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Abstract. Two graphsG1 = (V,E1) and G2 = (V,E2) admit a geomet-
ric simultaneous embeddingif there exists a set of pointsP and a bijection
M : P → V that induce planar straight-line embeddings both forG1 and for
G2. While it is known that two caterpillars always admit a geometric simultane-
ous embedding and that two trees not always admit one, the question about a tree
and a path is still open and is often regarded as the most prominent open problem
in this area. We answer this question in the negative by providing a counterex-
ample. Additionally, since the counterexample uses disjoint edge sets for the two
graphs, we also negatively answer another open question, that is, whether it is
possible to simultaneously embed two edge-disjoint trees.As a final result, we
study the same problem when some constraints on the tree are imposed. Namely,
we show that a tree of depth2 and a path always admit a geometric simultaneous
embedding. In fact, such a strong constraint is not so far from closing the gap with
the instances not admitting any solution, as the tree used inour counterexample
has depth4.

1 Introduction

Embedding planar graphs is a well-established field in graphtheory and algorithms with
a great variety of applications. Keystones in this field are the works of Thomassen [15],
of Tutte [16], and of Pach and Wenger [14], dealing with planar and convex representa-
tions of graphs in the plane.

Since recently, motivated by the need of contemporarily represent several differ-
ent relationships among the same set of elements, a major focus in the research lies
on simultaneous graph embedding. In this setting, given a set of graphs with the same
vertex-set, the goal is to find a set of points in the plane and amapping between these
points and the vertices of the graphs such that placing each vertex on the point it is
mapped to yields a planar embedding for each of the graphs, ifthey are displayed sep-
arately. Problems of this kind frequently arise when dealing with the visualization of
evolving networks and with the visualization of huge and complex relationships, as in
the case of the graph of the Web.

Among the many variants of this problem, the most important and natural one is
the geometric simultaneous embedding. Given two graphsG1 = (V,E′) andG2 =
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(V,E′′), the task is to find a set of pointsP and a bijectionM : P → V that induce
planar straight-line embeddings for bothG1 andG2.

In the seminal paper on this topic [2], Brasset al. proved that geometric simulta-
neous embeddings of pairs of paths, pairs of cycles, and pairs of caterpillars always
exist. Acaterpillar is a tree such that deleting all its leaves yields a path. On the other
hand, many negative results have been shown. Brasset al. [2] presented a pair of outer-
planar graphs not admitting any simultaneous embedding andprovided negative results
for three paths, as well. Erten and Kobourov [4] found a planar graph and a path not
allowing any simultaneous embedding. Geyeret al. [12] proved that there exist two
trees that do not admit any geometric simultaneous embedding. However, the two trees
used in the counterexample have common edges, and so the problem is still open for
edge-disjoint trees.

The most important open problem in this area is the question whether a tree and a
path always admit a geometric simultaneous embedding or not. In this paper we answer
this question in the negative.

Many variants of the problem, where some constraints are relaxed, have been stud-
ied in the literature. If the edges do not need to be straight-line segments, a famous
result of Pach and Wenger [14] shows that any number of planargraphs admit a simul-
taneous embedding, since it states that any planar graph canbe planarly embedded on
any given set of points in the plane. However, the same resultdoes not hold if the edges
that are shared by two graphs have to be represented by the same Jordan curve. In this
setting the problem is calledsimultaneous embedding with fixed edges[9,11,6].

The research on this problem opened a new exciting field of problems and tech-
niques, like ULP trees and graphs [5,7,8], colored simultaneous embedding [1], near-
simultaneous embedding [10], and matched drawings [3], deeply related to the general
fundamental question of point-set embeddability.

In this paper we study the geometric simultaneous embeddingproblem of a tree
and a path. We answer the question in the negative by providing a counterexample, that
is, a tree and a path not admitting any geometric simultaneous embedding. Moreover,
since the tree and the path used in our counterexample do not share any edge, we also
negatively answer the question on two edge-disjoint trees.

The main idea behind our counterexample is to use the path to enforce a part of the
tree to be in a certain configuration which cannot be drawn planar. Namely, we make
use of level nonplanar trees [5,8], that is, trees not admitting any planar embedding if
their vertices have to be placed inside certain regions according to a particular leveling.
The tree of the counterexample contains many copies of such trees, while the path is
used to create the regions. To prove that at least one copy hasto be in the particular
leveling that determines a crossing, we need a quite huge number of vertices. However,
such a huge number is often needed just to ensure the existence of particular structures
playing a role in our proof. A much smaller counterexample could likely be constructed
with the same techniques, but we decided to prefer the simplicity of the argumentations
rather than the search for the minimum size.

The paper is organized as follows. In Sect. 2 we give preliminary definitions and
we introduce the concept of level nonplanar trees. In Sect. 3we describe the treeT and
the pathP used in the counterexample. In Sect. 4 we give an overview of the proof
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Fig. 1. (a) A treeTu. (b) A level nonplanar treeT whose underlying tree isTu. (c) A
region-level nonplanar treeT whose underlying tree isTu.

thatT andP do not admit any geometric simultaneous embedding, while inSect. 5 we
give the details of such a proof. In Sect. 6 we present an algorithm for the simultaneous
embedding of a tree of depth2 and a path, and in Sect. 7 we make some final remarks.

2 Preliminaries

A (undirected)k-level treeT = (V,E, φ) on n vertices is a treeT ′ = (V,E), called
the underlying treeof T , together with a leveling of its vertices given by a function
φ : V 7→ {1, . . . , k}, such that for every edge(u, v) ∈ E, it holdsφ(u) 6= φ(v)
(See [5,8]). A drawing ofT = (V,E, φ) is a level drawingif each vertexv ∈ V such
thatφ(v) = i is placed on a horizontal lineli = {(x, i) | x ∈ R}. A level drawing
of T is planar if no two edges intersect except, possibly, at common end-points. A tree
T = (V,E, φ) is level nonplanarif it does not admit any planar level drawing.

We extend this concept to the one ofregion-level drawingby enforcing the vertices
of each level to lie inside a certain region rather than on a horizontal line. Letl1, . . . , lk
be k pairwise non-crossing straight lines and letr1, . . . , rk+1 be the regions of the
plane such that any straight-line segment connecting a point in ri and a point inrh, with
1 ≤ i < h ≤ k+1, cuts all and only the linesli, li+1, . . . , lh−1, in this order. A drawing
of ak-level treeT = (V,E, φ) is calledregion-level drawingif each vertexv ∈ V such
thatφ(v) = i is placed inside regionri. A region-level drawing ofT is planar if no
two edges intersect except, possibly, at common end-points. A treeT = (V,E, φ) is
region-level nonplanarif it does not admit any planar region-level drawing.

The4-level treeT whose underlying tree is shown in Fig. 1(a) has been shown to be
level nonplanar [8] (see Fig. 1(b)). In the next lemma we showthatT is also region-level
nonplanar (see Fig. 1(c)).

Lemma 1. The4-level treeT whose underlying tree is shown in Fig. 1(a) is region-
level nonplanar.

Proof: Refer to Fig. 1(c). First observe that, in any possible region-level planar
drawing ofT , the pathsp1 = v5, v2, v8 andp2 = v6, v3, v9 define a polygonQ2 (a
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Fig. 2. (a) A schematization of the complete treeT . Joints and stabilizers are small
circles, branches are solid triangles, while complete subtrees connected to a joint are
dashed triangles. (b) A schematization of a branchBi.

polygonQ3) inside regionr2 (regionr3). We have thatv1 is insideQ2, as otherwise
one of edges(v1, v2) or (v1, v3) would cross one ofp1 or p2. Hence, vertexv4 has to
be insideQ3, as otherwise edge(v1, v4) would cross one ofp1 or p2. However, in this
case, there is no placement for verticesv7 andv10 that avoids a crossing between one
of edges(v4, v7) or (v4, v10) and one of the already drawn edges. �

Lemma 1 will be vital for proving that there exist a treeT and a pathP not ad-
mitting any geometric simultaneous embedding. In fact,T contains many copies of the
underlying tree ofT , whileP connects vertices ofT in such a way to create the regions
satisfying the above conditions and to enforce at least one of such copies to lie inside
these regions according to the leveling making it nonplanar.

3 The Counterexample

In this section we describe a treeT and a pathP not admitting any geometric simul-
taneous embedding.

3.1 Tree T

The treeT contains a rootr andq verticesj1, . . . , jq at distance1 from r, calledjoints.
Each jointjh, with h = 1, . . . , q, is connected tox copiesB1, . . . , Bx of a subtree,
calledbranch, and tol := (s − 1)4 · 32 · x vertices of degree 1, calledstabilizers. See
Fig. 2(a). Each branchBi consists of a rootri, (s − 1) · 3 vertices of degree(s − 1)
adjacent tori, and(s− 2) · (s− 1) · 3 leaves at distance2 from ri. Vertices belonging
to a branchBi are calledB-verticesand denoted by1−, 2−, or 3−vertices, according
to their distance from their joint. Fig. 2(b) displays1−, 2−, and3−vertices of a branch
Bi.

Because of the huge number of vertices, in the rest of the paper, for the sake of
readability, we use variablesn, s, andx as parameters describing the size of certain
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configurations. Such parameters will be given a value when the technical details of
the argumentations are described. At this stage we just claim that a total numbern ≤
(

27·3·x+2
3

)

of vertices (see Lemmata 5 and 4) suffices for the counterexample.
As a first observation we note that, despite the oversized number of vertices, tree

T has limiteddepth, that is, every vertex is at distance from the root at most4. This
leads to the following property.

Property 1. Any path of tree edges starting at the root has at most3 bends.

3.2 Path P

PathP is given by describing some basic and recurring subpaths on the vertices of
T and how such subpaths are connected to each other. The idea isto partition the set
of branchesBi adjacent to each jointjh into subsets ofs branches each and to con-
nect their vertices with path edges, according to some features of the tree structure, so
defining the first building block, calledcell. Then, cells belonging to different branches
are connected to each other, hence creating structures, called formations, for which we
can ensure certain properties regarding the intersection between tree and path edges.
Further, different formations are connected to each other by path edges in such a way to
create bigger structures, calledextended formations, which are, in their turn, connected
to create asequence of extended formations.

All of these structures are constructed in such a way that there exists a set of cells
such that any four of its cells, connected to the same joint and being part of the same
formation or extended formation, contain a region-level nonplanar tree for any possible
leveling, where the levels correspond to cells. Hence, proving that four of such cells lie
in different regions satisfying the properties of separation described above is equivalent
to proving the existence of a crossing in the tree. This allows us to consider only the
bigger structures instead of dealing with single copies of the region-level nonplanar
tree.

In the following we define such structures more formally and state their properties.
Cell: The most basic structure defined byP is defined by looking at how it connects

vertices of some branchesBi connected to the same jointjh of T . Consider a set ofs
branchesBi, i = 1, . . . , s, connected tojh. Assume the vertices of a level inside each
tree to be arbitrarily ordered. For eachr = 1, . . . , s, define acell cr(h) to be composed
of its head, its tail, and a numbert of stabilizers ofjh.

Theheadof cr(h) consists of the unique 1-vertex ofBr, the first three 2-vertices of
each branchBk, with 1 ≤ k ≤ s andk 6= r, that are not already used in a cellca(h),
with 1 ≤ a < r, and, for each 2-vertex not incr(h) and not inBr, the first 3-vertices
not already used in a cellca(h), with 1 ≤ a < r.

Thetail of cr(h) consists of a set of3 · s · (s− 1)2 branchesBk adjacent tojh. This
set is partitioned into3 · (s− 1)2 subsets ofs subtrees each. The vertices of each of the
subsets are distributed between the cells in the same way as for the vertices of the head.

