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Abstract

Dense subgraphs of sparse graphs (communities), which appear in most real-world complex networks, play an

important role in many contexts. Computing them however is generally expensive. We propose here a measure

of similarities between vertices based on random walks which has several important advantages: it captures well

the community structure in a network, it can be computed efficiently, it works at various scales, and it can be

used in an agglomerative algorithm to compute efficiently the community structure of a network. We propose such

an algorithm which runs in time O(mn
2) and space O(n2) in the worst case, and in time O(n2 log n) and space

O(n2) in most real-world cases (n and m are respectively the number of vertices and edges in the input graph).

Experimental evaluation shows that our algorithm surpasses previously proposed ones concerning the quality of the

obtained community structures and that it stands among the best ones concerning the running time. This is very

promising because our algorithm can be improved in several ways, which we sketch at the end of the paper.

1 Introduction

Recent advances have brought out the importance of complex networks in many different domains such as
sociology (acquaintance networks, collaboration networks), biology (metabolic networks, gene networks) or
computer science (Internet topology, Web graph, P2P networks). We refer to [31, 29, 1, 21, 7] for reviews
from different perspectives and for an exhaustive bibliography. The associated graphs are in general globally
sparse but locally dense: there exist groups of vertices, called communities, highly connected between them
but with few links to other vertices. This kind of structure brings out much information about the network.
For example, in a metabolic network the communities correspond to biological functions of the cell [26]. In
the Web graph the communities correspond to topics of interest [19, 12].

This notion of community is however difficult to define formally. Many definitions have been proposed
in social networks studies [31], but they are too restrictive or cannot be computed efficiently. However,
most recent approaches have reached a consensus, and consider that a partition P = {C1, . . . , Ck} of the
vertices of a graph G = (V,E) (∀i, Ci ⊆ V ) represents a good community structure if the proportion of
edges inside the Ci (internal edges) is high compared to the proportion of edges between them (see for
example the definitions given in [13]). Therefore, we will design an algorithm which finds communities
satisfying this criterion.

We will consider throughout this paper an undirected graph G = (V,E) with n = |V | vertices and
m = |E| edges. We impose that each vertex is linked to itself by a loop (we add these loops if necessary).
We also suppose that G is connected, the case where it is not being treated by considering the components
as different graphs.

1.1 Our approach and results

Our approach is based on the following intuition, already pointed out in [4]: small length random walks on
a graph tend to get “trapped” into densely connected parts corresponding to communities. We therefore
begin with a theoretical study of random walks on graphs. Using this, we define a measurement of the
structural similarity between vertices and between communities, thus defining a distance. We relate this
distance to existing spectral approaches of the problem. But our distance has an important advantage on
these methods: it is efficiently computable, and can be used in a hierarchical clustering algorithm (merging
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iteratively the vertices into communities). One obtains this way a hierarchical community structure that
may be represented as a tree structure called dendrogram (an example is provided in Figure 1). We propose
such an algorithm which finds a community structure in time O(mnH) where H is the height of the
corresponding dendrogram. The worst case is O(mn2). But most real-world complex networks are sparse
(m = O(n)) and, as already noticed in [5], H is generally small and tends to the most favourable case in
which the dendrogram is balanced (H = O(log n)). In this case, the complexity is therefore O(n2 logn). We
finally evaluate the performance of our algorithm with different experiments which show that it surpasses
previously proposed algorithms.

1.2 Related work

There exist many algorithms to find community structure in graphs. Most of them result from very recent
works, but this topic is related to the classical problem of graph partitioning that consists in splitting a
graph into a given number of groups while minimizing the cost of the edge cut [11, 24, 18]. However, these
algorithms are not well suited to our case because they need the number of communities and their size
as parameters. The recent interest in the domain has started with a new divisive approach proposed by
Girvan and Newman [15, 23]: the edges with the largest betweenness (number of shortest paths passing
through an edge) are removed one by one in order to split hierarchically the graph into communities. This
algorithm runs in time O(m2n). Similar algorithms were proposed by Radicchi et al [25] and by Fortunato
et al [13]. The first one uses a local quantity (the number of loops of a given length containing an edge)
to choose the edges to remove and runs in time O(m2). The second one uses a more complex notion of
information centrality that gives better results but poor performances in O(m3n).

