 
production (Fani et al., 2017; Fani et al., 2018; Hassan 
et al., 2019). The work is structured as follows: in the 
first section, a clear overview of the purpose of the work 
is given; in the second section, the proposed data-driven 
model is described and the iterative procedure for its 
application summed up; the third section shows its 
implementation on a real scenario in the footwear 
industry; finally, main conclusions and further 
developments are shown. 
 
PROBLEM STATEMENT 

In HVLV environment, several KPIs have to be 
constantly monitored in operational dashboards. First, 
daily productivity (i.e. the number of units produced per 
day) represents a target value to be reached or, 
generally, to be maximised according to the resource 
availability. Frequently used within lean production 
systems, TT (i.e. the average time between the start of 
production of one unit and the next one) is a key 
indicator of the production rate, to be respected for 
matching the demand. If a process is unable to produce 
at takt time, in fact, additional resources or process re-
engineering is needed to reach the productivity target. 
Besides TT, LT (i.e. the amount of time from the start of 
a process until its conclusion, including processing and 
waiting times) is another parameter to be measured and 
monitored to reach the productivity target. A shorter LT, 
in fact, results in a higher productivity. Because within 
most plants the largest contributor to LT was queue time 
(i.e. the amount of time a unit spends waiting before 
being processed), reducing queue time further reduces 
LT. The waiting time strictly depends on the queue 
length, a part of the work in process (WIP): queue size 

is the number of units waiting for being processed, 
while WIP is the overall number of items in a 
production system, including both waiting and 
processing items. From a lean perspective, the optimal 
WIP size should be equivalent to the number of 
workstations, having queue size equals to zero through 
the implementation of the one-piece-flow approach. 
Finally, resource utilization strongly influences WIP, 
because over-saturated resources represent bottlenecks 
in unbalanced production systems. According to this, 
the main key performance indicators monitored in the 
proposed data-driven simulation model are productivity, 
TT, LT, queue size and saturation. The related target 
values defined by companies can be reached changing 
variables that occur in production. For instance, 
additional capacity impacts on LT, reducing queue time 
and increasing productivity. Even the described KPIs 
reflect the critical success factors for companies 
working in several production contexts, main challenges 
for HVLV strategy are related to the frequent need of 
re-optimize or even re-design the production flows. 
According to this, the main challenge in HVLV 
strategies are not related to specific KPIs to be 
monitored but to identify the most suitable decision-
support tool to make quick and reactive changes in 
production based on their value. Given certain 
production plan (i.e. Stock Keeping Units – SKUs - 
mix, delivery quantities and due dates) and production 
cycle per SKU (i.e. processing time per each task) as 
fixed input, capacity can be increased in many ways, 
such as enlarging the amount of working hours per day 
or adding more resources. Considering containers as 
handling units, related parameters have to be included in 
the analysis due to their impact on production 
performance. First, each containers can include a 
variable number of items, impacting on the processing 
time required per handling units and, consequently, on 
the queue over the system: higher container capacity is, 
less one-piece-flow approach is followed, increasing the 
WIP and slowing the overall production flow. Similarly, 
buffer capacity between workstations represents a 
variable that moves from 1, reflecting the one-piece-
flow approach, to unlimited capacity, reducing the 
occurrence of waiting workers on the production line. 
Finally, restrictions on the number of containers to be 
daily moved over the production system can be 
included, especially when production is outsourced and 
target values are defined in supplier agreements. 
 
MODEL DESCRIPTION 

Starting from the problem statement, the proposed data-
driven simulation model has been defined. The 
commercial simulator used is AnyLogic®, chosen for 
its interface with commercial databases, as well as for 
the easy importing procedure and its built-in database, 
adopted to store the input data needed to realize the 
data-driven model. In addition, the possibility to 
implement Java functions has been used to parametrize 
the processing times per SKU and the assignment of 
workers to workstations. The database structure has 



 

 

been defined to make easier the import of a production 
plan, as well as a separate table to manage the 
production cycle of each SKU. For instance, in order to 
guarantee an easy management of changes in production 
mix, the database table related to production cycles has 
been structured including SKU, sequence, task, and task 
time as columns: a new SKU will only require to add 
rows related to its own tasks list and sequence. Moving 
to the parameters of each element, none of them has 
been included in the model as fixed value, but as a 
variable to be updated according to the dedicated field 
on the database uploaded at the model running. For 
instance, the assignment of each task per SKU to a 
workstation and a worker who processes it has been 
done directly on the database. Once the database 
structure for a parametric modeling of input and 
variables has been developed, the database views for 
collecting data to calculate the performance indicators 
have been realized. For instance, a datalog to track the 
queue size per workstation during the model running 
has been coded. The tracking frequency for queue size 
has been parametrically defined as model parameter to 
be easily changed before the model execution, in order 
to make the final user able to evaluate the trade-off 
between collecting more frequent information and 
increasing the execution speed. The model can be 
applied in real scenarios according to the iterative 
procedure shown in Figure 1. 
 