This implies that each cell contains one 1-vertex,3 · (s− 1) 2-vertices, and3 · (s−
2) · (s − 1) 3-vertices of the head, an additional3 · (s − 1)2 1-vertices,32 · (s − 1)3

2-vertices, and32 · (s− 2) · (s− 1)3 3-vertices of the tail, plus32 · (s− 1)4 stabilizers.

5
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Fig. 3. A cell. B-vertices of the head are depicted by large white circles,B-vertices of
the tail are large grey circles,B-vertices not part of the cell (showing the tree structure)
are small grey circles and stabilizers are small white cirlces. Tree edges are grey and
path edges are black.

PathP inside cellcr(h) visits the vertices in the following order: It starts at the
unique 1-vertex of the head, then it reaches all the 2-vertices of the head, then all the
3-vertices of the head, then all the 2-vertices of the tail, and finally all the 3-vertices of
the tail, visiting each set in arbitrary order. After each occurrence of a 2- or 3-vertex of
the head,P visits a 1-vertex of the tail, and after each occurrence of a 2- or a 3-vertex
of the tail, it visits a stabilizer of jointjh (see Fig. 3).

Note that, by this construction, for each joint there existsa set of cells such that
each subset of size four contains region-level nonplanar trees with all possible levelings,
where the levels correspond to the membership of the vertices to a cell. We now define
two bigger structures describing how cells of this set are connected to cells of sets
connected to other joints.

Formation: In the definition of a cell we described how the path traversesthrough
one set of branches connected to the same joint. Now we describe how cells from four
different sets are connected.

A formationF (H), H = (h1, h2, h3, h4) consists of 592 cells, namely of 148 cells
cr(hi) from the set of cells constructed above for each1 ≤ i ≤ 4. PathP connects
these cells in the order((h1h2h3)

37h37
4 )4, that is,P repeats four times the following

sequence: It connectsc1(h1) to c1(h2), then toc1(h3), then toc2(h1), and so on till
c37(h3), from which it then connects toc1(h4), to c2(h4), and so on tillc37(h4) (see
Fig. 4(a)). A connection between two consecutive cellscr(a) andcr(b) is done with an
edge connecting the end vertices of the partsP (cr(a)) andP (cr(b)) of P restricted to
the vertices ofcr(a) andcr(b), respectively. Namely, the unique vertex incr(a) having
degree 1 both inP (cr(a)) and inT is connected to the unique vertex incr(b) having
degree 1 inP (cr(b)) but not inT . The following property holds:

Property 2. For any formationF (H) and any jointjh, withh ∈ H , if four cellscr(h) ∈
F (H) are pairwise separated by straight lines, then there existsa crossing inT .

Extended Formation: Formations are connected by the path in a special sequence,
defined asextended formationand denoted byEF (H), whereH = (H1 = (h1, . . . , h4),
H2 = (h5, . . . , h8), . . . , Hx = (h4x−3, . . . h4x)) is a tuple of4−tuples of disjoint in-
dexes of joints (see Fig. 4(b)). LetF1(Hi), . . . , Fy− y

x
(Hi) be y − y

x
formations not

6
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Fig. 4. (a) A formation. Tree edges are depicted by grey and path edges by black lines.
Please note in this figure also the bundle of tree edges connecting the different cells
belonging to the same branch. (b) A subsequence(H1, . . . , Hx)

2 of an extended for-
mation. Formations are inside a table to represent the4-tuple they belong to and to
emphasize that in each repetition (a row of the table) a formation at a certain4-tuple is
missing.

belonging to any other extended formation and composed of cells of the same setS.
These formations are connected in the order(H1, H2, . . . , Hx)

y, but in each of these
y repetitions oneHi is missing. Namely, in thek-th repetition the path does not reach
any formation atHm, with m = k mod x. We say that thek-th repetition has adefect
atm. We call a subsequence(H1, H2, . . . , Hx)

x a full repetition insideEF (J). A full
repetition has exactly one defect at each tuple.

Note that the size ofs can now be fixed as the number of formations creating rep-
etitions inside one extended formation times the number of cells inside each of these
formations, that iss := (y− y

x
) ·37 ·4. We claim thatx ≤ 7 ·32 ·223 andy ≤ 72 ·33 ·226

is sufficient throughout the proofs. However, for readability reasons, we will keep on
using variablesx andy in the remainder of the paper.

Sequence of Extended Formation: Extended formations are connected by the path
in a special sequence, calledsequence of extended formationsand denoted bySEF (H),
whereH = (H∗

1 , . . . , H
∗
12) is a 12−tuple of tuples of4−tuples. For each tupleH∗

i ,
wherei = 1, . . . , 12, consider110 extended formations(EFi(H

∗
1 ), . . . , EFi(H

∗
12)),

with i = 1, . . . , 110, not already belonging to any other sequence of extended forma-
tions. These extended formations are connected insideSEF (H) in the order(H∗

1 , . . . ,

H∗
12)

(120). There exist two types of sequences of extended formations.Namely, in the
first type there is one extended formation missing in each subsequence(H∗

1 , . . . , H
∗
12),

that we calldefect, as for the extended formations. In the second type, two consecutive
extended formations are missing. Namely, in thek-th repetition the path skips the ex-
tended formations connecting atH∗

m and atH∗
m+1, with m = kmod 12. In this case,

we say that the repetition has adouble defect.

Since, for each set of48x joints, (48x)! different disjoint sequences of extended
formations exist, we just consider the sequences where the order defined by the tuple is
the order of the joints around the root.

7
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Fig. 5. (a) A passage between cellsc1(h), c2(h), andc′(h′). (b) Two interconnected
passages.

4 Overview

In this section we present the main argumentations leading to the final conclusion that
the treeT and the pathP described in Sect. 3 do not admit any geometric simultaneous
embedding. The main idea in this proof scheme is to use the structures given by the path
to fix a part of the tree in a specific shape creating specific restrictions for the placement
of the further substructures ofT and ofP attached to it.

We first give some further definitions and basic topological properties on the inter-
action among cells that are enforced by the preliminary arguments about region-level
planar drawings and by the order in which the subtrees are connected inside one forma-
tion.

Passage: Consider two cellsc1(h), c2(h) that can not be separated by a straight line
and a cellc′(h′), with h′ 6= h. We say that there exists apassageP betweenc1, c2, and
c′ if the polyline given by the path ofc′ separates vertices ofc1 from vertices ofc2 (see
Fig. 5(a)). Since the polyline can not be straight, there is avertex ofc′ lying inside the
convex hull of the vertices ofc1 ∪ c2, which implies the following.

Property 3. In a passage between cellsc1, c2, andc′ there exist at least two path-edges
e1, e2 of c′ such that bothe1 ande2 are intersected by tree-edges connecting vertices of
c1 to vertices ofc2.

For two passagesP1 betweenc1(h1), c2(h1), andc′(h′
1), andP2 betweenc3(h2) ,

c4(h2), andc′(h′
2) (w.l.o.g., we assumeh1 < h′

1, h2 < h′
2, andh1 < h2), we distin-

guish three different configurations: (i) Ifh′
1 < h2, P1 andP2 areindependent; (ii) if

h′
2 < h′

1, P2 is nestedintoP1; and (iii) if h2 < h′
1 < h′

2, P1 andP2 areinterconnected
(see Fig. 5(b)).

Doors: Let c1(h), c2(h), andc′(h′) be three cells creating a passage. Consider any
triangle given by a vertexv′ of c′ inside the convex hull ofc1 ∪ c2 and by any two
vertices ofc1 ∪ c2. This triangle is adoor if it encloses neither any other vertex of
c1, c2 nor any vertex ofc′ that is closer thanv′ to jh′ in T . A door isopenif no tree
edge incident tov′ crosses the opposite side of the triangle, that is, the side between the
vertices ofc1 andc2 (see Fig. 6(a)), otherwise it isclosed(see Fig. 6(b)).

8



Consider two jointsja andjb, with h, a, h′, b appearing in this circular order around
the root. Any polyline connecting the root toja, then tojb, and again to the root, without
crossing tree edges, must traverse each door by crossing both the sides adjacent tov′.
If a door is closed, such a polyline has to bend after crossingone side adjacent tov′

and before crossing the other one. Also, if two passagesP1 andP2 are interconnected,
either all the closed doors ofP1 are traversed by a path of tree-edges belonging toP2

or all the closed doors ofP2 are traversed by a path of tree-edges belonging toP1 (see
Fig. 5(b)).

In the rest of the argumentation we will exploit the fact thatthe closed door of a
passage requests a bend in the tree to obtain the claimed property that a large part of
T has to follow the same shape. In view of this, we state the following lemmata relating
the concepts of doors, passages, and formations.

Lemma 2. For each formationF (H), with H = (h1, . . . , h4), there exists a passage
between some cellsc1(ha), c2(ha), c

′(hb) ∈ F (H), with 1 ≤ a, b ≤ 4.

Lemma 3. Each passage contains at least one closed door.

From the previous lemmata we conclude that each formation contains at least one
closed door. To prove that the effects of closed doors belonging to different formations
can be combined to obtain more restrictions on the way in which the tree has to bend,
we exploit a combinatorial argument based on the Ramsey Theorem [13] and state that
there exists a set of joints pairwise creating passages.

Lemma 4. Given a set of jointsJ = {j1, . . . , jy}, with |J | = y :=
(

27·3·x+2
3

)

, there
exists a subsetJ ′ = {j′1, . . . , j

′
r}, with |J ′| = r ≥ 27 · 3 · x, such that for each pair of

joints j′i, j
′
h ∈ J ′ there exist two cellsc1(i), c2(i) creating a passage with a cellc′(h).

Now we formally define the claimed property that part of the tree has to follow a
fixed shape by considering how the drawing of the subtrees attached to two different
joints force the drawing of the subtrees attached to the joints between them in the order
around the root.

Enclosing bendpoints: Consider two pathsp1 = {u1, v1, w1} andp2 = {u2, v2, w2}.
The bendpointv1 of p1 enclosesthe bendpointv2 of p2 if v2 is internal to triangle
△(u1, v1, w1). See Fig. 7(a).

xb

jb j’b

yb

r

jb j’b

xb

yb

r
(a) (b)

Fig. 6. (a) An open door. (B) A closed door.
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Fig. 7. (a) An enclosing bendpoint. (b) A3-channel and its channel segments.

Channels: Consider a set of jointsJ = {j1, . . . , jk} in clockwise order around
the root. Thechannelci of a joint ji, with i = 2, . . . , k − 1, is the region given by
the pair of paths, one path ofji−1 and one path ofji+1, with the maximum number of
enclosing bendpoints with each other. We say thatci is anx-channelif the number of
enclosing bendpoints isx. Observe that, by Property 1,x ≤ 3. A 3-channel is depicted
in Fig. 7(b). Note that, given anx-channelci of ji, all the vertices of the subtree rooted
at ji that are at distance at mostx from the root lie insideci.

Channel segments: An x-channelci is composed ofx + 1 parts calledchannel
segments(see Fig. 7(b)). The first channel segmentcs1 is the part ofci that is visible
from the root. Theh-th channel segmentcsh is the region ofci disjoint fromcsh−1 that
is bounded by the elongations of the paths ofji−1 andji+1 after theh-th bend.

Observe that, since the channels are created by tree-edges,any tree-edge connect-
ing vertices in the channel has to be drawn inside the channel, while path-edges can
cross other channels. In the following we study the relationships between path-edges
and channels. The following property descends from the factthat every second vertex
reached byP in a cell is either a 1-vertex or a stabilizer.