Hierarchical clustering is another classical approach introduced by sociologists for data analysis [2, 9].
From a measurement of the similarity between vertices, an agglomerative algorithm groups iteratively the
vertices into communities (there exist different methods differing on the way of choosing the communities
to merge at each step). We will use this approach in our algorithm and other agglomerative methods have
also been recently introduced. Newman proposed in [22] a greedy algorithm that starts with n communities
corresponding to the vertices and merges communities in order to optimize a function called modularity
which measures the quality of a partition. This algorithm runs in O(mn) and has recently been improved
to a complexity O(mH logn) (with our notations) [5]. The algorithm of Donetti and Muñoz [6] uses a
hierarchical clustering method: they use the eigenvectors of the Laplacian matrix of the graph to measure
the similarities between vertices. The complexity is determined by the computation of all the eigenvectors,
in O(n3) time for sparse matrices.

In the current situation, one can process graphs with up to a few hundreds of thousands vertices using
the method in [5]. All other algorithms have more limited performances (they generally cannot manage
more than some thousands of vertices).

2 Preliminaries on random walks

The graph G is associated to its adjacency matrix A: Aij = 1 if vertices i and j are connected and Aij = 0
otherwise. The degree d(i) =

∑
j Aij of the vertex i is the number of its neighbors (including itself). To

simplify the notations, we only consider unweighted graphs in this paper. It is however trivial to extend
our results to weighted graphs (Aij ∈ R

+ instead of Aij ∈ {0, 1}), which is an advantage of this approach.

Let us consider a discrete random walk process (or diffusion process) on the graph G (see [20, 3] for a
complete presentation of the topic). At each time step a walker is on a vertex and moves to a vertex chosen
randomly and uniformly among its neighbors. The sequence of visited vertices is a Markov chain, the states
of which are the vertices of the graph. At each step, the transition probability from vertex i to vertex j is
Pij =

Aij

d(i) . This defines the transition matrix P of the random walk. We can also write P = D−1A where

D is the diagonal matrix of the degrees (∀i,Dii = d(i) and Dij = 0 for i 6= j).
The process is driven by the powers of the matrix P : the probability of going from i to j through a
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random walk of length t is (P t)ij . In the following, we will denote this probability by P t
ij . It satisfies two

general properties of the random walk process (see proofs in Appendix A) which we will use in the sequel:

Property 1 When the length t of a random walk starting at vertex i tends towards infinity, the probability
of being on a vertex j only depends on the degree of vertex j (and not on the starting vertex i):

∀i, lim
t→+∞

P t
ij =

d(j)∑
k d(k)

Property 2 The probabilities of going from i to j and from j to i through a random walk of a fixed length
t have a ratio that only depends on the degrees d(i) and d(j):

∀i, ∀j, d(i)P t
ij = d(j)P t

ji

3 Comparing vertices using short random walks

In order to group the vertices into communities, we will now introduce a distance r between the vertices
that reflects the community structure of the graph. This distance must be large if the two vertices are in
different communities, and on the contrary if they are in the same community it must be small. It will be
computed from the information given by random walks in the graph.

Let us consider random walks on G of a given length t. We will use the information given by all the
probabilities P t

ij to go from i to j in t steps. The length t of the random walks must be sufficiently long
to gather enough information about the topology of the graph. However t must not be too long, to avoid
the effect predicted by Property 1; the probabilities would only depend on the degree of the vertices. Each
probability P t

ij gives some information about the two vertices i and j, but Property 2 says that P t
ij and P t

ji

encode exactly the same information. Finally, the information about vertex i encoded in P t resides in the
n probabilities (P t

ik)1≤k≤n, which is nothing but the ith row of the matrix P t, denoted by P t
i.. To compare

two vertices i and j using these data, we must notice that:

• If two vertices i and j are in the same community, the probability P t
ij will surely be high. But the

fact that P t
ij is high does not necessarily imply that i and j are in the same community.

• The probability P t
ij is influenced by the degree d(j) because the walker has higher probability to go

to high degree vertices.

• Two vertices of a same community tend to “see” all the other vertices in the same way. Thus if i and
j are in the same community, we will probably have ∀k, P t

ik ≃ P t
jk.

We can now give the definition of our distance between vertices, which takes into account all previous
remarks:

Definition 1 Let i and j be two vertices in the graph:

rij =

√√√√
n∑

k=1

(P t
ik − P t

jk)
2

d(k)
=

∥∥∥D− 1

2P t
i. −D− 1

2P t
j.

∥∥∥ (1)

where ‖.‖ is the Euclidean norm of Rn.

One can notice that this distance can also be seen as the L2 distance [3] between the two probability
distributions P t

i. and P t
j.. Notice also that the distance depends on t and may be denoted rij(t). We will

however consider it as implicit to simplify the notations.