 
 

Figure 1: Proposed data-driven simulation model 
 
Looking at Figure 1, the proposed procedure for the 
implementation of a parametric data-driven simulation 
model can be described as follows. First, the input data 
have to be exported from the company ERP and 
enriched filling values related to the variables included 
in the model. For instance, even the production cycle for 
the SKUs included in the production plan is given, the 
assignment of each task to a specific resource working 
on a certain workstation has to be done at this point. 
Once all the variables have been filled, the database 
structure for the model is ready and can be imported on 
the simulator database. Moreover, parameters such as 
containers and buffer capacities are set to be acquired 
by the model itself. The parametric data-driven model is 

then built according to the database values using the 
Java language available in AnyLogic®. In more detail, 
the generic layout of the realized discrete simulation 
model is composed of a parametric source and a generic 
“workstation” agent, as shown in the following 
paragraph. Moreover, the “worker” agent has been used 
together with dataset and schedule objects to 
dynamically define assignments and shifts respectively. 
At the model start, the assignment of workers to 
workstations is done using the Java language and 
processing time per item processed on each workstation 
is defined according to the value stored in the database 
table related to production cycles. Once the model has 
been run, the database views previously defined on the 
simulator to monitor the KPIs are exported and the 
values analysed. The comparison between the KPIs 
value coming from the simulator and the target values 
will determine if new iteration of the procedure is 
needed or not. New iterations mean changing the 
variables and parameters setting according to the results, 
in order to update the database and run again the re-built 
model. For instance, the productivity target could not be 
reached and resources will have to be re-assigned to 
better balance the production system, reducing queue 
and levelling workers’ saturation. 
 
CASE STUDY 

The As-Is Scenario 
The proposed simulation model has been applied into a 
footwear company to demonstrate its applicability in 
real scenarios. The footwear production cycle begins 
with the cutting process, followed by stiching, lasting 
and assembly and, finally, quality control and packing. 
The cutting department cuts all the parts needed for 
each shoe, then gathers the parts into kits (i.e. one kit 
includes all the parts for each pair of shoes). Cut kits 
then move to the stitching department for assembly. In 
the stitching department the operations are divided into 
simple steps and each worker is given few tasks, even 
only one. Generally, two stitching lines can support one 
assembly line. Once the stitching has been completed, 
the upper must be lasted before the outsole can be 
attached. Lasting is the operation that gives shoe its 
final shape. After the upper is heated and fitted around a 
plastic metal, or wood foot form called “last”, the 
insole, midsole, and outsole are cemented to the upper. 
The last steps are quality control and, if shoes are 
compliant to the final check, their packing. Moving 
towards the case study, the simulation model has been 
applied to the stitching department of the company., 
composed by 4 production units organized as job shops: 
the first one is the preparation unit, where cut materials 
delivered in kit are re-organized in the stitching 
handling units, usually boxes, together with the other 
components needed (e.g. laces); the second and third 
units provide uppers and tongues respectively, 
assembled together in the last production unit. A 
simplified schema of the production units included in 
the case study is shown in Figure 2. Workstations (i.e. 



 

 

“WSX” in the diagram) can be sewing machines or 
workbenches for manual activities, while workers (i.e. 
“wX” in the diagram) are resources that can be assigned 
to different type of tasks and machines. 
 

 
 

Figure 2: Resources in production units 
 
Conveyors are used to speed the movement of handling 
units, but boxes can also be manually moved from one 
workstation to the next one according to the task 
sequence in the SKU production cycle. Moreover, a 
SKU can be worked by the same station more than 
once, as well as a single worker can be assigned to more 
than one workstation. Last, moving from one SKU type 
to another, different workstations can be used and 
different sequences can be followed, according to the 
SKU production cycle. For instance, considering a box 
filled with the generic item SKU1 entering the system 
shown in Figure 2, it will be processed according to the 
SKU production cycle, starting with tasks assigned to 
the worker w1 on the workstation WS1. Once w1 has 
completed the assigned tasks for all the SKUs included 
in the handled box, he will put the box back on the 
conveyor to move it from its workstation to the next 
one. Looking at the diagram, if the next task for the 
SKU has to be processed by w2 or w5, they can take the 
box directly from the conveyor; on the other hand, in 
case of task assigned to w4, no conveyor links the 
involved workstations and it is the worker himself who 
moves the box from the previous to his workstation. As 
shown in the diagram, w2 processes tasks on both WS2 
and WS4, depending on the SKUs production cycle: for 
example, considering WS2 as sewing machine and WS4 
as workbench for manual activities, SKU1 could require 
only sewing tasks while SKU2 also manual activities 
like the application of decorations or patches. Finally, 
non-sequential sewing activities on the same 
workstation could be included in the production cycle, 
requiring for example to process SKU2 on WS2, then 
on WS4 and then again on WS2. Boxes are usually 
mono-SKU, meaning that each box contains a certain 
number of the same SKU that requires the same tasks. 
In the case study, the capacity is equals to 2 pairs of 
shoes per box and 2 types of SKUs are included in the 
production mix. 