Property 4. For any path edgee = (a, b), at least one ofa andb lie inside eithercs1 or
cs2.

Blocking cuts: A blocking cutis a path edge connecting two consecutive channel
segments by cutting some of the other channels twice. See Fig. 8.

Property 5. Let c be a channel that is cut twice by a blocking cut. Ifc has vertices in
both the channel segments cut by the path edge, then it has some vertices in a different
channel segment.

Proof: Consider the vertices lying in the two channel segments ofc. In order to connect
them inT , a vertexv is needed in the bendpoint area ofc. However, in order to have
path connectivity betweenv and the vertices in the two channel segments, some vertices
in a different channel segment are needed. �

In the following lemma we show that in a set of joints as in Lemma 4 it is possible
to find a suitable subset such that each pair of paths of tree-edges starting from the
root and containing such joints has at least two common enclosing bendpoints, which
implies that most of them create2-channels.

10



Lemma 5. Consider a set of jointsJ = {j1, . . . , jk} such that there exists a passage
between each pair(ji, jh), with1 ≤ i, h ≤ k. LetP1 = {P | P connectsci andc 3k

4
+1−i,

for i = 1, . . . , k
4} andP2 = {P | P connectsc k

4
+i andck+1−i, for i = 1, . . . , k4} be

two sets of passages between pairs of joints inJ (see Fig. 18). Then, for at leastk4 of
the joints of one set of passages, sayP1, there exist paths inT , starting at the root and
containing these joints, which traverse all the doors ofP2 with at least 2 and at most 3
bends. Also, at least half of these joints create anx-channel, with2 ≤ x ≤ 3.

By Lemma 5, any formation attached to a certain subset of joints must use at least
three different channel segments. In the remainder of the argumentation we focus on
this subset of joints and give some properties holding for it, in terms of interaction
between different formations with respect to channels. Since we need a full sequence of
extended formations attached to these joints,k has to be at least eight times the number
of channels inside a sequence of extended formations, that is,k ≥ 8 · 48x = 27 · 3x.

First, we give some further definitions.
Nested formations A formationF is nestedin a formationF ′ if there exist two

edgese1, e2 ∈ F and two edgese′1, e
′
2 ∈ F ′ cutting a bordercb of a channelc such that

all the vertices of the path inF betweene1 ande2 lie inside the region delimited bycb
and by the path inF ′ betweene′1 ande′2 (see Fig. 10(a)).

A series of pairwise nested formationsF1, . . . , Fk is r-nestedif there existr for-
mationsFq1 , . . . , Fqr , with 1 ≤ q1, . . . , qr ≤ k, belonging to the same channel and
such that, for each pairFqp , Fqp+1

, there exists at least one formationFz , 1 ≤ z ≤ k,
belonging to another channel and such thatFqp is nested inFz andFz is nested inFqp+1

(see Fig. 10(b)).
Independent sets of formations Let S1, . . . , Sk be sets of formations of one ex-

tended formation such that each setSi contains formationsFi(H1), . . . , Fi(Hr) on the
set of4-tuplesH = {H1, . . . , Hr}, where the joints ofHi are between the joints of
Hi−1 and ofHi+1 in the order around the root. Further, letFa(Hc) be not nested in
Fb(Hd), for each1 ≤ a, b ≤ k, a 6= b, and1 ≤ c, d ≤ r. If for each pair of setsSa, Sb

there exist two linesl1, l2 separating the vertices ofSa andSb inside channel segment
cs1 andcs2, respectively, the sets areindependent(see Fig. 11).

In the following lemmata we prove that in any extended formation there exists a
nesting of a certain depth (Lemma 8). This important property will be the starting point
for the final argumentation and will be deeply exploited in the rest of the paper. We get to
this conclusion by first proving that in an extended formation the number of independent

Fig. 8. A blocking cut.
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Fig. 9. Two sets of passagesP1 andP2 as described in Lemma 5.

1e e21e’ e’2cb

F

F’

c

(a) (b)

Fig. 10. (a) A formationF nested in a formationF ′. (b) A series ofr-nested formations.

sets of formations is limited (Lemma 6) and then by showing that, although there exist
formations that are neither nested nor independent, in any extended formation there
exists a certain number of pairs of formation that have to be either independent or nested
(Lemma 7).

Lemma 6. There exist non ≥ 222 ·14 independent sets of formationsS1, . . . , Sn inside
any extended formation, where eachSi contains formations of a fixed set of channels of
sizer ≥ 22.

1J2 J3
J12 1F (J )

2 2F (J )

2 3F (J )

S1

1 3F (J )

1 1F (J )

1 2F (J )

S2

J

Fig. 11. Two independent setsS1 andS2.
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Lemma 7. Consider four subsequencesQ1, . . . , Q4, whereQi = (H1, H2, . . . , Hx),
of an extended formationEF , each consisting of a whole repetition ofEF . Then, there
exists either a pair of nested subsequences or a pair of independent subsequences.

Lemma 8. Consider an extended formationEF (H1, H2, . . . , Hx). Then, there exists
a k-nesting, wherek ≥ 6, among the formations ofEF .

Once the existence of2-channels and of a nesting of a certain depth in each extended
formation has been shown, we turn our attention to study how such a deep nesting can
be performed inside the channels.

Let csa andcsb, with 1 ≤ a, b ≤ 4, be two channel segments. If the elongation
of csa intersectscsb, then it is possible to connect fromcsb to csa by cutting both the
sides ofcsa. In this case,csa andcsb have a2−side connection(see Fig. 12(b)). On
the contrary, if the elongation ofcsa does not intersectcsb, only one side ofcsa can be
used. In this case,csa andcsb have a1−side connection(see Fig. 12(a)).

(a) (b)

Fig. 12. (a) A 1−side connection. (b) A2−side connection.

Based on these different ways of connecting distinct channel segments, we split
our proof into three parts, the first one dealing with the setting in which only1-side
connections are allowed, the second one allowing one single2-side connection, and the
last one tackling the general case.

Proposition 1. If there exist only1−side connections, thenT andP do not admit any
geometric simultaneous embedding.

We prove this proposition by showing that, in this configuration, the existence of a
deep nesting in a single extended formation, proved in Lemma8, results in a crossing
in eitherT orP .

Lemma 9. If an extended formation lies in a part of the channel that contains only
1−side connections, thenT andP do not admit any geometric simultaneous embed-
ding.

Next, we study the case in which there exist2-side connections. We distinguish two
types of2-side connections, based on the fact that the elongation of channel segment
csa intersecting channel segmentcsb starts at the bendpoint that is closer to the root, or

13



not. In the first case we have alow Intersection(see Fig. 13(a)), denoted byI l(a,b), and

in the second case we have ahigh Intersection(see Fig. 13(b)), denoted byIh(a,b), where

a, b ∈ {1, . . . , 4}. We use the notationI(a,b) to describe bothIh(a,b) andI l(a,b). We say
that two intersectionsI(a,b) andI(c,d) aredisjoint if a, d ∈ {1, 2} andb, c ∈ {3, 4}. For
example,I(1,3) andI(4,2) are disjoint, whileI(1,3) andI(2,4) are not.

r r
(a) (b)

Fig. 13. (a) A low Intersection. (b) A high Intersection.

Since consecutive channel segments can not create any2-side connection, in order
to explore all the possible shapes we consider all the combinations of low and high
intersections created by channel segmentscs1 andcs2 with channel segmentscs3 and
cs4. With the intent of proving that intersections of differentchannels have to maintain
certain consistencies, we state the following lemma.

Lemma 10. Consider two channelschp, chq with the same intersections. Then, none
of channelschi, wherep < i < q, have an intersection that is disjoint with the inter-
sections ofchp and ofchq.

As for Proposition 1, in order to prove that2-side connections are not sufficient to
obtain a simultaneous embedding ofT andP , we exploit the existence of the deep
nesting shown in Lemma 8. First, we analyze some properties relating such nesting to
channel segments and bending areas. Abending areab(a, a+ 1) is the region between
csa andcsa+1 where bendpoints can be placed. We first observe that all the extended
formations have to place vertices inside the bending area ofthe channel segment where
the nesting takes place, and then prove that not many of the formations involved in the
nesting can use the part of the path that creates the nesting to place vertices in such
a bending area, which implies that the extended formations have to reach the bending
area in a different way.

Lemma 11. Consider anx-nesting of a sequence of extended formations on an inter-
sectionI(a,b), with a ≤ 2. Then, there exists a trianglet in the nesting that separates
some of the triangles nesting witht from the bending areab(a, a+ 1) (or b(a− 1, a)).

Then, we study some of the cases involving2-side connections and we show that the
connections between the bending area and the "endpoints" ofthe nesting create a further
nesting of depth greater than6. Hence, if no further2−side connection is available, this
second nesting is not drawable.

14



Proposition 2. Let t be a triangle open on a side splitting a channel segmentcs into
two parts such that every extended formationEF has vertices in both parts. If the only
possibility to connect vertices in different parts ofcs is with a1-side connection and if
any such connection creates a triangle open on a side that is nested witht, thenT and
P do not admit any geometric simultaneous embedding.

w

cs
v

u

Fig. 14. A situation as in Proposition 2. The chosen turning vertex isrepresented by a
big black circle and is in configurationβ. The inner and the outer areas are represented
by a light grey and a dark grey region, respectively.

Refer to Fig. 14. Consider the two path-edgese1 = (u, v), e2 = (v, w) creatingt
such that the common pointv is in the channel segmentcs that is split into two parts,
that we callinner areaandouter area, respectively. We assume thate1, e2 do not cut any
channel segmentcs′ completely, since such a cut would create more restrictionsthan
placingu or w insidecs′. Consider the path in an extended formationEF connecting
the inner and the outer area through a1-side connection atcs′. As a generalization,
consider for such a path ofEF only a vertex, calledturning vertex, which is placed
in cs′ and for which no other path inEF exists that connects the inner and the outer
area by using a channel segmentcs′′ such that the subpath tocs′′ intersects eithercs′′

or its elongation. If there exist more than one of such vertices, then arbitrarily choose
one of them. Observe that the path connecting from the inner area to the outer area
through the turning vertex encloses exactly one ofu andw. If it enclosesu, it is in
configurationα, otherwise it is in configurationβ. If there exist both paths inα and
paths inβ configuration, then we arbitrarily consider one of them. Finally, consider
the connections between different extended formations inside a sequence of extended
formations. Consider a turning vertexv in a channel segmentcs of a channelch such
that the edges incident tov cut a channelch′. Then, any connection of an extended
formation ofch′ from the inner to the outer area in the same configuration asch and
with its turning vertexv′ in cs is such thatv′ lies inside the convex hull of the two edges
incident tov.

In the following two lemmata we show that in the setting described in Proposition 2
there exists a crossing either inT or inP .
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Lemma 12. In a situation as described in Proposition 2, not all the extended forma-
tions in a sequence of extended formations can place turningvertices in the same chan-
nel segment.

Lemma 13. In a situation as described in Proposition 2,T andP do not admit any
geometric simultaneous embedding.

Based on the property given by Proposition 2, we present the second part of the
proof, in which we show that having two intersectionsI(a,b) andI(c,d) does not help if
I(a,b) andI(c,d) are not disjoint.

Proposition 3. If there exists no pair of disjoint2-side connections, thenT andP do
not admit any geometric simultaneous embedding.

Observe that, in this setting, it is sufficient to restrict the analysis to casesI(1,3) and
I(3,1), since the cases involving2 and4 can be reduced to them.

Lemma 14. If a shape contains an intersectionI(1,3) and does not contain any other
intersection that is disjoint withI(1,3), thenT andP do not admit any geometric simul-
taneous embedding.