Theorem 1 The distance r is related to the spectral properties of the matrix P by:

r2ij =

n∑

α=2

λ2t
α (vα(i)− vα(j))

2

where (λα)1≤α≤n and (vα)1≤α≤n are respectively the eigenvalues and right eigenvectors of the matrix P .
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In order to prove this theorem, we need the following technical lemma:

Lemma 1 The eigenvalues of the matrix P are real and satisfy:

1 = λ1 > λ2 ≥ . . . ≥ λn > −1

Moreover, there exists an orthonormal family of vectors (sα)1≤α≤n such that each vector vα = D− 1

2 sα and

uα = D
1

2 sα are respectively a right and a left eigenvector associated to the eigenvalue λα:

∀α, Pvα = λαvα and PTuα = λαuα

∀α, ∀β, vTαuβ = δαβ

Proof : The matrix P has the same eigenvalues as its similar matrix S = D
1

2PD− 1

2 = D− 1

2AD− 1

2 . The
matrix S is real and symmetric, so its eigenvalues λα are real. P is a stochastic matrix (

∑n
j=1 Pij = 1), so

its largest eigenvalue is λ1 = 1. The graph G is connected and primitive (the gcd of the cycle lengths of G
is 1, due to the loops on each vertex), therefore we can apply the Perron-Frobenius theorem which implies
that P has a unique dominant eigenvalue. Therefore we have: |λα| < 1 for 2 ≤ α ≤ n.

The symmetry of S implies that there also exists an orthonornal family sα of eigenvectors of S satisfying
∀α, ∀β, sTαsβ = δαβ (where δαβ = 1 if α = β and 0 otherwise). We then directly obtain that the vectors

vα = D− 1

2 sα and uα = D
1

2 sα are respectively a right and a left eigenvector of P satisfying uT
αvβ = δαβ . �

We can now prove Theorem 1:
Proof : Lemma 1 makes it possible to write a spectral decomposition of the matrix P :

P =
n∑

α=1

λαvαu
T
α , and P t =

n∑

α=1

λt
αvαu

T
α , and so P t

ij =
n∑

α=1

λt
αvα(i)uα(j)

Now we obtain the expression of the probability vector P t
i.:

P t
i. =

n∑

α=1

λt
αvα(i)uα = D

1

2

n∑

α=1

λt
αvα(i)sα

We put this formula into the second definition of rij given in Equation (1). Then we use the Pythagorean
theorem with the orthonormal family of vectors (sα)1≤α≤n, and we remember that the vector v1 is constant
to remove the case α = 1 in the sum. Finally we have:

r2ij =

∥∥∥∥
n∑

α=1

λt
α(vα(i)− vα(j))sα

∥∥∥∥
2

=

n∑

α=2

λ2t
α (vα(i)− vα(j))

2

�

This theorem relates random walks on graphs to the many current works that study spectral properties of
graphs. For example, [28] notices that the modular structure of a graph is expressed in the eigenvectors of P
(other than v1) that corresponds to the largest positive eigenvalues. If two vertices i and j belong to a same
community then the coordinates vα(i) and vα(j) are similar in all these eigenvectors. Moreover, [27, 14] show
in a more general case that when an eigenvalue λα tends to 1, the coordinates of the associated eigenvector
vα are constant in the subsets of vertices that correspond to communities. A distance similar to ours (but

that cannot be computed directly with random walks) is also introduced: d2t (i, j) =
∑n

α=2
(vα(i)−vα(j))2

1−|λα|t .

Finally, [6] uses the same spectral approach applied to the Laplacian matrix of the graph L = D −A.
All these studies show that the spectral approach takes an important part in the search for community

structure in graphs. However all these approaches have the same drawback: the eigenvectors need to be
explicitly computed (in time O(n3) for a sparse matrix). This computation rapidly becomes untractable
in practice when the size of the graph exceeds some thousands of vertices. Our approach is based on the
same foundation but has the advantage of avoiding the expensive computation of the eigenvectors: it only
needs to compute the probabilities P t

ij , which can be done efficiently as shown in the following theorem.
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Theorem 2 All the probabilities P t
ij can be computed in time O(tnm) and space O(n2). Once these

probabilities computed, each distance rij can be computed in time O(n). For given i and j, one can also
compute directly rij in time O(tm) and space O(n).