The Application of Data-driven Simulation 

Starting from the organization of the stitching 
department, the data-driven model for the case-study is 
composed by three building blocks, modelled as 
diagrams: one for the box and shoes generation, the 

second for the task processing and the third for the 
shoes sink and box recycling, as shown in Figure 3, 
Figure 4 and Figure 5 respectively. According to the 
resource assignments on the database, a specific number 
of workers, as agents, and workstations, as flowcharts, 
are generated at the model start. 
 

 
 

Figure 3: Source station workflow 
 
The source diagram in Figure 3 generates both the 
boxes and shoes entering into the production system. 
According to the data stored in the database, the 
sourceBox element creates a fixed number of boxes (i.e. 
300 in the case study), representing the maximum 
number of boxes allowed in the production system. The 
company has chosen to fix the number of allowed boxes 
to limit the WIP in the production system, but the 
simulation model can be run even setting an unlimited 
number of boxes. The fromExitBox element receives the 
empty boxes arriving from the exitBox station in Figure 
5. The sourceShoes element generates shoes according 
to the production plan exported from the ERP and 
stored into the database, both in terms of pairs of shoes 
and scheduled date. The pickupSource element assigns 
shoes to boxes according to the box capacity: as shown 
in Figure 3, boxes and shoes are independent agents 
before the pickup element while filled boxes became the 
handling units after that. Filled boxes then move to the 
queueSourceBoxExit buffer, representing the company 
warehouse before the production area. The exitSource 
element dispatches each filled box to the right resource 
according to the workstation with sequence equals to 
“1” for the SKU contained in the box. That data is read 
on the database table related to the production cycle per 
SKU. More in details, the exitSource element in Figure 
4 moves the filled boxes to the right enterServiceXX 
element in Figure 4. 
 

 
 

Figure 4: Generic workstation workflow 
 
Figure 4 represents tasks processing on workstations, 
from the assignment of a filled box to its dispatching to 
the next workstation. Along the production system, 
boxes move from ServiceXX to ServiceNN until the final 
workstation listed on the SKU production cycle. 
Similarly to exitSource in Figure 3, the exitServiceXX 



 

 

element in Figure 4 defines the criteria to move filled 
boxes to the next workstation, reading the sequence 
equals to “n+1” for the SKU contained in the box on the 
dedicated database table. The restrictedAreaStartXX and 
restrictedAreaEndXX elements are used in order to 
define the total number of boxes into a workstation. The 
size of queueEntServXX and queueExitServXX elements 
defines the capacity of the intermediate warehouses 
before and after the workstation respectively. The 
queuing discipline for bringing the right box to be 
processed from the conveyor (i.e. queueEntServXX) is 
priority-based. If a single box can be processed on the 
same workstation more than once, in fact, priority has to 
be given to boxes that have already been processed on 
the workstation. The dropoffServXX and pickServXX 
elements replicate the activities of unloading and 
loading of shoes done by the workers in each 
workstation. The queueInShoesServXX element defines 
the maximum number of shoes that can be unloaded 
from the boxes and release on the worker table. The 
seizeXX and releaseXX elements assign a specific 
worker to the workstation, choosing between the ones 
enabled from database to that workstation and according 
to their availability. Once the worker has been assigned, 
he will not be released until shoes in the 
queueInShoesServXX are completely worked, to manage 
workers assigned to more than one workstation. The 
queueEntServXX differs from the queueInShoesServXX 
because, while several boxes can be processed into the 
first buffer by different workers, once shoes have been 
removed from boxes and released on the worker table 
they will be processed by himself. To reflect the 
company’s aim to implement a one-piece-flow strategy, 
the queueEntServXX buffer has been set to 1, while the 
queueInShoesServXX equals to the parameter related the 
number of shoes placed within a generic box. 
 

 
 

Figure 5: Sink and recycle workflow 
 
Once the production cycle has ended, boxes enter the 
last building block (i.e. Figure 5), where shoes are 
unloaded from boxes and destroyed by the sinkShoes 
element. Boxes are moved to the queueSourceBox 
element through the exitBox, waiting to be filled with 
new shoes (i.e. Figure 3). 