Lemma 15. If there exists a sequence of extended formation in any shapecontaining an
intersectionI(3,1), thenT andP do not admit any geometric simultaneous embedding.

Observe that, in the latter lemma, we proved a property that is stronger than the
one stated in Proposition 3. In fact, we proved that a simultaneous embedding cannot
be obtained in any shape containing an intersectionI(3,1), even if a second intersection
that is disjoint withI(3,1) is present.

Finally, in the third part of the proof, we tackle the generalcase where two disjoint
intersections exist.

Proposition 4. If there exists two disjoint2-side connections, thenT and P do not
admit any geometric simultaneous embedding.

Since the cases involving intersectionI3,1 were already considered in Lemma 15,
we only have to consider the eight different configurations where one intersection is
I(1,3) and the other is one ofI(4,{1,2}). In the next three lemmata we cover the cases
involving Ih(1,3) and in Lemma 19 the ones involvingI l(1,3).

Consider two consecutive channel segmentscsi andcsi+1 of a channelc and let
e be a path-edge crossing the border of one ofcsi andcsi+1, saycsi. We say thate
creates adouble cutat c if the elongation ofe cutsc in csi+1. A double cut issimpleif
e does not crosscsi+1 (see Fig. 15(a)) andnon-simpleotherwise (see Fig. 15(b)). Also,
a double cut of an extended formationEF is extremalwith respect to a bending area
b(x, x+ 1) if there exists no double cut ofEF that is closer than it tob(x, x + 1).

Property 6. Any edgeek creating a double cut at a channelk in channel segmentcsi
blocks visibility to the bending areab(i, i+1) for a part ofcsi in each channelchh with
h > k (with h < k).
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(a) (b)

Fig. 15. (a) A simple double cut. (b) A non-simple double cut.

In the following lemma we show that a particular ordering of extremal double cuts
in two consecutive channel segments leads to a non-planarity in T orP . Note that, any
order of extremal double cuts corresponds to an order of the connections of a subset of
extended formations to the bending area.

Lemma 16. Let csi andcsi+1 be two consecutive channel segments. If there exists an
ordered setS := (1, 2, . . . , 5)3 of extremal double cuts cuttingcsi andcsi+1 such that
the order of the intersections of the double cuts withcsi (with csi+1) is coherent with
the order ofS, thenT andP do not admit any geometric simultaneous embedding.

Then, we show that shapeIh(1,3) I(4,2) induces this order. To prove this, we first state

the existence of double cuts in shapeIh(1,3) I
h
(4,2). The existence of double cuts in shape

Ih(1,3) I
l
(4,2) can be easily seen.

Lemma 17. Each extended formation in shapeIh(1,3) I
h
(4,2) creates double cuts in at

least one bending area.

Lemma 18. Every sequence of extending formations in shapeIh(1,3) I
h,l

(4,2) contains an

ordered set(1, 2, . . . , 5)3 of extremal double cuts with respect to bending area either
b(2, 3) or b(3, 4).

Finally, we consider the configurations where one intersection isI l(1,3) and the other

one is one ofIh,l(4,2). Observe that, in both cases, channel segmentcs2 is on the convex
hull.

Lemma 19. If channel segmentcs2 is part of the convex hull, thenT andP do not
admit any geometric simultaneous embedding.

Based on the above discussion, we state the following theorem.

Theorem 1. There exist a tree and a path that do not admit any geometric simultaneous
embedding.
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Proof: Let T andP be the tree and the path described in Sect. 3. Then, by Lemma 5,
Lemma 10, and Property 1, a part ofT has to be drawn inside channels having at most
four channel segments. Also, by Lemma 8, there exists a nesting of depth at least6
inside each extended formation.

By Proposition 1, if there exist only1-side connections, thenT andP do not admit
any simultaneous embedding. By Proposition 3, if there exists either one2-side connec-
tions or a pair of non-disjoint intersections, thenT andP do not admit any simultane-
ous embedding. By Proposition 4, even if there exist two disjoint 2-side intersections,
thenT andP do not admit any simultaneous embedding. Since it is not possible to have
more than two disjoint2-side intersections, the statement follows. �

5 Detailed Proofs

Lemma 2. For each formationF (H), with H = (h1, . . . , h4), there exists a passage
between some cellsc1(ha), c2(ha), c

′(hb) ∈ F (H), with 1 ≤ a, b ≤ 4.
Proof: Suppose, for a contradiction, that there exists no passage insideF (H). First

observe that, if two cellsc1(ha), c2(ha) ∈ F (H) are separated by a polyline given by
the path passing throughF (H), then either they are separable by a straight line or such
a polyline is composed of edges belonging to a cellc3(ha) of the same jointjha

. Since,
by Property 2, there exists no set of four cells of a given joint insideF (H) that are
separable by a straight line, it follows that all the cells ofF (H) of a given joint can be
grouped into at most3 different setsS1, S2, andS3 such that cells from different sets
can be separated by straight lines, but cells from the same set can not. Therefore, the
cells inside one of these sets can only be separated by other cells of the same set.

2
h1 S1

h1

S2
h3

S3
h3

S1
h2

S2
h2

S3

S 2

jh2
jh3

jh1

S1
h3

h3
h1

S
3

e

e

e
e

r

e

1

2

4

5

Fig. 16. The five path edgese1, . . . , e5 connecting five cells of setSa
h1

with five cells of
setSb

h2
.

Consider the connections of the path throughF (H) with regard to this notion of sets
of cells. LetSy

hx
, with x = 1, . . . , 4 andy = 1, . . . , 3, be the set of cells belonging to set

18



Sy and attached to jointjhx
. Hence, for any two cellsc1(hx), c2(hx+1) there are nine

possible ways to connect between someS
y
hx

andSy′

hx+1
. Since the part ofP through

F (H) visits 37 times cells fromjh1
, jh2

, jh3
, in this order, there exist five path edges

e1, . . . , e5 connecting five cells of setSa
h1

with five cells of setSb
h2

, where1 ≤ a, b ≤ 3
(see Fig.16). Without loss of generality, we assume that edgese1, . . . , e5 appear in this
order in the part ofP throughF (H). Observe thate1, . . . , e5, together with the five
cells ofSa

h1
and the five cells ofSb

h2
they connect, subdivide the plane into five regions.

Since the path is continuous inF (H), it connects from the end ofe1 (a cell of jointjh2
)

to the beginning ofe2 (a cell of jointjh1
), from the end ofe2 to the beginning ofe3, and

so on. If in the region between edgeses andes+1, with 1 ≤ s ≤ 4, there exists no cell of
joint jh3

, then the path throughF (H) will not traverse the region between these edges
in the opposite direction, since the path contains no edges going from a cell ofjh2

to
a cell ofjh1

and since the start- (and end-) cells of these edges cannot beseparated by
straight lines. Furthermore, note that, in this case, the path-connection fromes to es+1

does not traverse the region between the edges, therefore forming a spiral shape, in the
sense that the part of the path followinges+1 is separated from the part of the path prior
to es. Since we have five edges betweenSa

h1
andSb

h2
but only 3 possible sets of cells

on joint jh3
, at least one pair of edges exists creating an empty region and therefore a

spiral separating the path.
By this argument, it follows that cells attached to jointjh4

in different repetitions of
the subsequence((h1h2h3)

37h37
4 ) in F (H) are separated by path edges of the spirals

formed by the repeated subsequence of visited cells of the joints jh1
, jh2

, jh3
. Since

four repetitions create four of such separated cells onjh4
, by Property 2 there exists a

pair of cells that are not separable by a straight line but areseparated by the path. Since
the path of the spiral separating them consists only of cellson different joints, any
possible separating polyline leads to a contradiction to the non-existence of a passage
insideF (H). �

Lemma 3. Each passage contains at least one closed door.

h’

v v’

j

Fig. 17. There exists a closed door in each passage.

Proof: Refer to Fig. 17. LetP1 be a passage betweenc1(h), c2(h), andc′(h′).
Consider any vertexv of c′ inside the convex hull ofC := c1 ∪ c2. Further, consider
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all the triangles△(v, v1, v2) created byv with any two verticesv1, v2 ∈ C such that
△(v, v1, v2) does not enclose any other vertex ofC. The path of tree edges connecting
v to jh′ enters one of the triangles. Then, either it leaves the triangle on the opposite
side, thereby creating a closed door, or it encounters a vertexv′ of c′. Since at least one
vertex ofc′ lies outside the convex hull ofC, otherwise they would not be separated by
c′, it is possible to repeat the argument on triangle△(v′, v1, v2) until a closed door is
found. �

Lemma 4. Given a set of jointsJ = {j1, . . . , jy}, with |J | = y :=
(

27·3·x+2
3

)

, there
exists a subsetJ ′ = {j′1, . . . , j

′
r}, with |J ′| = r ≥ 27 · 3 · x, such that for each pair of

joints j′i, j
′
h ∈ J ′ there exist two cellsc1(i), c2(i) creating a passage with a cellc′(h).

Proof: By construction of the tree, for each set of four joints, there are formations
that visit only cells of these joints. By Lemma 2, there exists a passage inside each of
these formations, which implies that for each set of four joints there exists a subset of
two joints creating a passage. The actual number of joints needed to ensure the existence
of a subset of joints of sizer such that passages exist between each pair of joints is
given by the Ramsey NumberR(r, 4). This number is defined as the minimal number
of vertices of a graphG such thatG either has a complete subgraph of sizer or an
independent set of size4. Since in our case we can never have an independent set of
size4, we conclude that a subset of sizer exists with the claimed property. The Ramsey
numberR(r, 4) is not exactly known, but we can use the upper bound directly extracted
from the proof of the Ramsey theorem to arrive at the bound stated above. [13] �

Lemma 5. Consider a set of jointsJ = {j1, . . . , jk} such that there exists a passage be-
tween each pair(ji, jh), with 1 ≤ i, h ≤ k. LetP1 = {P | P connectsci andc 3k

4
+1−i,

for i = 1, . . . , k
4} andP2 = {P | P connectsc k

4
+i andck+1−i, for i = 1, . . . , k4} be

two sets of passages between pairs of joints inJ (see Fig. 18). Then, for at leastk4 of
the joints of one set of passages, sayP1, there exist paths inT , starting at the root and
containing these joints, which traverse all the doors ofP2 with at least 2 and at most 3
bends. Also, at least half of these joints create anx-channel, with2 ≤ x ≤ 3.

j j
3k/4

2
1

k
k/2k/4

1

r

j
jj

Fig. 18. The two sets of passagesP1 andP2 described in Lemma 5.
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Proof: Observe first that each passage ofP1 is interconnected with each passage of
P2 and that all the passages ofP1 and all the passages ofP2 are nested.

By Lemma 3 and Property 1, for one ofP1 andP2, sayP1, either for every joint
of P1 between the joints ofP2 in the order around the root or for every joint ofP1 not
between the joints ofP2, there exists a pathpi in T , starting at the root and containing
these joints, which has to traverse all the doors ofP2 by making at least1 and at most
3 bends. Also, pathsp1, . . . , p k

4
can be ordered in such a way that a bendpoint ofpi

encloses a bendpoint ofph for eachh > i. It follows that there existx-channels with
1 ≤ x ≤ 3 for each joint. Consider now the set of jointsJ ′ ⊂ J visited by these paths.
We assume the joints ofJ ′ = {j′1, . . . j

′
r} to be in this order around the root.
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Fig. 19. (a) The separating cellc′ is in the outermost channel. (b) The separating cellc′

is in the innermost channel.