Proof : To compute the vector P t
i., we multiply t times the vector P 0

i. (∀k, P 0
i.(k) = δik) by the matrix

P . This direct method is advantageous in our case because the matrix P is generally sparse (for real-world
complex networks) therefore each product is processed in time O(m). The initialization of P 0

i. is done in
O(n) and thus each of the n vectors P t

i. is computed in time O(n+ tm) = O(tm). Once we have the two
vectors P t

i. and P t
j., we can compute rij in O(n) using Equation (1). We can compute and keep in memory

all the probability vectors in time O(tnm) or compute directly rij by evaluating the two vectors P t
i. and

P t
j. in time O(tm). �

Now we generalize our distance between vertices to a distance between communities in a straightforward
way. Let us consider random walks that start from a community: the starting vertex is chosen randomly
and uniformly among the vertices of the community. We define the probability P t

Cj to go from community
C to vertex j in t steps:

P t
Cj =

1

|C|
∑

i∈C

P t
ij

This defines a probability vector P t
C. that allows us to generalize our distance:

Definition 2 Let C1, C2 ⊂ V be two communities. We define the distance rC1C2
between these two com-

munities by:

rC1C2
=

∥∥∥D− 1

2P t
C1.

−D− 1

2P t
C2.

∥∥∥ =

√√√√
n∑

k=1

(P t
C1k

− P t
C2k

)2

d(k)

This definition is consistent with the previous one: rij = r{i}{j} and we can also define the distance between
a vertex i and a community C: riC = r{i}C . Given the probability vectors P t

C1.
and P t

C2.
, the distance

rC1C2
is also computed in time O(n).

4 The algorithm

In the previous section, we have proposed a distance between vertices (and between sets of vertices) which
captures structural similarities between them. The problem of finding communities is now a clustering
problem. We will use here an efficient hierarchical clustering algorithm that allows us to find community
structures at different scales. We present an agglomerative approach based on Ward’s method [30] that is
well adapted to our distance and gives very good results while reducing the number of distance computations
in order to be able to process large graphs.

We start from a partition P1 = {{v}, v ∈ V } of the graph into n communities reduced to a single vertex.
We first compute the distances between all adjacent vertices. Then this partition evolves by repeating the
following operations. At each step k:

• Choose two communities C1 and C2 in Pk on a criterion based on the distance between the communities
that we detail later.

• Merge these two communities into a new community C3 = C1 ∪ C2 and create the new partition:
Pk+1 = (Pk \ {C1, C2}) ∪ {C3}.

• Update the distances between communities (we will see later that we actually only do this for adjacent
communities).

After n − 1 steps, the algorithm finishes and we obtain Pn = {V }. Each step defines a partition Pk of
the graph into communities, which gives a hierarchical structure of communities called dendrogram (see
Figure 1(b)). This structure is a tree in which the leaves correspond to the vertices and each internal node
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is associated to a merging of communities in the algorithm: it corresponds to a community composed of
the union of the communities corresponding to its children.

The key points in this algorithm are the way we choose the communities to merge, and the fact that
the distances can be updated efficiently. We will also need to evaluate the quality of a partition in order
to choose one of the Pk as the result of our algorithm. We will detail these points below, and explain how
they can be managed to give an efficient algorithm.

Choosing the communities to merge. This choice plays a central role for the quality of the
community structure created. In order to reduce the complexity, we will only merge adjacent communities
(having at least an edge between them). This reasonable heuristic (already used in [22] and [6]) limits to
m the number of possible mergings at each stage. Moreover it ensures that each community is connected.

We choose the two communities to merge according to Ward’s method. At each step k, we merge the two
communities that minimize the mean σk of the squared distances between each vertex and its community.

σk =
1

n

∑

C∈Pk

∑

i∈C

r2iC

This approach is a greedy algorithm that tries to solve the problem of maximizing σk for each k. But this
problem is known to be NP-hard: even for a given k, maximizing σk is the NP-hard “K-Median clustering
problem” [10, 8] for K = (n − k) clusters. The existing approximation algorithms [10, 8] are exponential
with the number of clusters to find and unsuitable for our purpose. So for each pair of adjacent communities
{C1, C2}, we compute the variation ∆σ(C1, C2) of σ if we would merge C1 and C2 into a new community
C3 = C1 ∪C2. This quantity only depends on the vertices of C1 and C2, and not on the other communities
or on the step k of the algorithm:

∆σ(C1, C2) =
1

n

( ∑

i∈C3

r2iC3
−

∑

i∈C1

r2iC1
−

∑

i∈C2

r2iC2

)
(2)

Finally, we merge the two communities that give the lowest value of ∆σ.