The Results 

Starting from the described scenario, the database has 
been filled and imported on the simulator, according to 
the production plan given as input, as well as the 
assignment of resources to tasks hypothesised by the 
company that includes 36 workers and 55 workstations. 
A single run of 12 months with 12 replications has been 
carried out and the first 15 days represent the warm-up 
period. Microsoft PowerBI® has then been used to 

graphically report and navigate that results. For the 
analysed company, the main KPI to be monitored is 
productivity, with a target value to be reached of 165 
pairs of shoes, mixed as 110 pairs of SKU type “1” and 
55 pairs of SKU type “2”. Reaching that target value 
has been the first objective for the company for 
implementing simulation, to both analyse if that 
productivity will be got and if possible bottlenecks 
could be identified in advance. The model running 
reached the daily target of 165 pairs of shoes, but 5 
workstations showed an average queue size of more 
than 10 boxes, identified by the company as limit value. 
2 workers operates on the critical workstations (i.e. the 
first worker on two workstations and the second on 
other three), showing each of them a saturation slightly 
less than 100%. According to this, the second scenario 
asked by the company aims to identify how many 
resources should be added to decrease the average 
queue size under the limit value. For example, new 
workers could be assigned to different tasks previously 
associated to other workers and even to different 
workstations. In the case study, the tasks associated to 
the almost saturated workers w1 and w2 have been 
partially re-assigned to a new resource (i.e. w37). Even 
if w37 did not reached a high saturation, the new 
configuration does not represent a suboptimal solution, 
because it better fits with the company need of 
resources able to absorb the frequent request of extra-
capacity to match the high variable demand. Once the 
best balancing has been identified for the analysed 
production mix, the company asks for a quick re-
building of the simulation model after changing the 
SKUs to be produced. In fact, the change of production 
mix for the analysed footwear company occurs every 4-
5 weeks with a very short notice from the brand owners, 
requiring a re-balancing of the production line that 
should cover 3 days at most. The main issue the 
company has faced with is that, even re-balancing in 
advance, the first week of production for the new SKUs 
mix is usually spent to understand the reasons of 
disruptions physically detected on the production line. 
According to this, the expected results from using 
simulation have been the reduction of wrong re-
balancing for changes in production mix and, 
consequently, a reactive re-assignment of resources to 
guarantee the productivity target. In the case study, 
instead of the two SKUs included in the first model 
runs, the change mix had replaced one of them with 
another SKU. The first run of simulation has been done 
re-building the data-driven model with the same number 
of workers and workstations, updating only database 
values related to SKU types and production cycles. The 
database views show a productivity of 157 pairs of 
shoes, 8 less than the target. Due to queue trends and 
saturation of two workers close to 100%, some of the 
processed tasks have been re-assigned to the under-
saturated worker added in the last scenario. Once the 
data have been updated and the simulation model run, 
the productivity indicator reaches the target value. 
Finally, the last scenario analysed by the company 



 

 

refers to how to readapt the production line to double 
the productivity. The approach followed has been, first, 
doubling the number of workers assigned to each task, 
processing each one the 50% of the production. 
According to the iterative procedure showed in Figure 
1, once the data-driven model had been run with the 
updated production plan and resource assignment as 
input, the final user has analysed the results in terms of 
production performance. As expected, the productivity 
target has been reached doubling the involved resources. 
Many improvements could be introduced to optimize 
the resources balancing, due to the high undersaturation 
of many workers. The iterative tasks re-assignment and 
KPIs evaluation procedure has been conducted 
allocating tasks splitted to several resources to few ones, 
until the optimal configuration of resources to guarantee 
the productivity target has been identified. The 
application of that procedure reduces the number of 
workers. from 74 to 53. 

CONCLUSION 

The present work demonstrate the successful application 
of the proposed data-driven simulation model to a 
HVLV real context. The case study has demonstrated 
how an iterative approach to data-driven simulation can 
support companies in decision-making process towards 
production performance improvement. More in details, 
this work demonstrates how the limitations of 
traditional simulation modelling into a dynamic 
environment can be overcome, reducing the time needed 
to find the optimal solution in terms of association 
workstation-tasks, number of workstations and number 
of workers. Beside this, further developments can be 
identified starting from the main results listed above. On 
the one hand, a data-driven approach to the 2D and 3D 
modelling can be included in the proposed model to 
assess other KPIs, such as layout optimization to 
minimize workers’ movement along the production line. 
On the other hand, manual updates on database 
parameters after each iteration represent a key value for 
reaching simulation benefits by low-tech users but could 
not fit more structured companies. According to this, the 
proposed data-driven model can be extended towards 
new trends, such as running optimization algorithms 
within the simulation model or introducing Industry 4.0 
technologies like Artificial Intelligence to improve 
performance and reduce computational time. 
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