Consider the pathp1 whose bendpoint encloses the bendpoint of each of all the
other paths and the pathpr whose bendpoint encloses the bendpoint of none of the
other paths (see Figs. 19(a) and 19(b)). Please note that eitherp1 visits j′1 andpr visits
j′r or vice versa, sayp1 visits j′1. By construction, there exists a passage between cells
from j′1 and cells fromj′r. In this passage there exist either two path-edgese1, e2 of a
cell c′(1) separating two cellsc1(r), c2(r), thereby crossing the channel ofj′r, or two
edges of a cellc′(r) separating two cellsc1(1), c2(1), thereby crossing the channel of
j′1. We show that 1-channels are not sufficient to draw these passages.

In the first case (see Fig. 19(a)), both separating edgese1, e2 cross the pathpr be-
fore and after the bend, thereby creating blocking cuts separating vertices of the same
cell, sayc1. Since they are connected by the path, by Property 5, an additional bend
is needed. In the other case (see Fig. 19(b)), any edge connecting vertices ofc′(j′r) is
not even crossing any edge ofp1 and therefore at least another bend is needed in the
channel. So at least one of the joints needs an additional bend. Since there are pas-
sages between each pair of joints inJ ′, all but one jointjq have a path that has to bend
an additional time. We note that the additional bendpoint ofeach pathpk aside from
p1, pr, andpq has to enclose all the additional bendpoints either ofp1, . . . , pk−1 or of
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pk+1, . . . , pr. It follows that, for at least half of the joints, there existx-channels where
2 ≤ x ≤ 3. �

Lemma 6. There exist non ≥ 222 ·14 independent sets of formationsS1, . . . , Sn inside
any extended formation, where eachSi contains formations of a fixed set of channels of
sizer ≥ 22.

Proof: Assume for a contradiction, that such independent setsS1, . . . , Sn exist.
By Lemma 2, each formation in each set will contain a passage and thereby an edge
cutting the channel border. By Property 4 each formation in each set will place an edge
to either channel segmentcs1 or cs2. As can be easily seen, there exists a setS1 of
size n

2 of sets of formations that will have at least one common connection for a fixed
formationFi in each setSa ⊂ S1, where1 ≤ n. By repeating the argument we can
find a subsetS2 ⊂ S1 of size n

4 such that these sets will have at least two common
connections for formationsFi, Fh in each setSa ⊂ S2. By continuing this procedure
we arrive at a subsetSr of size n

2r that will have at leastr common connections. Since
all these common connections have to connect to eithercs1 or cs2, we have identified a
setS = {S′

1, . . . , S
′
n
2r
} of size n

2r of sets of formations of size at leastr
2 that has all the

connections to one specific channel segmentCS.
We now consider the cutting edges for each of the formations of S in CS. Since

any of those can intersect the channel border on two different sides, at least half of the
connections for a fixed formationF r

4
in all the sets will intersect with one side of the

channel border, thereby crossing either all the channels1, . . . , r
4 − 1 or all the channels

r
4 + 1, . . . , r

2 , assume the first. Consider now the formationsF r
8

in each of the sets.
These formations of the setsS′

2, S
′
4, . . . , S

′
n

2r+1
will be separated onCS by the edges of

the formationsF r
4

of the setsS′
3, S

′
5, . . . , S

′
n
2r

−1. To avoid a monotonic ordering of the
separated formations and thereby the existence of an region-level nonplanar tree these
formationsF r

8
have to place vertices in an adjacent channel segmentCS′. This will cre-

ate blocking cuts for either all the channels1, . . . , r
8−1 or all the channelsr8+1, . . . , r

4 ,
assume the first. Consider now the formationsF1 in each of the sets. These formations
of the setsS′

3, S
′
5, . . . , S

′
n
2r

−2 will be separated onCS by the edges of the formations
F r

8
of the setsS′

4, S
′
6, . . . , S

′
n
2r

−3. By the same argument as above also these forma-
tions have to place vertices in an adjacent channel segment that are visible from some
of the separated areas ofCS. Since the connection from the formationsF r

8
are block-

ing for the connection toCS′, the formationsF1 have to use the remaining adjacent
channel segmentCS′′, thereby blocking all the channels1, . . . r2. We finally consider
the formationsF2 of the setsS′

4, S
′
6, . . . , S

′
10. These formations are now separated in

CS by the blocking edges toCS′ of the formationsF r
8

and by the blocking edges to
CS′′ of the formationsF1. Therefore, these formations cannot use part of any channel
segment (tree-)visible to the separated areas inCS. So, by Property 2, we identified a
region-level nonplanar tree, in contradiction to the assumption. �

Lemma 7. Consider four subsequencesQ1, . . . , Q4, whereQi = (H1, H2, . . . , Hx),
of an extended formationEF , each consisting of a whole repetition ofEF . Then, there
exists either a pair of nested subsequences or a pair of independent subsequences.

Proof: Assume that no pair of nested subsequences exists. We show that a pair of
independent subsequences exists.
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First, we consider howQ1, . . . , Q4 use the first two channel segmentscs1 andcs2.
Each of these subsequences uses either onlycs1, only cs1, or both to place its forma-
tions. Observe that, if a subsequence uses onlycs1 and another one uses onlycs2, then
such subsequences are clearly independent. So we can assumethat all ofQ1, . . . , Q4

use a common channel segment, saycs2.

a

Fig. 20. If three subsequences use the same channel segmentcs, then at least two of
them are either nesting or separated incs.

Then we show that, if three subsequences use the same channelsegmentcs, then
at least two of them are separated incs. In fact, if two subsequences usingcs are not
independent, then they contain formations on the same channel a that intersect with
different channel borders ofa. However, a third subsequence containing a formation
that intersects a channel border ofa is such that there exists either a nesting or a clear
separation between this subsequence and the other subsequence intersecting the same
channel border ofa (see Fig. 20). This fact implies that if three subsequences use only
cs2, then at least two of them are independent. From this and fromthe fact that there
are four subsequences usingcs2, we derive that two subsequences, sayQ1, Q2, are
separated incs2 and are not separated incs1. Then, the third subsequenceQ3 can be
placed in such a way that it is not separated fromQ1 andQ2 in cs2. However, this
implies thatQ4 is separated incs1 from two of Q1, Q2, Q3 and in cs2 from two of
Q1, Q2, Q3, which implies thatQ4 is separated in both channel segments from one of
Q1, Q2, Q3. �

Lemma 8. Consider an extended formationEF (H1, H2, . . . , Hx). Then, there exists
a k-nesting, wherek ≥ 6, among the formations ofEF .

Proof: Assume, for a contradiction, that there is nok-nesting among the sequence
of formations inEF . We claim that, under this assumption, there exist more thann

sequences of independent formations inEF from the same set of channelsC, where
n ≥ 222 · 14 and|C| ≥ 22. By Lemma 6, such a claim clearly implies the statement.

Consider sequences that use some common channels in channelsegmentscs1 and
cs2. Then, their separation incs1 has the opposite ordering with respect to their separa-
tion in cs2.
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Observe that, by Lemma 7, there exist at most(n − 1) · 3 different nestings of
subsequences such that there are less thann independent sets of subsequences. Also
note that, if some formations belonging to two different subsequences are nesting, then
all the formations of these subsequences have to be part of some nesting. However, this
does not necessarily mean for all the formations to nest witheach other and to build a
single nesting.

Since the number of channels used insideEF is greater than(n − 1) · 3 · 3, where
n ≥ 222 · 14, we have a nesting consisting of subsequences with at least3 different
defects.

Let the nesting consist of subsequencesQ1
1, . . . , Q

r
1, Q

1
2, . . . , Q

r
2, . . . , Q

1
k . . . , Q

r
k,

whereQh
i denotes theh-th occurrence of a subsequence ofEF with a defect at channel

i. Further, let the path connect them in the orderQ1
1, Q

1
2, . . . , Q

1
k, Q

2
1, . . . , Q

2
k, . . . , Q

r
k.

We show that there exists a pair of independent subsequenceswithin this nesting.

4 3 2 1 1 2 3 4 4 3 2 1 1 2 3 4 23 1 2 44 3 4 3 2 11

(a) (b) (c)

Fig. 21. (a) and (b) Possible configurations forQ1
1, Q1

2, andQ1
3. (c) The repetitions

follow the outward orientation.

123 1 2 3 4 44 3 2 1 23 1 2 3 4 44 3 2 11

(a) (b)

Fig. 22. The connection between channels2 and4 blocks visibility for the following
repetitions to the part of the channel segment where vertices of channel3 were placed
till that repetition.

Consider now the first two nesting repetitions of sequence(H1, H2, . . . , Hx), that
is, Q1

1 andQ1
2. Let the nesting consist of a formationF (k) from Q1

1 nesting in a for-
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123 1 2 3 4 44 3 2 1

(a)

Fig. 23. All the channelsc, . . . , x are shifted and the next repetition starts in a com-
pletely different region.

mationF ′(s) from Q1
2. Consider the edgese1, e2 ∈ F (k) ande′1, e

′
2 ∈ F ′(s) that are

responsible for the nesting. Without loss of generality we assume the pathp that con-
nectse′2 ande1 not to contain edgese′1, e2. Consider the two partsa, b of the channel
border ofs, wherea is betweene1 ande′1 andb is betweene2 ande′2. Consider now the
closed region delimited by the path throughF ′(s), the pathp, the path throughF (k),
andb. Such a region is split into two closed regionsRin andRnest by a (see Fig. 24).

1e’ e’2
Rin

Rnest

e21e

F’

F
a b

Fig. 24. RegionsRin andRnest.

Observe that, in order to reach fromRin to the outer region, any path has to cross
botha andb. We note that the part ofP starting ate′2 and not containingF (k) is either
completely contained in the outer region or has to cross overbetweenRin and the outer
region by traversingRnest. Similarly, the the part ofP starting ate1 and not containing
F ′(s) either does not reach the outer region or has to cross over betweenRin and the
outer region by traversingRnest. Furthermore, any formationF ′′ on such a path is also
either crossing over and thereby cutting botha andb, or not. In the first caseF is nested
in F ′′ andF ′′ is nested inF ′.

Consider now the third nesting repetitionQ1
3 of sequence(H1, H2, . . . , Hx) (see

Figs. 21(a) and 21(b)). It is easy to see that ifQ1
3 is nested betweenQ1

1 andQ1
2, then
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there exists a nesting of depth1 becauseQ1
3 contains a defect at a different channel. So

we have to consider the cases when the repetitions create thenesting by strictly going
either outward or inward. By this we mean that thei-th repetitionQ1

i has to be placed
such that eitherQ1

i is nested insideQ1
i−1 (inward) or vice versa (outward). Without loss

of generality, we assume the latter (see Fig. 21(c)).

Consider now a defect in a channelc, with 1 < c < k, at a certain repetitionQh
i .

Since the path is moving outward, the connection between channelsc − 1 andc + 1
blocks visibility for the following repetitions to the partof the channel segment where
vertices of channelc were placed till that repetition (see Fig. 22(a) for an example with
c = 3).