Computing ∆σ and updating the distances. The important point here is to notice that these
quantities can be efficiently computed thanks to the fact that our distance is a Euclidean distance, which
makes it possible to obtain the two following classical results [17] (proofs in Appendix A):

Theorem 3 The increase of σ after the merging of two communities C1 and C2 is directly related to the
distance rC1C2

by:

∆σ(C1, C2) =
1

n

|C1||C2|
|C1|+ |C2|

r2C1C2

This theorem shows that we only need to update the distances between communities to get the values
of ∆σ: if we know the two vectors PC1.

and PC2.
, the computation of ∆σ(C1, C2) is possible in O(n).

Moreover, the next theorem shows that if we already know the three values ∆σ(C1, C2), ∆σ(C1, C) and
∆σ(C2, C), then we can compute ∆σ(C1 ∪ C2, C) in constant time.

Theorem 4 (Lance-Williams-Jambu formula) If C1 and C2 are merged into C3 = C1 ∪ C2 then for
any other community C:

∆σ(C3, C) =
(|C1|+ |C|)∆σ(C1, C) + (|C2|+ |C|)∆σ(C2, C)− |C|∆σ(C1, C2)

|C1|+ |C2|+ |C| (3)

Since we only merge adjacent communities, we only need to update the values of ∆σ between adjacent
communities (there are at most m values). These values are stored in a balanced tree in which we can add,
remove or get the minimum in O(logm). Each computation of a value of ∆σ can be done in time O(n)
with Theorem 3 or in constant time when Theorem 4 can be applied.
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Evaluating the quality of a partition. The algorithm induces a sequence (Pk)1≤k≤n of partitions
into communities. We now want to know which partitions in this sequence are good representations of
communities. The most common way is to use a statistical parameter such as the modularity Q introduced
in [23, 22]. This quantity (between −1 and 1) is well suited to find the best partition but not to find
several ones (corresponding to other scales in the hierarchical structure, see Appendix B). Here we provide
another criterion that helps in finding different scales of communities. When we merge two very different
communities (with respect to the distance r), the value ∆σk = σk+1 − σk at this step is large. Conversely,
if ∆σk is large then the communities at step k − 1 are surely relevant. To detect this, we introduce the
increase ratio ηk:

ηk =
∆σk

∆σk−1
=

σk+1 − σk

σk − σk−1

We then assume that the best partitions Pk are those associated with the largest values of ηk. Depending
on the context in which our algorithm is used, one may take only the best partition (the one for which ηk
is maximal) or choose among the best ones using another criterion (like the size of the communities, for
instance). This is an important advantage of our method, which gives different scales in the community
structure, as illustrated in Appendix B.
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Figure 1: (a) An example of community structure found by our algorithm using random walks of length
t = 3. (b) The stages of the algorithm encoded as a tree called dendrogram. The maximum of ηk and Q,
plotted in (c), show that the best partition consists in two communities.

Complexity. First, the initialization of the probability vectors is done in O(mnt). Then, at each step
k of the algorithm, we keep in memory the vectors P t

C. corresponding to the current communities (the
ones in the current partition). But for the communities that are not in Pk (because they have been merged
with another community before) we only keep the information saying in which community it has been
merged. We keep enough information to construct the dendogram and have access to the composition of
any community with a few more computation.
When we merge two communities C1 and C2 we perform the following operations:

• Compute P t
(C1∪C2).

=
|C1|P t

C1.
+|C2|P t

C2.

|C1|+|C2| and remove P t
C1.

and P t
C2.

.

• Update the values of ∆σ concerning C1 and C2 using Theorem 4 if possible, or otherwise using
Theorem 3.
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The first operation can be done in O(n), and therefore does not play a significant role in the overall
complexity of the algorithm. The dominating factor in the complexity of the algorithm is the number of
distances r computed (each one in O(n)). We prove an upper bound of this number that depends on the
height of the dendrogram. We denote by h(C) the height of a community C and by H the height of the
whole tree (H = h(V )).

Theorem 5 An upper bound of the number of distances computed by our algorithm is 2mH. Therefore its
global time complexity is O(mn(H + t)).

Proof : Let M be the number of computations of ∆σ. M is equal to m (initialization of the first ∆σ) plus
the sum over all steps k of the number of neighbors of the new community created at step k (when we
merge two communities, we need to update one value of ∆σ per neighbor). For each height 1 ≤ h ≤ H ,
the communities with the same height h are pairwise disjoint, and the sum of their number of neighbor
communities is less than 2m (each edge can at most define two neighborhood relations). The sum over all
heights finally gives M ≤ 2Hm. Each of these M computations needs at most one computation of r in
time O(n) (Theorem 3). Therefore, with the initialization, the global complexity is O(mn(H + t)). �

In practice, a small t must be chosen (t = O(logn), because if it is not the case the random walks
converge to the limit distribution at exponential speed) and thus the global complexity is O(mnH). The
worst case is H = n − 1, which occurs when the vertices are merged one by one to a large community.
This happens in the “star” graph, where a central vertex is linked to the n − 1 others. However Ward’s
algorithm is known to produce small communities of similar sizes. This tends to get closer to the favorable
case in which the community structure is a balanced tree and its height is H = O(log n).