A possible placement for the vertices ofc in the following repetitions that does not
increase the depth of the nesting could be in the same part of the channel segment where
vertices of a channelc′, with c′ 6= c, were placed till that repetition. We callshift such
a move. However, in order to place vertices ofc and ofc′ in the same zone, all the
vertices ofc belonging to the current cell have to be placed there (see dashed lines in
Fig. 22(b), wherec′ = c + 1), which implies that a further defect in channelc at one
of the following repetitions encloses all the vertices of each of the previously drawn
cells, hence separating them with a straight line from the following cells. Hence, also
the vertices ofc′ have to perform a shift to a channelc′′, with c 6= c′′ 6= c′. Again, if the
vertices ofc′ and ofc′′ lie in the same zone, we have two cells that are separated by a
straight line and hence also the vertices ofc′′ have to perform a shift. By repeating such
an argument we conclude that the only possibility for not having vertices of different
channels lying in the same zone is to shift all the channelsc, . . . , x and to go back
to channel1 for starting the following repetition in a completely different region (see
Fig. 23, where the following repetition is performed completely below the previous
one). However, this implies that there exist two repetitions in one configuration that
have to be separated by a straight line and therefore are independent, in contradiction
to our assumption. Therefore, we can assume that, after3 · x+ 1 repetitions, we arrive
at a nesting of depth 1. By repeating this argument we arrive after 3 · x · 6 repetitions at
the nesting of depth6 claimed in the lemma. �

Lemma 9. If an extended formation lies in a part of the channel that contains only
1−side connections, thenT andP do not admit any geometric simultaneous embed-
ding.

Proof: First observe that, by Lemma 8, there exists ak-nesting withk ≥ 6 in any
extended formationEF .

Consider two nested formationsF, F ′ ∈ EF belonging to thek-nesting. Such
formations, by definition, belong to the same channel. Consider now the formation
F ′′ ∈ EF belonging to a different channel such thatF is nested inF ′′ andF ′′ is
nested inF ′. Since each pair of channel segments have a1−side connection, we have
thatF ′′ blocks visibility forF ′ on the channel segment used byF for the nesting (see
Fig. 25). Hence,F ′ has to use a different channel segment to perform its nesting, which
increases by one the number of used channel segments for eachlevel of nesting. Since
the tree supports at most4 channel segments, the statement follows. �
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F

F’
F’’

Fig. 25. Illustration for the case in which only1-side connections are possible.

Lemma 10. Consider two channelschp, chq with the same intersections. Then, none
of channelschi, wherep < i < q, have an intersection that is disjoint with the inter-
sections ofchp and ofchq.

Proof: The statement follows from the fact that the channel bordersof chp and
chq delimit the channel for all joints betweenp and q. So, if any channelchi, with
p < i < q, had an intersection different from the one ofchp andchq, it would either
intersect with one of the channel borders ofchp or chq or it would have to bend around
one of the channel borders, hence crossing a straight line twice. �

Lemma 11. Consider anx-nesting of a sequence of extended formations on an inter-
sectionI(a,b), with a ≤ 2. Then, there exists a trianglet in the nesting that separates
some of the triangles nesting witht from the bending areab(a, a+ 1) (or b(a− 1, a)).

Proof: Consider three extended formationsEF1(H1), EF2(H1), EF3(H1) lying
in a channelch1 and two extended formationsEF1(H2), EF2(H2) lying in a chan-
nel ch2 such that all the channels of the sequence of extended formations are be-
tweench1 and ch2 and there is no formationF 6∈ EF (H1), EF (H2) nesting be-
tweenEF1(H1), EF2(H1), EF3(H1) andEF1(H2), EF2(H2). Suppose, without loss
of generality, that the bending point ofch1 is enclosed into the bending point ofch2.

Consider a formationF1 ∈ EF1(H1) nesting with a formationF ′
1 ∈ EF1(H2). We

have that the connections fromF ′
1 to channel segmenta and back has to go around the

vertex placed byF1 on channel segmenta. Therefore, at least one of the connections
of F ′

1 cuts all the channels betweench1 and ch2, that is, all the channels where the
sequence of extended formations is placed. Such a connection separates the vertices of
F1 from the vertices of a formationF2 ∈ EF2(H1) on channel segmenta. Therefore,
at least one of the connections ofF2 to channel segmenta cuts either all the channels
in channel segmenta or all the channels in channel segmenta + 1 (or a − 1), hence
becoming a blocking cut for such channels. It follows that all the formations nesting
insideF2 on such channels can not place vertices in the bending areab(a, a + 1) (or
b(a− 1, a)) outsideF2. �
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Lemma 12. In a situation as described in Proposition 2, not all the extended formations
in a sequence of extended formations can place turning vertices in the same channel
segment.

Proof: Assume, for a contradiction, that all the turning vertices are in the same
channel segment. Consider a sequence of extended formationsSEF and the extended
formations inSEF using one of the sets of channels{H1, . . . , H4}.

We first show that inSEF there exist some extended formations using connec-
tions inα configuration and some using connections inβ configuration on the channels
{H1, . . . , H4}. Consider the continuous subsequence of extended formationsEF (H1),
. . . , EF (H3) in SEF . Assume that all the turning vertices of these extended forma-
tions are inα configuration. Consider a further subsequence ofSEF on the same set
of channels with a defect atH2. Then, the connection betweenH1 andH3 crossesH2,
thereby blocking any furtherEF (H2) from being inα configuration. Therefore, when
considering another subsequence ofSEF on the same set of channels which does not
contain defects atH1, . . . , H3, either the extended formationEF (H2) is in β config-
uration or it uses another channel segment to place the turning vertex, as stated in the
lemma.

So, consider two channelsH1, H2 such that there exists an extended formation
EF (H1) in α configuration and an extended formationEF (H2) in β configuration.
Since all the extended formations contain a triangle open onone side that is nested with
trianglet, we consider five of such triangles, one for each set of channels H2, H3, H4

and two for setH1, such that four of the considered extended formationsEF (H1), . . . ,
EF (H4) are continuous inSEF and the other oneEF ′(H1) is the first extended for-
mation on the set of channelsH1 following EF (H4) in SEF .

(a) (b)

Fig. 26. (a) Two triangles from the same channel have to use differentchannel segments
if a triangle of another channel is between them. Turning vertices are represented by
black circles. (b) When a defect atH2 in encountered, the connection betweenEF (H1)
andEF (H3) does not permit the followingEF (H2) to respect the ordering of trian-
gles.
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Notice that, if a triangle of an extended formationEF (Hk) is nested in a triangle of
an extended formationEF (Hs) and the triangle ofEF (Hs) is nested inside a triangle
of an extended formationEF ′(Hk), with k < s, thenEF (Hk) has to use a different
channel segment to place its turning vertex (see Fig. 26(a)). Hence, the triangles have
to be ordered according to the order of the used channels. Also, if the continuous path
connecting two trianglest1 = (u, v, w), t2 = (u′, v′, w′) of consecutive extended for-
mationsEF (Hs), EF (Hs+1) connects vertexu to vertexw′ (or u′ to w) via the outer
area, then a triangle ofEF (H1) that occurs prior toEF (Hs) and a triangle ofEF ′(H1)
that occurs afterEF (Hs+1) are nested with the triangle given by the connection oft1
andt2 in an ordering that is different from the order of the channels.

Consider now the following subsequence ofSEF having a defect atH2. The con-
nection ofEF (H1) to EF (H3) in this subsequence blocks access for the following
EF (H2) to the area where it would have to place vertices in order to respect the order-
ing of triangles (see Fig. 26(b)). Therefore, after 3 full repetitions of the sequence in
SEF , at least one extended formation has to use a different channel segment to place
its turning vertex. �

Lemma 13. In a situation as described in Proposition 2,T andP do not admit any
geometric simultaneous embedding.

Proof: Consider two extended formationsEF (Hx), EF (H1) that are consecutive
in SEF . First note that the connection betweenEF (Hx) andEF (H1) cuts all chan-
nels2, . . . , x − 1 in either channel segmentcs1 or cs2. Since both of these extended
formations are also connected to the bending area between channel segmentscs3 and
cs4, it is not possible for an extended formationEF (s), with s ∈ {2, . . . , x − 1}, to
connect from vertices above the connection betweenEF (Hx) andEF (H1) to vertices
below it by following a path to the bending area. Note, further, that if all the extended
formationsEF (s), with s ∈ {2, . . . , x − 1}, are in the channel segment that is not
cut by the connection betweenEF (1) andEF (x), then a connection is needed from
cs1 to cs2 in channelx. However, by Lemma 12, after three defects in the subsequence
of {2, . . . , x − 1} it is no longer possible for some extended formationEF (s), with
s ∈ {2, . . . , x− 1}, to place its turning vertex in the same channel segment. Therefore,
different channel segments have to be used by the extended formationEF (s), with
s ∈ {2, . . . , x − 1}. However, since the path is continuous and since the connection
betweenEF (Hx) andEF (H1) is repeated after a certain number of steps, we can fol-
low that the path creates a spiral. Also, we note that, in order to respect the order of
the sequence, it will be impossible for the path to reverse the direction of the spiral.
Hence, once a direction of the spiral has been chosen, eitherinward or outward, all the
connections in the remaining part of the sequence have to follow the same. This implies
that, if a connection betweenEF (s) andEF (s+ 1) changes channel segment, that is,
it is performed in a different channel segment than the one betweenEF (s − 1) and
EF (s), then all the connections of this type have to change. However, when a defect at
channels+1 is encountered, also the connection betweenEF (s) andEF (s+2) has to
change channel segment, thereby making impossible for any future connection between
EF (s) toEF (s+1) to change channel segment. Therefore, after a whole repetition of
the sequence ofSEF containing defects at each channel, all the extended formations
have to place their turning vertices in the same channel segment, which is not possible,
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by Lemma 12. This concludes the proof that no valid drawing can be achieved in this
configuration. �

Lemma 14. If a shape contains an intersectionI(1,3) and does not contain any other
intersection that is disjoint withI(1,3), thenT andP do not admit any geometric simul-
taneous embedding.

Proof: First observe that only the intersectionsI(2,4) andI(1,4) are not disjoint with
I(1,3) and could occur at the same time asI(1,3). By Lemma 8, there exists at least
a nesting greater than, or equal to, 6. Each of such nestings has to take place either
at intersectionsI(1,3), I(2,4) or at I(1,4). Remind that, by Property 4,1-vertices can
only be placed incs1 or cs2. Also, the sorting of head vertices to avoid a region-level
nonplanar trees can only be done by placing vertices intocs3 or cs4. This implies that
the stabilizers have to be placed incs1 or cs2. Note that the stabilizers also work as
1-vertices in the tails of other cells. This means that if there exist seven sets of tails
that can be separated by straight lines, then there exist a region-level nonplanar tree,
by Lemma 6. Observe that, by nesting them according to the sequence, the previous
condition would be fulfilled. This means that we have either asorting or other nestings.
We first show that there exist at most twox-nestings withx ≥ 6. Everyx-nesting has
to take place at eitherI(1,3), I(2,4) or I(1,4). We assume, w.l.o.g., to have to deal with
the greatest possible number of intersections.

Consider the caseIh(2,4) (see Fig 27(a)). Observe that intersectionsI(1,4) andI(1,3)
are either both high or both low and use channel segmentcs1. Also, every connection
from cs1 to cs4 cuts eithercs2 or cs3 and, if one of these connections cutscs2, then
every nesting cuttingcs1 closer tob(1, 2) has to cutcs2. Hence, we can consider all the
connections tocs4 as connections tocs2 or cs3. Also, since any connection cutting a
channel segment is more restrictive than a connection inside the same channel segment,
such two nestings can be considered as one. Finally, since such a nesting connects to
b(2,3), it is not possible to have at the same time a nesting taking place atIh(2,4). Hence,
we conclude that only one nesting is possible in this case.

1
4 4

1

(a) (b)

Fig. 27. (a) CaseI(1,3) Ih(2,4). (b) CaseI(1,3) I l(2,4).
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Consider the caseI l(2,4) (see Fig 27(b)). Observe that1-vertices can be placed at
most incs2 and2-vertices can be placed at most incs3. This means that the extended
formations in every nesting have to visit these vertices. Therefore, if there exists both a
nesting atI(1,3) and atI(1,4), then the connections to the 1- and 2-vertices in the bending
areasb(2, 3) andb(3, 4) are such that every EF nesting atI(1,4) makes a nesting with
the extended formations nesting atI(1,3). Hence, also in this case only one nesting is
possible.

So we consider the unique nesting of depthx ≤ 6 and we show that any way of
sorting the nesting formations in the channels will cause separated cells, hence proving
the existence of a nonplanar region-level tree. Consider four consecutive repetitions of
the sequence of formations. It is clear that these formations are visiting areas ofcs1
and are separated by previously placed formations from other formations on the same
channels. This will result in some cells to become separatedin cs1. Since, by Property 2,
the number of monotonically separated cells incs1 cannot be larger than3, for any set
of four such separated formations there exists a pair of formationsF1, F2 that change
their order incs1. These connections have to be made on either side of the nesting. If
between this pair of formations there is a formation of a different channel, then this
formation has to choose the other side to reorder with a formation outsideF1, F2. We
further note that, if there are two such connectionsF1, F4 andF2, F3 on the same side
that are connecting formations of one channel, nested in theorderF1, F2, F3, F4, and
another connection on the same side betweenF ′

1, F
′
2 such thatF ′

1 is nested between
F1, F2 andF ′

2 betweenF3, F4, then this creates a 1-nesting. In the following we show
that a nesting of depth at least 6 is reached.

Assume the repetitions of formations in the extended formation to be placed in the
ordera, b, c, d, e. If this order is not coherent with the order in which the channels appear
in the sequence of formations inside theEF , then we have already some connections
that are closing either side of the nesting for some formations. So we assume them to
be in the order given by the sequence. Then, consider a repetition of formations with
a defect at some channelCi. We have that there exists a connection closing off at one
side all the previously placed formations ofCi. However, there are sequences with
defects also at channelsCi+1 andCi−1, which can not be realized on the same side
as the defects atCi. We generalize this to the fact that all the defects at odd channels
are to one side, while the defects at even channels are to the other side. Since the path
is continuous and has to reach from the last formation in a sequence again to the first
one, the continuation of the path can only use either the odd or the even defects. This
implies that, when considering three further repetitions of formations, the first and the
third having a defect at a channelCi and the second having no defect atCi, there will be
a nesting of depth one between these three formations. Since, by Lemma 9, there cannot
be a nesting of depth greater than 5 at this place, we concludethat after 6 repetitions
of such a triple of formations there will be at least two formations that are separated
from each other. By repeating this argument we arrive after7 · 6 · 2 repetitions at either
the existence of 7 formations that are separated oncs1 andcs2 or at the existence of
a nesting of depth 6, both of which will not be drawable without the aid of another
intersection that is able to support the second nesting of depth greater than 5. �
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Lemma 15. If there exists a sequence of extended formation in any shapecontaining an
intersectionI(3,1), thenT andP do not admit any geometric simultaneous embedding.

Proof: Consider a sequence of extended formation in a shape containing an inter-
sectionI(3,1). We show thatT andP do not admit any geometric simultaneous embed-
ding. Observe that there exist several possibilities for channel segmentcs4 to be placed.
Either there exists no intersection of an elongation of one channel segment with another
channel segment or there exists at least one of the intersectionsI(1,4), I(4,2), I(4,1) or
I(2,4). If there are more than one of such intersections, then it is possible to have several
nestings of depthx. We note that, if there exists the intersectionI(3,1), then at least one
of cs1, cs2, andcs4 are part of the convex hull (see Fig. 28).

1
3 31

(a) (b)

Fig. 28. If channel segment four is not part of the convex hull then eithercs1 or cs2 is
part of the convex hull. (a) CaseI l(1,3). (b) CaseIh(1,3).

First, we show that there exists a nesting atI(3,1).
Consider caseIh(3,1). We have thatcs2 is on the convex hull restricted to the first

three channel segments andcs4 can force at most one ofcs2 or cs1 out of the convex
hull. Hence, one of them is part of the convex hull. We distinguish the two cases.

Supposecs2 to be part of the convex hull. Assume there exists a nesting atI(1,4).
From cs4 the only possible connection without a1-side connection is the one tocs2,
which, however, is on the convex hull. Hence, an argument analogous to the one used
in Lemma 14 proves that the nesting atI(2,4) has size smaller than7∗12, which implies
that the rest of the nesting has to take place atI(3,1).

Supposecs1 to be part of the convex hull. Assume that there exists a nesting at
I(2,4). Every connection fromcs4 has to be either tocs1 or to cs2, by Property 4. Since
cs2 is already part of the nesting, we have connections tocs1. However,cs1 is on the
convex hull, hence allowing only1-side connections. Therefore, an argument analogous
to the one used in Lemma 14 proves that the nesting atI(2,4) has size smaller than7∗12,
which implies the rest of the nesting has to take place atI(3,1).

Consider caseI l(3,1). Sincecs2 is not part of the convex hull, eithercs1 or cs4 are.
If cs1 is on the convex hull, then the same argument as before holds,while if cs4 is on
the convex hull, then no reordering is possible.

Clearly, if there is no intersection other thanI(3,1), a nesting in the intersectionI(3,1)
has to be performed.
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Hence, we conclude that a nesting with a depth of7∗12 in every extended formation
has to take place atI(3,1) (or atI(4,1), which can be considered as the same case).

By Lemma 11, the nesting in the bending area is limited. Everyextended formation
EF which has at least one vertex either incs3 or in cs4 has a vertex in the bending
area. Consider a sequence of extended formationsSEF which uses only channels in
this particular shape. It’s obvious that all of theseEF in SEF have to do a nesting
at I(3,4,1). Observe that there exist two consecutive edges which are forming a triangle
with cs1, cs2, andcs3 by simply placing vertices inside the channel segments. Since
every EF creates such triangles, there exists a triangle which is not in the bending area
and such that there exists no other triangle between the bending area and this triangle.
This triangle is separating the nesting area from the bending area in all buts extended
formations. However, since every EF has to use both of such areas, the inner area ofcs3
(or cs4) has to connect to the outer area ofcs3 (or cs4). If cs1 is on the convex hull,
then there exist only1-sided connections, which implies the statement, by Lemma 13.
On the other hand, ifcs1 is not on the convex hull, then there existsI(1,4) andcs4 can
be also used to perform connections from the inner to the outer area. However, since
cs4 is on the convex hull, such connections are only1-side. Hence, by Lemma 13, the
statement follows. �

Lemma 16. Let csi andcsi+1 be two consecutive channel segments. If there exists an
ordered setS := (1, 2, . . . , 5)3 of extremal double cuts cuttingcsi andcsi+1 such that
the order of the intersections of the double cuts withcsi (with csi+1) is coherent with
the order ofS, thenT andP do not admit any geometric simultaneous embedding.

Proof: Suppose, for a contradiction, that such a setS exists. Assume first thatcsi
andcsi+1 are such that the bendpoint of channel5 encloses the bendpoint of all the
other channels. Hence, any edge creating a double cut at a channelc has to cut all the
channelsc′ with c′ > c, either incsi or in csi+1. Refer to Fig. 29.

Consider the first repetition(1, 2, . . . , 5). Let e1 be an edge creating a double cut
at channel1. Assume, without loss of generality, thate1 cuts channel segmentcsi.
Observe that, for channel1, the visibility constraints determined in channels2, . . . , 5 in
csi and incsi+1 by the double cut created bye1 do not depend on whether it is simple
or non-simple. Indeed, by Property 6, edgee1 blocks visibility tob(i, i+1) for the part
of csi where edges creating double cuts at channels2, . . . , 5 following e1 in S have to
place their end-vertices.

Then, consider an edgee3 creating a double cut at channel3 in the first repetition
of (1, 2, . . . , 5).

If e3 cutscsi (see Fig. 29(a)), then it has to create either a non-simple double cut or
a simple one. However, in the latter case, an edgee′3 betweencsi andcsi+1 in channel
3, which creates a blocking cut in channel2, is needed. Hence, in both cases, channel2
is cut both incsi and incsi+1, either bye3 or bye′3. It follows that an edgee2 creating a
double cut at channel2 in the second repetition of(1, 2, . . . , 5) has to cutcsi+1, hence
blocking visibility to b(i, i + 1) for the part ofcsi+1 where edges creating double cuts
at channels3, . . . , 5 following it in S have to place their end-vertices, by Property 6.
Further, consider an edgee5 creating a double cut at channel5 in the second repetition
of (1, 2, . . . , 5). Since visibility tob(i, i + 1) is blocked bye1 ande3 in csi and bye2
in csi+1, e2 has to create a non-simple double cut (or a simple one plus a blocking cut),
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Fig. 29. Proof of Lemma 16. (a)e3 cutscsi. (b) e3 cutscsi+1.

hence cutting channel4 both incsi and incsi+1. It follows that, by Property 5, an edge
e4 creating a double cut at channel4 in the third repetition of(1, 2, . . . , 5) can place its
end-vertex neither incsi nor in csi+1.

If e3 cutscsi+1 (see Fig. 29(b)), then it has to create a simple double cut. Again,
by Property 6, edgee3 blocks visibility tob(i, i + 1) for the part ofcsi+1 where edges
creating double cuts followinge3 in S have to place their end-vertices. Hence, an edge
e5 creating a double cut at channel5 in the first repetition of(1, 2, . . . , 5) cannot create
a simple double cut, since its visibility tob(i, i + 1) is blocked bye1 in csi and bye3
in csi+1. This implies thate5 creates a non-simple double cut (or a simple one plus
a blocking cut) at channel5, cutting eithercsi or csi+1, hence cutting channel4 both
in csi and incsi+1. It follows that, by Property 5, an edgee4 creating a double cut at
channel4 in the second repetition of(1, 2, . . . , 5) can place its end-vertex neither incsi
nor in csi+1.

The case in whichcsi andcsi+1 are such that the bendpoint of1 encloses the bend-
point of all the other channels can be proved analogously. Namely, the same argumen-
tation holds with channel5 playing the role of channel1, channel1 playing the role
of channel5, channel3 having the same role as before, channel4 playing the role of
channel2, and channel2 playing the role of channel4. Observe that, in order to ob-
tain the needed ordering in this setting,3 repetitions of(1, 2, . . . , 5) are needed. In fact,
we consider channel5 in the first repetition, channels3 and4 in the second one, and
channels1 and2 in the third one. �

Lemma 17. Each extended formation in shapeIh(1,3) I
h
(4,2) creates double cuts in at

least one bending area.
Proof: Refer to Fig. 30(a). Assume, without loss of generality, that the first bend-

point of channelc1 encloses the first bendpoint of all the other channels. This implies
that the second and the third bendpoints of channelc1 are enclosed by the second and
the third bendpoints of all the other channels, respectively.

Suppose, for a contradiction, that there exists no double cut in b(2, 3) and inb(3, 4).
Hence, any edgee connecting tob(2, 3) (to b(3, 4)) is such thate and its elongation
cut each channel once. Consider an edge connecting tob(2, 3) in a channelci. Such
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Fig. 30. (a) ShapeIh(1,3) I
h
(4,{1,2}) has to connect at least one bend with double cuts. (b)

ShapeIh(1,3) I
l
(4,2) has to connect bendb(2, 3) with double cuts.

an edge creates a triangle together with channel segments3 and4 of channelci which
encloses the bending areasb(3, 4) of all the the channelsch with h < i by cutting such
channels twice. Hence, a connection to such a bending area inone of these channels
has to be performed from outside the triangle. However, since in shapeIh(1,3) I

h
(4,2) both

the bending areasb(2, 3) andb(3, 4) are on the convex hull, this is only possible with a
double cut, which contradicts the hypothesis. �

Lemma 18. Every sequence of extending formations in shapeIh(1,3) I
h,l

(4,2) contains an

ordered set(1, 2, . . . , 5)3 of extremal double cuts with respect to bending area either
b(2, 3) or b(3, 4).