5 Experimental evaluation of the algorithm

Evaluating a community detection algorithm is difficult because one needs some test graphs whose com-
munity structure is already known. A classical approach, which we will follow here, is to use randomly
generated graphs with communities defined as follows: one constructs a graph with n vertices and c ≥ 1
disjoint communities of n

c
vertices. An internal and an external density of edges pin and pout are given.

Each possible edge inside a community is drawn with probability pin and each possible edge between two
communities is drawn with probability pout. These two probabilities define an expected average in-degree

zin = pin(
n
c
− 1) and an expected average out-degree zout = pout

n(c−1)
c

.
In order to evaluate the performance of our algorithm we will evaluate the ratio of vertices correctly

identified by the algorithm. This ratio has been used (without formal definition) in [13, 15, 23, 22, 6].
Here we define it according to the following identification procedure: we want to identify the c known
communities (Ci)1≤i≤c to c communities (Cj)1≤j≤c found by the algorithm. We identify each Ci to the
community Cγ(i) such that |Ci ∩Cγ(i)| is maximal. If there are l > 1 communities Ci1 , . . . Cil identified to

the same community Cj (γ(i1) = . . . = γ(il) = j), then we only keep the identification of the community
Cik which maximizes |Cik ∩Cj |. The other communities Cik′

are no more identified to any community. A
vertex is then correctly identified if it belongs to the community found by the algorithm is identified to its
actual community.

In order to compare our algorithm to the other known algorithms, we first study the influence of the
densities pin and pout on the same graphs as the ones used in [13, 15, 23, 22, 6]. They considered graphs of
n = 128 and c = 4 communities but different densities pin and pout. The results are plotted in Figure 2. It
indicates that our algorithm has perfect results when the graph has a clear community structure (i.e. when
pin is high and pout is low). When pout is high and pin is low, the graph does not really have a community
structure, which explains why our algorithm does not find it. In intermediate cases, our algorithm has
better performances than previously proposed algorithms, which generally have only been tested in the
case zin + zout = 16.

In order to deepen the empirical study of the performances of our algorithm, we tested it on various
situations. In all of them, the performances were very good, the only cases where our algorithm fails beeing
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Figure 2: Performances of our algorithm on graphs with n = 128 vertices and c = 4 communities using
random walks of length t = 3. Left: ratio of vertices correctly identified as a function of the edges density
pin and pout (black stands for 0% and white for 100% ). Right: detail of this plot for a constant average
degree zin + zout = 16.

the extreme cases in which no clear community structure exists. To illustrate this we detail two of these
experiments below (and two other in Appendix B). Let us consider graphs of different sizes from n = 100
to n = 10, 000 with c = 10 communities. The external density of edges is chosen in order to have a mean
out-degree zout = 8. The internal density pin(C) of each community C is randomly and uniformly chosen
from an interval [pmin..pmax] such that its mean internal degree satisfies 6 ≤ zin(C) ≤ 10. The results
for t = 5 (Figure 3, left) show that our algorithm has good performances on large graphs even with some
heterogeneity in the communities.

nb vertices ratio of vertices correctly identified time
100 99% 0.05s
300 93% 0.25s
1,000 90% 2.6s
3,000 73% 21s
10,000 71% 11min a

aThis case has been slowed by the lack of memory on the
512 MB RAM machine on which the experiments were run.
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Figure 3: Left: Performances of our algorithm on graphs with c = 10 communities, zout = 8 and
6 ≤ zin ≤ 10 for various sizes of graphs. Right: ratio of correctly identified vertices on the same kind of
graphs with n = 5000 vertices when the number of communities varies.

We also studied the influence of the number of communities. We consider the same kind of graphs
as above with n = 5000 vertices and with different number c of communities. The results are plotted in
Figure 3(right). We chose to keep the same global density of graphs (the expected average degree is always
16) and increase the number of communities which implies a decrease in their size and their internal density
of edges. The experiment shows that, even if the overall number of expected external edges is equal to the
one of internal edges, our algorithm easily detects the communities with a sufficient internal density.
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6 Improvements

Several improvements of our algorithm are possible and we investigated some. We do not present them in
detail in this abstract, but rapidly outline two of the most interesting ones.

One may first replace the computation of the probabilities P t
i. by approximation obtained by running

a given number K of random walks from vertex i. The precision of the estimation is O( 1√
K
) and a good

evaluation is typically obtained with K = 1000. This approach is interesting for very large graphs and
allows us to estimate each vector P t

i. in O(K(t+ logK)).
Another improvement concerns the discrete nature of random walks. As already noticed, the best length

t of the random walks is generally small and its choice is difficult. The discrete time is restrictive and may
not give enough freedom. One may then replace the discrete Markov chain by its continuous version, and
obtain new probabilities P̃ t

ij which expression is ∀t ∈ R, P̃ t
ij =

(
et(P−Id)

)
ij
. Each probability vector P̃ t

i.

can be efficiently computed in O(rm) with an error e−t
∑+∞

k=r+1
tk

k! by truncating the exponential series at
a given range r. This improvement makes it possible to choose non integer values for t.

7 Conclusion and further work

We proposed a new distance between the vertices that quantify their structural similarities using random
walks. This distance has several advantages: it captures much information on the community structure, it
is well suited for approximation, and it can be used in an efficient hierarchical agglomerative algorithm that
detects communities in a network at different scales. We designed such an algorithm which works in time
O(mn2). In practice, real-world complex networks are sparse (m = O(n)) and the height of the dendrogram
is generally small (H = O(log n)); in this case the algorithm runs in O(n2 log n). This complexity may be
reduced with the improvements sketched in Section 6.

Most previous methods were unable to manage networks with more than approximately 10, 000 vertices,
except the one in [5] which goes up to several hundreds of thousands. We ran our algorithm on networks
of up to 100, 000 vertices, and experiments show that the obtained quality is better than the one obtained
in [5], and actually better than the one obtained by all previous ones. Several possible improvements have
been pointed out which will improve the performances of our algorithm. Moreover, our method is well
suited for detectiong communities at various sacles (see Appendix B). We therefore think that it may be
considered as a significant step in the area.

Choosing an appropriate length t of the random walks is however still a problem and we have work
in progress in this direction. More experiments on real-world complex networks also still have to be
performed (see Appendix B), as well as direct comparison with algorithms proposed and implemented by
other authors 1. Our approach may also be relevant for the computation of overlapping communities (which
often occurs in real-world cases and is not considered by any algorithm until now), which we consider as a
promising direction for further work. Finally, we pointed out that the method is directly usable for weighted
networks. For directed ones (like the important case of the Web graph), on the contrary, the proofs we
provided are not valid anymore, and random walks behave significantly differently. Therefore, we also
consider the directed case as an interesting direction.
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[4] Gaume B. Balades aléatoires dans les petits mondes lexicaux. I3 Information Interaction Intelligence,
(to appear).

[5] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large networks.
arXiv:cond-mat/0408187, 2004.
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A Proofs of previously known results

Proof of Property 1

P =

n∑

α=1

λαvαu
T
α , and P t =

n∑

α=1

λt
αvαu

T
α , and so P t

ij =

n∑

α=1

λt
αvα(i)uα(j)

When t tends towards infinity, all the terms α ≥ 2 vanish. It is easy to show that the first right eigenvector

v1 is constant. By normalizing we have ∀i, v1(i) = 1√∑
k d(k)

and ∀j, u1(j) =
d(j)√∑

k d(k)
. We obtain:

lim
t→+∞

P t
ij = lim

t→+∞

n∑

α=1

λt
αvα(i)uα(j) = v1(i)u1(j) =

d(j)∑n
k=1 d(k)

Proof of Property 2
This property can be written as the matricial equation DP tD−1 = (P t)T (where MT is the transpose

of the matrix M). By using P = D−1A and the symmetry of the matrices D and A, we have: DP tD−1 =
D(D−1A)tD−1 = (AD−1)t = (AT (D−1)T )t = ((D−1A)T )t = (P t)T .

Proof of Theorem 3
First notice that the distance r can be considered as a metric in R

n (that contains the probability vectors
PC.) associated to an inner product < .|. >. We have: r2iC =< P t

C.−P t
i.|P t

C.−P t
i. >. In order to clarify

the text we will use vectorial notation. For all vertex i and community C, we define
−→
iC = P t

C. − P t
i. and

for any two communities C1 and C2,
−−−→
C1C2 = P t

C2.
− P t

C1.
. We can write:

∑

i∈C1

r2iC3
=

∑

i∈C1

<
−→
iC3|−→iC3 >=

∑

i∈C1

(
<

−→
iC1|−→iC1 > +2 <

−→
iC1|−−−→C1C3 > + <

−−−→
C1C3|−−−→C1C3 >

)

We then notice that P t
C1.

is the centroid of the vectors {P t
i.|i ∈ C1}, therefore we have

∑
i∈C1

−→
iC1 =

−→
0 .