Proof: ShapeIh(1,3) I
h
(4,2) is similar to shapeIh(1,3) I

h
(4,1), depicted in Fig. 30(a), with

the only difference on the slope of channel segment4, which is such that its elongation
crosses channel segment2 and not channel segment1. ShapeIh(1,3) I

l
(4,2) is depicted in

Fig. 30(b).

Assume, without loss of generality, that the first bendpointof channelc1 is enclosed
by the first bendpoint of all the other channels. This impliesthat the second bendpoint
of channelc1 encloses the second bendpoint of all the other channels.

First observe that bending areab(2, 3) is on the convex hull, both in shapeIh(1,3)
Ih(4,2) and in shapeIh(1,3) I

l
(4,2).

Also, observe that all the extended formations have some vertices inb(2, 3) and in
b(3, 4), and hence all the extended formations have to reach such vertices with path-
edges.

In shapeIh(1,3) I
h
(4,2), by Lemma 17, there exist double cuts either inb(2, 3) or in

b(3, 4), while in shapeIh(1,3) I l(4,2) there exist double cuts inb(2, 3), since the only
possible connections tob(2, 3) are from channel segments1 and 4, which are both
creating double cuts (see Fig. 30(b)). Hence, we consider the extremal double cuts of
each extended formation with respect to one ofb(2, 3) or b(3, 4), sayb(2, 3).
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Consider two sets of extended formations creating double cuts inb(2, 3) at channels
1, . . . , 5, respectively. Observe that the extended formations in these two sets could be
placed in such a way that the ordering of their extremal double cuts is(1, 1, 2, 2, . . . , 5, 5).
The same holds for the following occurrences of extended formations creating dou-
ble cuts inb(2, 3) at channels1, . . . , 5, respectively. Clearly, in this way an ordering
(1n, 2n, . . . , 5n) could be achieved and hence an ordered set(1, 2, . . . , 5)3 of double
cuts would be never obtained (see Fig. 31(a)).

However, every repetition of extended formations inside a sequence of extended
formations contains a double defect at some channel. We show, with an argument sim-
ilar to the one used in Lemma 8, that the presence of such double defects determines
an ordering(1, 2, . . . , 5)3 of extremal double cuts after a certain number of repetitions
of extended formations inside a sequence of extended formations. Namely, consider
a double defect at channeli in a certain repetition. The connection between channels
i−1 andi+2 cannot be performed in the same area as the connection between channels
i− 1 andi and between channelsi andi+ 1 was performed in the previous repetition.
Hence, such a connection has to be performed either in the same area as the connection
between channelsi+1 andi+2 was performed (see Fig. 31(b)), or in channel segment
4 (this is only possible in shapeIh(1,3) I l(4,2), see Fig. 31(c)). Observe that, going to
channel segment4 to make the connection, then to channel segment1, and finally back
to b(2, 3), hence creating a spiral, implies that the considered double cut is not extremal
(see Fig. 31(d)). Therefore, the only possibility to consider when channel segment4 is
used is to make the connection between channelsi− 1 andi+2 there and then to come
back tob(2, 3) with a double cut. Hence, independently on whether channel segment4
is used or not, the connection between channelsi− 1 andi+ 2 blocks visibility for the
following repetitions to the areas where the connections between some channels were
performed in the previous repetition. This implies that theordering(1n, 2n, . . . , 5n) of
extremal double cuts cannot be respected in the following repetitions. In fact, a partial
order(i, i + 1, i + 2)2 is obtained in a repetition of formations creating extremaldou-
ble cuts at channels1, . . . , 5. Also, when two different double defects having a channel
in common are considered, the effect of such defects is combined. Namely, consider a
double defect at channel3 in a certain repetition. The connection between channels2
and5 blocks visibility to the areas where the connection between2 and3 and between
3 and4 were performed at the previous repetitions (see Fig. 32(a)). Then, consider a
double defect at channel1 in a following repetition. We have that the connection be-
tween channels0 and3 can not be performed where the connection between2 and3
was performed in the previous repetitions, since such an area is blocked by the pres-
ence of the connection between channels2 and5. Hence, a double cut at channel3 has
to be placed after the double cut at channel5 created in the previous repetition (see
Fig. 32(b)). Consider now a further repetition with a defectnot involving any of chan-
nels1, . . . , 5. We have that the area where the connection from1 to 2 was performed
in the previous repetitions is blocked by the connection between0 and3 and hence a
double cut at channel1 has to be placed after the double cut at channel3 created in the
previous repetition, which, in its turn, was created after the double cut at channel5 (see
Fig. 32(c)).
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Fig. 31. (a) The ordering of the extremal double cuts is(1, 1, 2, 2, . . . , 5, 5). (b) and (c)
When a double defect is encountered, the connection betweenchannelsi− 1 andi+ 2
cannot be performed in the same area as the connection between channelsi − 1 and
i and between channelsi andi + 1 was performed in the previous repetition: (b) The
connection is performed in the same area as the connection between channelsi + 1
andi+ 2 was performed. (c) The connection is performed in channel segment4. (d) If
channel segment four is used to spiral, the considered double cut was not extremal.
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Fig. 32. (a) A repetition with a double defect in channel2 is considered. (b) A repetition
with a double defect in channel0 is considered. (c) A repetition without any double
defect in channels1, . . . , 5 is considered. (d) An ordered set(1, . . . , 5) is obtained.
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Also, all the double cuts at channels2, . . . , 5 have to be placed after the double
cut at1, and hence a shift of the whole sequence1, . . . , 5 after the double cut at5 is
performed and an ordered set(1, 2, . . . , 5)2 is obtained (see Fig. 32(d)). Observe that
at most two sets of repetitions of extended formation insidea sequence of extended
formations such that each set contains a double defect at each channel are needed to
obtain such a shift. By repeating such an argument we obtain another shifting of the
whole sequence(1, . . . , 5), which results in the desired ordered set(1, 2, . . . , 5)3. We
have that a set of repetitions of extended formation containing a double defect at each
channel is needed to obtain the first sequence(1, 2, . . . , 5)2, then two of such sets are
needed to get to(1, 2, . . . , 5)2, and two more are needed to get to(1, 2, . . . , 5)3, which
proves the statement.

Observe that, if it were possible to partition the defects into two sets such that there
exists no pair of defects involving a common channel inside the same set, then such sets
could be independently drawn inside two different areas andthe effects of the defects
could not be combined to obtain(1, 2, . . . , 5)3. However, since each double defect in-
volves two consecutive channels, at least three sets are needed to obtain a partition with
such a property. In that case, however, an ordered set(1, 2, . . . , 5)3 could be obtained
by simply considering a repetition of(1, 2, . . . , 5) in each of the sets. �

Lemma 19. If channel segmentcs2 is part of the convex hull, thenT andP do not
admit any geometric simultaneous embedding.

Proof: First observe that, with an argument analogous to the one used in Lemma 14,
it is possible to show that there exists a nesting at intersection I(4, 1, 2). Then, by Prop-
erty 4, every vertex that is placed incs4 is connected to two vertices that are placed
either in cs1 or in cs2. Hence, the continuous path connecting to a vertex placed in
cs4 creates a triangle, having one corner incs4 and two corners either incs1 or in its
elongation, which cutscs4 into two parts, the inner and the outer area.

By Lemma 11, not all of these triangles can be placed in the bending areab(3, 4).
Hence, every extended formation, starting from the second of the sequence, have to
place their vertices in both the inner and the outer area of the triangle created by the
first one.

Observe that, in order to connect the inner to the outer area,the extended formations
can only use1-side connections. Namely,cs1 creates a1-side connection. Channel seg-
mentcs2 is on the convex hull. Since, by Property 4, every vertex thatis placed incs3
is connected to two vertices that are placed either incs1 or in cs2, alsocs3 creates a
1-side connection.

From this we conclude that in this configuration the preconditions of Proposition 2
are satisfied, and hence the statement follows. �

6 An Algorithm for the Geometric Simultaneous Embedding of a
Tree of Depth 2 and a Path

In this section we describe an algorithm for constructing a geometric simultaneous em-
bedding of any treeT of depth2 and any pathP . Refer to Fig. 33.
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Start by drawing the rootr of T on the origin in a coordinate system. Choose a ray
R1 emanating from the origin and entering the first quadrant, and a rayR2 emanating
from the origin and entering the fourth quadrant. Consider the wedgeW delimited by
R1 andR2 and containing the positivex-axis. SplitW into t wedgesW1, . . . ,Wt, in
this clockwise order around the origin, wheret is the number of vertices adjacent tor
in T , by emanatingt− 2 equispaced rays from the origin.

Then, consider the two subpathsP1 andP2 of P starting atr. Assign an orientation
toP1 andP2 such that the two edges(r, u) ∈ P1 and(r, v) ∈ P2 incident tor in P are
exitingr.

Finally, consider thet subtreesT1, . . . , Tt of T rooted at a node adjacent tor, such
thatu ∈ T1 andv ∈ Tt.

3

u

y

r
x

v

R

W

R1

2

2

1

W

W

Fig. 33. A tree with depth two and a path always admit a geometric simultaneous em-
bedding.

The vertices of each subtreeTi are drawn inside wedgeWi, in such a way that:

1. vertexu is the vertex with the lowestx-coordinate in the drawing, except forr;
2. vertices belonging toP1 are placed in increasing order ofx-coordinate according

to the orientation ofp1;
3. vertexv is the vertex with the highestx-coordinate in the drawing;
4. vertices belonging toP2\r are placed in decreasing order ofx-coordinate according

to the orientation ofp2, in such a way that the leftmost vertex ofP2 \ r is to the
right of the rightmost vertex ofP1; and

5. no vertex is placed below segmentrv.
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SinceT has depth2, each subtreeTi, with i = 1 . . . , t, is a star. Hence, it can be
drawn inside its own wedgeWi without creating any intersection among tree-edges.
Observe that the same holds even for subtreeTt, where the wedge to consider is the
part ofWt above segmentrv.

SinceP1 andP2 \ {r} are drawn in monotonic order ofx-coordinate and are sepa-
rated from each other, and edge(r, v) connecting such two paths is on the convex hull
of the point-set, no intersection among path-edges is created.

From the discussion above, we have the following theorem.

Theorem 2. A tree of depth2 and a path always admit a geometric simultaneous em-
bedding.

7 Conclusions

In this paper we have shown that there exist a treeT and a pathP on the same set of ver-
tices that do not admit any geometric simultaneous embedding, which means that there
exists no set of points in the plane allowing a planar embedding of bothT andP . We
obtained this result by extending the concept of level nonplanar trees [8] to the one of
region-level nonplanar trees. Namely, we showed that thereexist trees that do not admit
any planar embedding if the vertices are forced to lie insideparticularly defined regions.
Then, we constructedT andP so that the path creates these particular regions and at
least one of the many region-level nonplanar trees composingT has its vertices forced
to lie inside them in the desired order. Observe that our result also implies that there
exist two edge-disjoint trees that do not admit any geometric simultaneous embedding,
which answers an open question posed in [12], where the case of two non-edge-disjoint
trees was solved.

It is important to note that, even if our counterexample consists of a huge number
of vertices, it can also be considered as “simple”, in the sense that the depth of the
tree is just4. In this direction, we proved that, if the tree has depth2, then it admits
a geometric simultaneous embedding with any path. This gives raise to an intriguing
open question about whether a tree of depth3 and a path always admit a geometric
simultaneous embedding or not.
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