Moreover we also have
−−−→
C1C3 = |C2|

|C1|+|C2|
−−−→
C1C2 and we finally obtain:

∑

i∈C1

r2iC3
=

∑

i∈C1

r2iC1
+

|C1||C2|2
(|C1|+ |C2|)2

r2C1C2

This also holds if we replace C1 by C2 and C2 by C1. Therefore:

∑

i∈C3

r2iC3
=

∑

i∈C1

r2iC3
+

∑

i∈C2

r2iC3
=

∑

i∈C1

r2iC1
+

∑

i∈C2

r2iC2
+

|C1||C2|
|C1|+ |C2|

r2C1C2

We deduce the claim by replacing this expression into Equation (2).

Proof of Theorem 4
We replace the four ∆σ of Equation (3) by their values given by Theorem 3. We multiply each side by

n(|C1|+|C2|+|C|)
|C| and use |C3| = |C1|+ |C2|, and obtain the equivalent equation:

(|C1|+ |C2|)r2C3C
= |C1|r2C1C

+ |C2|r2C2C
− |C1||C2|

|C1|+ |C2|
r2C1C2

Then we use the fact that P t
C3.

is the barycenter of P t
C1.

weighted by |C1| and of P t
C2.

weighted by |C2|,
therefore:

|C1|r2C1C
+ |C2|r2C2C

= (|C1|+ |C2|)r2C3C
+ |C1|r2C1C3

+ |C2|r2C2C3

We conclude using |C1|r2C1C3
+ |C2|r2C2C3

= |C1||C2|
|C1|+|C2|r

2
C1C2

.
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B More experimental results

Influence of the length t on a hierarchically structured network. In this appendix we
study the influence of the length t of the random walks. To do this we need graphs with a hierarchical
community structure. We generated graphs with n = 256 vertices divided into 8 small communities included
in 4 medium communities and then in 2 large communities, see Figure 4(a). We chose an internal edge
density in small communities p1 = 0.3, and an edge density between small, medium and large communities
p2 = 0.1, p3 = 0.75 and p4 = 0.5, respectively. We ran our algorithm for different t and we computed the
ratio of vertices correctly identified for the three kinds of communities. The results (Figure 4(b)) show that
we get good performances for short random walks. We also notice that the range of t that gives good results
depends on the size of the communities found. There is a relation between the size of the communities to
identify and the value of t that we must choose. It seems that a good choice of t must leave enough time to
random walks to reach all the vertices of a community but not enough time to reach all the vertices of the
graph. This is why a length close to the diameter of the communities to identify seems a relevant choice.
Moreover these tests show that our approach is able to identify community structures at different scales:
we clearly have three peaks on ηk corresponding to the three sizes of communities (Figure 4(c)).
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Figure 4: (a) Hierarchical community structure used for the test. Each of the 8 small communities has 32
vertices. (b) The three ratios (corresponding to the three community sizes) of vertices correctly identified
by our algorithm as a function of the random walks length t used. (c) Evolution of ηk (last 30 steps)
showing that we identify the three scales in the community structure.

Experiment on a real network (Internet map). We tested our algorithm on a map of the
Internet (provided by Magoni [16]) that contains 12,929 routers and 52,844 physical links between them.
Each router belongs to a known Autonomous system (AS) and the aim of the experiment is to see if we
can retrieve them using our community detection algorithm, exploring the idea that they may correspond
to dense subgraphs.

The map has been established from intensive traceroute experiments and only covers a part of the
Internet: routers from 383 different AS are represented and are linked by 35,096 internal links and 17,748
links between different AS. However, due to the measurement method, some AS are poorly discovered: we
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only see a small number of their routers and their internal links. This phenomenon implies that many small
AS (small on the map but not necessarily in reality) cannot be considered as communities (from our point
of view). For instance, 320 of the represented AS (corresponding to 5,186 routers) have the ratio of number
of external edges by the number of internal edges larger than 1 and 237 AS (2,706 routers) have this ratio
larger than 2.

Our algorithm computed a community structure for t = 5 in 5 minutes (on a P4-M 2.2 Ghz, 512 MB).
We looked at the partition with the best modularity (Q = 0.73), which contains 646 communities. For each
router, we computed the ratio of routers in its community that belong to the same AS. The mean of this
ratio over the routers is 52%, which shows that even in these bad conditions our algorithm is able to group
together a significant portion of the router of an AS.
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